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Abstract: The Latent Space Perspicacity and Interpretation Enhancement (LS-PIE) framework en-
hances dimensionality reduction methods for linear latent variable models (LVMs). This paper
extends LS-PIE by introducing an optimal latent discovery strategy to automate identifying optimal
latent dimensions and projections based on user-defined metrics. The latent condensing (LCON)
method clusters and condenses an extensive latent space into a compact form. A new approach, latent
expansion (LEXP), incrementally increases latent dimensions using a linear LVM to find an optimal
compact space. This study compares these methods across multiple datasets, including a simple toy
problem, mixed signals, ECG data, and simulated vibrational data. LEXP can accelerate the discovery
of optimal latent spaces and may yield different compact spaces from LCON, depending on the
LVM. This paper highlights the LS-PIE algorithm’s applications and compares LCON and LEXP in
organising, ranking, and scoring latent components akin to principal component analysis or singular
value decomposition. This paper shows clear improvements in the interpretability of the resulting
latent representations allowing for clearer and more focused analysis.

Keywords: latent space; interpretation; condensing; latent variable models; encoding

1. Introduction

The daily application of data science and statistical learning methods warrants au-
tomating the discovery of useful latent spaces from linear latent variable models (LVMs).
While linear LVMs are often far less complex than large-scale deep neural nets, the latent
representations they find can still prove noisy and difficult to interpret, meaning that rela-
tionships between variables or which variables are more meaningful in analysis can be hard
to find. LVMs can be categorised into reconstruction- and interpretation-centred models [1].
Ironically, these reconstruction-centred models like principal component analysis (PCA)
allow for easier interpretation as their latent components are ordered according to the
variance explained. Interpretation-centred models, such as Fast Independent Component
Analysis (FastICA), attempt to identify interpretable latent presentations (e.g., independent
variance contributing sources) but return the latent components unordered. This leads to
less interpretable latent spaces, limiting the uