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Abstract: In this paper, we introduce the skew-symmetric generalized normal and the skew-
symmetric generalized t distributions, which are skewed extensions of symmetric special cases
of generalized skew-normal and generalized skew-t distributions, respectively. We derive key dis-
tributional properties for these new distributions, including a recurrence relation and an explicit
form for the cumulative distribution function (cdf) of the skew-symmetric generalized t distribution.
Numerical examples including a simulation study and a real data analysis are presented to illustrate
the practical applicability of these distributions.
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1. Introduction

Azzalini [1] introduced the skew-normal distribution SN(λ) characterized by the
following density function:

2ϕ(x)Φ(λx), x ∈ R,

where ϕ(·) represents the normal density function, and Φ(·) denotes the standard normal
cumulative distribution function. The SN distribution has gained considerable attention
due to its ability to capture asymmetry in data while preserving key characteristics of the
normal distribution. Its flexibility has made it particularly useful in various fields, such as
finance, environmental studies, and biomedical research.

Subsequently, Jamalizadeh et al. [2] proposed a two-parameter generalized SN distri-
bution GSN(λ1, λ2) with the following density function:

ϕGSN(x; λ1, λ2) =
2π

cos−1
(

−λ1λ2√
1+λ2

1

√
1+λ2

2

)ϕ(x)Φ(λ1x)Φ(λ2x), x ∈ R,

where λ1 and λ2 are real numbers that enhance the model’s flexibility in capturing asymmet-
ric data distributions. This two-parameter model effectively accommodates a wider range of
skewness and kurtosis, offering more flexibility compared to its one-parameter counterpart.

Building on this, Jamalizadeh and Balakrishnan [3] introduced a three-parameter GSN
distribution GSN(λ1, λ2, ρ), which can be viewed as a special case of the unified multivari-
ate skew-normal distribution introduced by Arellano-Valle and Azzalini [4]. The density
function of GSN is defined as follows:
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ϕGSN(x; λ1, λ2, ρ) =
2π

cos−1
(

−(ρ+λ1λ2)√
1+λ2

1

√
1+λ2

2

)ϕ(x)Φ2(λ1x, λ2x, ρ), x ∈ R, (1)

where Φ2 represents the cumulative distribution function of the standard bivariate normal
distribution with correlation ρ (with |ρ| < 1). This three-parameter model enhances
the distribution’s capability to provide a more flexible fit for complex datasets and to
accommodate dependencies between variables.

Remark 1. In the special case where λ1 = −λ2 = λ, the density function in (1) simplifies to the
generalized normal distribution GN(λ, ρ), given by

ϕGN(x; λ, ρ) = c(λ, ρ)ϕ(x)Φ2(λx,−λx, ρ), x ∈ R, (2)

where
c(λ, ρ) =

2π

cos−1
(
−(ρ−λ2)

1+λ2

) , (3)

defines the normalization constant.

This distribution represents a symmetric distribution centered at zero as depicted in
Figure 1. The capability of this distribution to retain symmetry while introducing elements
of skewness makes it particularly valuable for statistical modeling applications.
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Figure 1. The density function of GSN(λ1, λ2, ρ) for ρ = 0.8.

Definition 1. The family of skew-symmetric (-modulated) distributions is defined by the following
density function [5]:

ϕSS(x) = 2 f (x)Π(ω(x)), (4)

where f (·) is a symmetric density function (symmetric about zero), ω(·) is an odd function,
and Π : R → [0, 1] is a distribution function such that Π(t) + Π(−t) = 1.

This definition highlights the interplay between symmetry and skewness, enabling
nuanced modeling of real-world phenomena. Azzalini and Regoli [6] explored various
properties of skew-symmetric (-modulated) distributions, contributing significantly to the
theoretical framework essential for practical applications. Several studies have investigated
skew-symmetric distributions, including that of Nadarajah and Kotz [7], which introduced
a family of skew-symmetric normal distributions characterized by the density function
2ϕ(x)F(αx), where α is a real constant and F(·) is an absolutely continuous distribution
function with a symmetric density. By utilizing distribution functions such as normal,
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Student’s t, Laplace, logistic, and uniform distributions for F(·), the authors demonstrated
the versatility of skew-symmetric models across different contexts.

Gupta and Chang [8] examined a class of multivariate skew distributions, emphasizing
the importance of skewness in multivariate data analysis. Meanwhile, Gomez et al. [9]
studied a general family of skew-symmetric distributions generated by the normal distri-
bution’s cumulative distribution function, further expanding the theoretical landscape of
these distributions. Additionally, Nekoukhou and Alamatsaz [10] introduced a family of
skew-symmetric Laplace distributions, which have practical applications in fields such as
finance and risk management. Salehi and Azzalini [11] considered a Kotz-type distribution,
where the tail weight and degree of peakedness is regulated by two parameters instead
of a single one, and with a built symmetry-modulated Kotz-type distribution. They made
statistical inference based on the likelihood function on three real data sets.

In this paper, we aim to introduce a three-parameter skew-symmetric generalized
normal, and a four-parameter skew-symmetric generalized t distributions as two new
flexible models with wider ranges of skewness. The remainder of this paper is structured
as follows: Section 2 presents the skew-symmetric generalized normal distribution and
discusses its key properties. Section 3 then introduces the skew-symmetric generalized
t distribution, providing a recurrence relation and an explicit form for its cumulative
distribution function (cdf). Section 4 offers numerical examples, including a simulation
study and an analysis of real data. Finally, the paper concludes in Section 5.

2. Skew-Symmetric Generalized Normal Distribution

The three-parameter skew-symmetric generalized normal distribution, denoted as
SSGN(λ, ρ, α), is derived by substituting the symmetric density function f (.) from (2) into (4).
In this formulation, we utilize the standard normal distribution function, represented as
Π(.), and define the weighting function ω(x) = αx. This approach allows us to capture the
skewness and symmetry properties inherent in the distribution.

The density function for the SSGN is expressed mathematically as follows:

ϕSSGN(x; λ, ρ, α) = 2c(λ, ρ)ϕ(x)Φ2(λx,−λx, ρ)Φ(αx) , x ∈ R, (5)

where α ∈ R, λ ∈ R, and ρ (|ρ| < 1) are shape parameters, and c(λ, ρ) is a normalization
constant defined in (3). This formulation highlights the interplay between the parameters
λ, ρ, and α, which together characterize the shape and behavior of the distribution.

In cases where ρ = 0, the density function of the SSGN simplifies significantly, leading
to the following expression:

ϕSSGN(x; λ, α) =
4π

cos−1
(

λ2

1+λ2

)ϕ(x)Φ(λx)Φ(−λx)Φ(αx) , x ∈ R. (6)

This simplification exposes the core structure of the distribution in the absence of
the correlation parameter, facilitating a clearer analysis of the effects and roles of the
remaining parameters.

The graphical representation of the density function of SSGN for various parameter
values is illustrated in Figure 2. These plots provide valuable insights into how the pa-
rameters λ, ρ, and α influence the shape and characteristics of the SSGN. By examining
these plots, one can observe the effects of skewness and kurtosis, which are critical in
understanding the distribution’s behavior in practical applications.

Overall, the SSGN serves as a versatile model in statistical analysis, accommodating a
range of data characteristics through its parameterization, and the visualizations further
enhance our comprehension of its properties.
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Figure 2. The density function of SSGN(λ, ρ, α) for some choices of the parameters.

Remark 2. The following results are readily obtained:

1. SSGN(0, 0, 0) ≡ N(0, 1)
2. SSGN(0, 0, α) ≡ SN(α)
3. SSGN(λ, ρ, 0) ≡ GN(λ, ρ)
4. SSGN(−λ, ρ, α) ≡ SSGN(λ, ρ, α) (Thus, SSGN is not identifiable.)
5. If X ∼ SSGN(λ, ρ, α), then −X ∼ SSGN(λ, ρ,−α)

6. If X ∼ SSGN(λ, ρ, α), then X d
= U|α(U) > Z, where Z ∼ N(0, 1), U ∼ GN(λ, ρ),

and Z ⊥ U.

Moments

In this section, we analyze the skewness and kurtosis of the three-parameter SSGN
distribution. To facilitate this analysis, we first derive the moment-generating function
(MGF) of the SSGN.

Theorem 1. The moment-generating function of SSGN(λ, ρ, α) is given by

M(t; λ, ρ, α) = 2c(λ, ρ) exp
(

t2

2

)
Φ3

(
λt√

1 + λ2
,

−λt√
1 + λ2

,
αt√

1 + α2
, R
)

, (7)

where

R =

 1 ρ12 ρ13
1 −ρ13

1

 =

 1 ρ−λ2

1+λ2
λα√

1+λ2
√

1+α2

1 −λα√
1+λ2

√
1+α2

1

. (8)

Proof. To derive the moment-generating function, we start with the integral representation
of the MGF:

M(t; λ, ρ, α) = 2c(λ, ρ)
∫ ∞

−∞
etxϕ(x)Φ2(λx,−λx, ρ)Φ(αx)dx

= 2c(λ, ρ)e
t2
2

∫ ∞

−∞
ϕ(x − t)Φ2(λx,−λx, ρ)Φ(αx)dx

= 2c(λ, ρ)e
t2
2

∫ ∞

−∞
ϕ(z)Φ2(λ(z + t),−λ(z + t), ρ)Φ(α(z + t))dz

= 2c(λ, ρ)e
t2
2 E(Φ2(λ(z + t),−λ(z + t), ρ)Φ(α(z + t)))

= 2c(λ, ρ)e
t2
2 P(Y1 − λZ < λt, Y2 + λZ < −λt, Y3 − αZ < αt)

= 2c(λ, ρ)e
t2
2 Φ3

(
λt√

1 + λ2
,

−λt√
1 + λ2

,
αt√

1 + α2
, R
)

,
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where (Y1, Y2)
T follows a bivariate normal distribution N2(0, 0, 1, 1, ρ), which is indepen-

dent of Y3 and Z, where Z is independently and identically distributed as N(0, 1).

The derivatives of the moment-generating function, evaluated at t = 0, provide the
moments of the SSGN(λ, ρ, α). To aid in this process, we present the following lemma.

Lemma 1. Let γ, β ∈ Rp defined as γ =
(
γ1, γ2, · · · , γp

)T and β =
(

β1, β2, · · · , βp
)T . Let

Σ =
(
σij
)

denote a p × p positive definite covariance matrix. Furthermore, we assume that for
i = 1, 2, . . . , p, γ, β, and Σ are partitioned as follows:

γ =

(
γi

γ−i

)
, β =

(
βi

β−i

)
, Σ =

(
σii σT

−ii
σ−ii Σ−i−i

)
,

then, for s ∈ R we have [12]

∂

∂s
Φp(γs + β; Σ) =

p

∑
i=1

(
γi√
σii

)
ϕ

(
γis + βi√

σii

)
×Φp−1

((
γ−i −

γi
σii

σ−ii

)
s +

(
β−i −

βi
σii

σ−ii

)
; Σ−i|i

)
.

where γ−i =
(
γ1, · · · , γi−1, γi+1, . . . , γp

)T and Σ−i|i = Σ−i−i −
σ−iiσT

−ii
σii

.

The first four moments of SSGN are expressed as follows:

E(X) =
2c(λ, ρ)√

2π

−γ1

π
sin−1 ρ13 + ρ12ρ13√

1 − ρ2
12

√
1 − ρ2

13

+ γ2

(
1
4
+

1
2π

sin−1 ρ12 + ρ2
13

1 − ρ2
13

), (9)

E(X2) = 1 − λ2c(λ, ρ)(1 + ρ)

π(1 + λ2)
√

1 − ρ2 + 2λ2 + 2ρλ2
, (10)

E(X3) =
2c(λ, ρ)√

2π

γ3
1 − 3γ1

π
sin−1 ρ13 + ρ12ρ13√

1 − ρ2
12

√
1 − ρ2

13

− (γ3
2 − 3γ2)

(
1
4
+

1
2π

sin−1 ρ12 + ρ2
13

1 − ρ2
13

)

−γ1

π

A(γ1 + γ1ρ12)√
1 − ρ2

12

− B(γ2 − γ1ρ13)√
1 − ρ2

13

+
Cγ2(γ1 − γ2ρ13)

π
√

1 − ρ2
13

, (11)

E(X4) = 3 +
c(λ, ρ)(1 + ρ)

π(1 + λ2)
√

1 − ρ2 + 2λ2 + 2ρλ2

(
3λ4

1 + λ2 +
λ4(1 + ρ)

(1 + λ2)(1 + 2λ2 − ρ)
− 6λ2

)
, (12)

where γ1 = λ√
1+λ2 , γ2 = α√

1+α2 , and

A =
1√

1 − ρ2
13 −

(ρ13+ρ12ρ13)2

1−ρ2
12

(
γ2 − γ1ρ13 −

(γ1 + γ1ρ12)(ρ13 + ρ12ρ13)

(1 − ρ2
12)

)
,
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B =
1√

1 − ρ2
12 −

(ρ13+ρ12ρ13)2

1−ρ2
13

(
−γ1 − γ1ρ12 +

(γ2 − γ1ρ13)(ρ13 + ρ12ρ13)

(1 − ρ2
13)

)
,

C =
1√

1 − ρ2
13 −

(ρ12+ρ2
13)

2

1−ρ2
13

(
−γ1 + γ2ρ13 −

(γ1 − γ2ρ13)(ρ12 + ρ2
13)

(1 − ρ2
13)

)
.

The skewness and kurtosis of the SSGN can be derived from Equations (9)–(12)
as follows:

CS =
E(X3)− 3E(X)E(X2) + 2E3(X)

Var3/2(X)
, (13)

CK =
E(X4)− 4E(X)E(X3) + 6E2(X)E(X2)− 3E4(X)

Var2(X)
− 3, (14)

where

Var(X) = 1 − λ2c(λ, ρ)(1 + ρ)

π(1 + λ2)
√

1 − ρ2 + 2λ2 + 2ρλ2
− E2(X). (15)

The plots illustrating the skewness and kurtosis of SSGN for various parameter values
are presented in Figure 3 and Figure 4, respectively.

As shown in Figure 3, the skewness of the SSGN increases with higher values of α and
ρ, indicating a greater asymmetry in the distribution. Specifically, the maximum skewness
occurs at λ = 3.46878, resulting in a value of 1.2382. In contrast, Figure 4 illustrates that the
kurtosis initially decreases as |α| increases, before rising again. The peak kurtosis value is
observed at 1.6648 for λ = 4.0195. This behavior highlights the capacity of SSGN to model
data with varying levels of asymmetry and peakedness, providing a flexible framework for
statistical analysis.
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Figure 3. The skewness of SSGN(λ, ρ, α) for the selected parameter values.
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Figure 4. The kurtosis of SSGN(λ, ρ, α) for the selected parameter values.

3. Skew-Symmetric Generalized t Distribution

Jamalizadeh and Balakrishnan [3] defined a four-parameter generalized skew-t distri-
bution, GSt(ν, λ1, λ2, ρ), with the following density function:

fGSt(x; ν, λ1, λ2, ρ) =
2π

cos−1
(

−(ρ+λ1λ2)√
1+λ2

1

√
1+λ2

2

) g(x; ν)G2

(
λ1x

√
1 + ν

ν + x2 , λ2x
√

1 + ν

ν + x2 ; ρ, ν + 1

)
, (16)

where x ∈ R, g(·; ν) is the density function of the t distribution with ν degrees of freedom,
and G2(·, ·; ρ, ν) represents the distribution function of the standard bivariate t distribution
with correlation ρ (where |ρ| < 1) and ν + 1 degrees of freedom.

Remark 3. For the special case λ1 = −λ2 = λ, the density function (16) reduces to Gt(ν, λ, ρ)
with the following density function:

fGt(x; ν, λ, ρ) = c(λ, ρ)g(x; ν)G2

(
λx
√

1 + ν

ν + x2 ,−λx
√

1 + ν

ν + x2 ; ρ, ν + 1

)
, x ∈ R, (17)

where c(λ, ρ) is defined in (3).

This is a symmetric distribution, centered at 0, as illustrated in Figure 5.
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Figure 5. The density function of GSt(ν, λ1, λ2, ρ) for ν = 2, ρ = 0.8.
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The four-parameter skew-symmetric generalized t distribution, SSGt(ν, λ, ρ, α), is
obtained by substituting (17) into (4) as a symmetric density function f (.), using the
standard normal distribution function Π(.) and ω(x) = αx. The density function of SSGt
is given by

fSSGt(x; ν, λ, ρ, α) = 2c(λ, ρ)g(x; ν)G2

(
λx
√

1 + ν

ν + x2 ,−λx
√

1 + ν

ν + x2 ; ρ, ν + 1

)
Φ(αx), x ∈ R, (18)

where α ∈ R, λ ∈ R, ρ (|ρ| < 1) are shape parameters, ν ∈ R+ is the tail parameter,
and c(λ, ρ) is defined in (3). When ρ = 0, the density function of SSGt becomes

fSSGt(x; ν, λ, α) =
4π

cos−1
(

λ2

1+λ2

) g(x; ν)G

(
λx
√

1 + ν

ν + x2 ; ν + 1

)
G

(
−λx

√
1 + ν

ν + x2 ; ρ, ν + 1

)
Φ(αx). (19)

The plots of the density function of SSGt for various parameter values are shown in Figure 6.
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Figure 6. The density function of SSGt(ν, λ, ρ, α) for various parameter choices.

Remark 4. The following results are readily obtained:

1. SSGt(ν, 0, 0, 0) ≡ t(ν)
2. SSGt(ν, 0, 0, α) ≡ St(ν, α)
3. SSGt(ν, λ, ρ, 0) ≡ Gt(ν, λ, ρ)
4. SSGt(ν,−λ, ρ, α) ≡ SSGt(ν, λ, ρ, α) (Thus, SSGt is not identifiable.)
5. If X ∼ SSGt(ν, λ, ρ, α), then −X ∼ SSGt(ν, λ, ρ,−α)

6. If X ∼ SSGt(ν, λ, ρ, α), then X d
= U|α(U) > Z, where Z ∼ N(0, 1), U ∼ GN(λ, ρ), and Z ⊥ U.

Remark 5. If X ∼ SSGt(ν, λ, ρ, α), then X d
= W−1/2Z, where W ∼ χ2

ν/ν, Z ∼ SSGN(λ, ρ, α), and W ⊥ Z.
Thus, the integral form of the cumulative distribution function (cdf) of the SSGt distribution is as follows:

FSSGt(t; ν, λ, ρ, α) = E
[
ΦSSGN

(
t
√

W; λ, ρ, α
)]

= 2
√

πCν

∫ ∞

0
xν−1ϕ(x)ΦSSGN

(
tx√

ν
; λ, ρ, α

)
dx, (20)

where
Cν =

1
Γ
(

ν
2
)
2(ν−1)/2

.

Amiri et al. [13] obtained efficient recursive computational algorithms for multivariate t and
multivariate unified skew-t distributions. Also, Salehi et al. [12] obtained recurrence relations for the
cdf and the density function of the generalized skew two-piece skew-t distribution. Here, we intend to
achieve to a recurrence relation for the cdf of the SSGt distribution from the integration form given by (20).
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Theorem 2. The following recurrence relation holds for all ν > 1:

FSSGt(t; ν + 1, λ, ρ, α) = FSSGt

(√
ν − 1
ν + 1

t; ν − 1, λ, ρ, α

)

+ 2c(λ, ρ)h(t; ν + 1, ν − 1)G3

( √
νλt√

ν + 1 + t2
,

−
√

νλt√
ν + 1 + t2

,
√

ναt√
ν + 1 + t2

; ν, R∗
)

, (21)

where h(t; ν1, ν2) = t√
ν1ν2

g
(√

ν2
ν1

t; ν2

)
, G3(·, ·, ·; ν, R∗) stands for the cdf of the trivariate Student’s t

distribution with ν degrees of freedom and the correlation matrix

R∗ =

1 ρ 0
ρ 1 0
0 0 1

.



Proof. From (20) and upon integrating by parts, the cdf of SSGt distribution with ν + 1 degrees of
freedom is readily obtained as

FSSGt(t; ν + 1, λ, ρ, α) = 2
√

πCν+1

∫ ∞

0
xνϕ(x)ΦSSGN

(
tx√
ν + 1

; λ, ρ, α

)
dx

= FSSGt

(√
ν − 1
ν + 1

t; ν − 1, λ, ρ, α

)

+2
√

πCν+1

∫ ∞

0
xν−1ϕ(x)

{
∂

∂x
ΦSSGN

(
tx√
ν + 1

; λ, ρ, α

)}
dx.

(22)

Now, the second part of the right-hand side (RHS) of (22) is simplified to

RHS = 2
√

πCν+1
t√

ν + 1

∫ ∞

0
xν−1ϕ(x)ϕSSGN

(
tx√
ν + 1

; λ, ρ, α

)
dx

= 2
√

πCν+1
2c(λ, ρ)t√

ν + 1

∫ ∞

0
xν−1ϕ(x)ϕ

(
tx√
ν + 1

)
Φ2

(
λtx√
ν + 1

,
−λtx√

ν + 1
; ρ

)
Φ
(

αtx√
ν + 1

)
dx

=
c(λ, ρ)Γ

(
ν
2
)
(ν + 1)(ν−1)/2

√
πΓ
(

ν+1
2

) t

(ν + 1 + t2)
ν/2

× 2
√

πCν

∫ ∞

0
xν−1ϕ(x)Φ2

(
λtx√

ν + 1 + t2
,

−λtx√
ν + 1 + t2

; ρ

)
Φ
(

αtx√
ν + 1 + t2

)
dx

= 2c(λ, ρ)h(t; ν + 1, ν − 1)

× 2
√

πCν

∫ ∞

0
xν−1ϕ(x)Φ3

( √
νλtx

√
ν
√

ν + 1 + t2
,

−
√

νλtx
√

ν
√

ν + 1 + t2
,

√
ναtx

√
ν
√

ν + 1 + t2
; R∗

)
dx

= 2c(λ, ρ)h(t; ν + 1, ν − 1)G3

( √
νλt√

ν + 1 + t2
,

−
√

νλt√
ν + 1 + t2

,
√

ναt√
ν + 1 + t2

; ν, R∗
)

.

Remark 6. From Theorem 2, the following results are respectively concluded for odd and even values of ν

FSSGt(t; ν, λ, ρ, α) = FSSGt

(
t√
ν

; 1, λ, ρ, α

)

+ 2c(λ, ρ)
(ν−1)/2

∑
i=1

h(t; ν, 2i − 1)G3

( √
2iλt√

ν + t2
,
−
√

2iλt√
ν + t2

,

√
2iαt√

ν + t2
; 2i, R∗

)
, (23)
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and

FSSGt(t; ν, λ, ρ, α) = FSSGt

(√
2
ν

t; 2, λ, ρ, α

)

+ 2c(λ, ρ)
ν/2

∑
i=2

h(t; ν, 2i − 2)G3

(√
2i − 1λt√
ν + t2

,
−
√

2i − 1λt√
ν + t2

,
√

2i − 1αt√
ν + t2

; 2i − 1, R∗
)

. (24)

There is no explicit form for FSSGt(t; 1, λ, ρ, α) to be used as the starting point in (24). But an
explicit form for fSSGt(t; 1, λ, ρ, α) is obtained as

fSSGt(t; 1, λ, ρ, α) =
c(λ, ρ)√
π(1 + t2)

G3

( √
2λt√

1 + t2
,
−
√

2λt√
1 + t2

,

√
2αt√

1 + t2
; 2, R∗

)
.

Also an explicit form for FSSGt(t; 2, λ, ρ, α) is as

FSSGt(t; 2, λ, ρ, α) = ΦSSGN(0; λ, ρ, α)

+
c(λ, ρ)t

c
(

λt√
2+t2 , ρ

)ΦSSGN

(
0;

λt√
2 + t2

, ρ,
−αt√
2 + t2

)
.

Thus, a closed form for the cdf of the SSGt distribution is accessible.

Moments
According to Remark 5, the rth moment of X ∼ SSGt(ν, λ, ρ, α) can be derived as follows:

E(Xr) = E(W−r/2)E(Zr), (25)

where

E(W−r/2) =

(
ν
2
)r/2Γ

(
ν−r

2
)

Γ
(

ν
2
) , ν > r.

Thus, the first four moments of SSGt can be obtained using the first four moments of SSGN
in Equations (9)–(12). Consequently, the skewness and kurtosis of SSGt can be derived from
Equations (13) and (14), respectively. The plots of skewness and kurtosis of SSGt for various parame-
ter values are shown in Figure 7 and Figure 8, respectively.

As observed in Figure 7, along with the numerical optimization results, the skewness of SSGt
increases with increasing α and ρ while decreasing with increasing ν. The maximum skewness occurs
at λ = 3.8114, with a value of 4.1821. From Figure 8, the kurtosis increases with increasing |α| and ρ

while decreasing with ν. The maximum kurtosis value is 22.1327 for λ = 4.5767. Thus, the ranges of
skewness and kurtosis of SSGt are wider than those of SSGN.
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Figure 7. The skewness of SSGt(ν, λ, ρ, α) for various parameter choices.
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Figure 8. The kurtosis of SSGt(ν, λ, ρ, α) for various parameter choices.

4. Numerical Illustration
For practical works, the distributions proposed so far in (5) and (18) must be supplied with

a location (denoted by µ) and a scale (denoted by σ) parameters yielding SSGN(µ, σ, λ, ρ, α) and
SSGt(µ, σ, ν, λ, ρ, α, ν) distributions, respectively. If we assume that the observations x = (x1, . . . , xn)
follow from the former distribution under independence conditions, then the log-likelihood function
of (µ, σ, λ, ρ, α) is

l(µ, σ, λ, ρ, α) = n ln 2c(λ, ρ)− n ln σ − n
2

ln(2πσ2)− 1
2σ2

n

∑
i=1

(xi − µ)2 (26)

+
n

∑
i=1

ln Φ2

(
λ(xi − µ)

σ
,
−λ(xi − µ)

σ
, ρ

)
+

n

∑
i=1

ln Φ
(

α(xi − µ)

σ

)
.

Similarly, for the SSGt(µ, σ, ν, λ, ρ, α) distribution, we have

l(µ, σ, ν, λ, ρ, α) = n ln 2c(λ, ρ)− n ln σ + n ln Γ
(

ν + 1
2

)
− n ln Γ

( ν

2

)
− n

2
ln(πν) (27)

− ν + 1
2

n

∑
i=1

ln
(

1 +
(xi − µ)2

νσ2

)
+

n

∑
i=1

ln Φ
(

α(xi − µ)

σ

)

+
n

∑
i=1

ln G2

λ

(
x − µ

σ

)√√√√ 1 + ν

ν +
(

x−µ
σ

)2 ,−λ

(
x − µ

σ

)√√√√ 1 + ν

ν +
(

x−µ
σ

)2 ; ρ, ν + 1

.

Maximization of the log-likelihoods given by (26) and (27) which must be performed by numer-
ical techniques lead to the maximum likelihood estimates (MLEs) of the parameters. Using the R
programming environment [14], we employ a combination of the global optimizer DEoptim [15] and
the local optimizer optim (with the ’L-BFGS-B’ method), available in the DEoptim and stats R pack-
ages, respectively. DEoptim package is based on the Differential Evolution (DE) algorithm [16], and
its significant performance as a global optimization algorithm on continuous numerical minimization
problems has been extensively studied [17].

4.1. Simulation Study
In this section, we intend to carry out a brief simulation study in order to investigate the

behavior of the MLEs of the parameters of SSGN(µ, σ, λ, ρ, α) distribution. To this end, we set some
selected values as the true parameters, µ = 0, σ = 1, λ = 1, α = 0.4, ρ = 0.5, and consider samples
with different sizes, n = 100, 200, 500, 1000, 2000, as the given observations. To generate samples from
SSGN distribution we employ the acceptance–rejection algorithm using the stochastic representation
given by Remark 2, part 6.

As the evaluation metrics measured for the estimators, the mean squared error (MSE) and bias
are computed, and the results are summarized in Table 1. Moreover, Figure 9 shows the MSE of the
parameters and the absolute value of bias for different values of n.
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Table 1. MLEs and the corresponding biases and MSEs.

n µ σ λ α ρ

Estimate −0.0792 1.1185 1.2139 0.6989 0.1043
100 Bias −0.0792 0.1185 0.2139 0.2989 −0.3956

MSE 0.0122 0.0507 0.1307 0.1038 0.3129

Estimate −0.0575 1.0689 1.1192 0.4923 0.2130
200 Bias −0.0575 0.0689 0.1192 0.0923 −0.2869

MSE 0.0065 0.0180 0.0604 0.0875 0.2501

Estimate 0.0368 1.0304 1.0460 0.4343 0.3406
500 Bias 0.0368 0.0304 0.0460 0.0343 −0.1593

MSE 0.0051 0.0010 0.0028 0.0597 0.1509

Estimate −0.0267 1.0227 1.0239 0.4270 0.5493
1000 Bias −0.0267 0.0227 0.0239 0.0270 0.0493

MSE 0.0040 0.0007 0.0021 0.0368 0.0057

Estimate −0.0118 1.0093 1.0090 0.3918 0.4787
2000 Bias −0.0118 0.0093 0.0090 −0.0081 −0.0212

MSE 0.0037 0.0002 0.0008 0.0331 0.0038
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Figure 9. The MSE and absolute bias of the MLEs of the SSGN’s parameters for µ = 0, σ = 1, λ = 1,
α = 0.4, ρ = 0.5, and different values of n.

As it is observed from Figure 9, all of the MLEs are consistent but with different convergence
rates. More specifically, the performance of the MLE of ρ for the small and medium sample sizes is
not as good as those of other estimators. Therefore, we recommend using the distribution (6) instead
of its complementary version in (5) when there is no significant difference in the Akaike information
criteria (AICs) of these models for the given real data.

4.2. Real Data Analysis
To demonstrate the practical application of the distributions proposed so far, we examine a

real dataset that includes the strength of carbon fibers [18] (see Table 2). Here, we also consider SN
and St distributions as the potential competitors of the distributions proposed so far. For fitting
these distributions, we respectively employ the functions sn.mple and st.mple, available in the
R package sn [19,20].

The MLEs of parameters, the corresponding standard error, log-likelihood, Akaike information
criterion (AIC), Bayesian Information Criterion (BIC) and the p-value of the Kolmogorov–Smirnov
(KS) test are reported in Table 3. According to the p-value of the KS test, the goodness-of-fits of all
distributions are confirmed. However, as seen in Table 3, SSGN has the minimum AIC and BIC and
thus provides the best fit for the data. The corresponding Q-Q plot of the SSGN model, along with
the histogram of the data including the fitted curves, is shown in Figure 10.
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The results also indicate that the SSGt distribution provides a good fit for the carbon fiber
strength data as evidenced by its AIC value and the p-value from the KS test.

Table 2. The strength of carbon fibers [18].

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525,
2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937,
2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346,
3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027,
4.225, 4.395, 5.020.

Table 3. MLEs (standard errors), log-likelihood, AIC, BIC and p-value of KS test.

Distribution SSGN(µ, σ, λ, α, ρ) SN(µ, σ, α) St(µ, σ, ν, α) SSGt(µ, σ, ν, λ, α, ρ)

µ̂ 2.2710 2.2709 2.2710 2.2710
(0.1063) (0.1667) (0.1406) (0.1237)

σ̂ 1.0005 1.0004 1.0004 1.0004
(0.0139) (0.0201) (0.0110) (0.0108)

λ̂ 0.3001 ---- ---- 0.5012
(0.0109) ---- ---- (0.0236)

α̂ 4.0018 4.4183 4.4182 3.9862
(0.0435) (0.0534) (0.0547) (0.0621)

ρ̂ −0.9899 ---- ---- −0.9899
(0.0102) ---- ---- (0.0184)

ν̂ ---- ---- 55,897.0701 340.5657
---- ---- (18.0547) (4.0534)

Log-likelihood −47.4183 −55.9015 −55.9015 −47.0208
AIC 104.8366 117.8031 119.8033 106.0417
BIC 115.5523 124.2324 128.3755 118.9004

p-value 0.4568 0.8771 0.8765 0.4732
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Figure 10. The histogram of the data and the fitted curves (left) and the Q-Q plot of SSGN (right).

5. Conclusions
In this paper, we introduced the skew-symmetric generalized normal distribution (SSGN) and

the skew-symmetric generalized t distribution (SSGt), extending the framework established by previ-
ous studies on skew-normal and skew-t distributions. We derived the density functions, moments,
and important statistical properties of these distributions, demonstrating their flexibility in modeling
asymmetric data. Moreover, a recurrence relation as well as an exact form for the cdf of the SSGt
distribution were obtained. A brief simulation study was also conducted to investigate the behavior
of the MLEs of the SSGN parameters. Then, a numerical illustration provided evidence of the
practical applicability of the SSGN and SSGt distributions by fitting them to a real dataset concerning
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the strength of carbon fibers. The results indicated that the SSGN distribution outperformed its
competitors, such as the skew-normal and skew-t distributions, in terms of the AIC and the KS test.
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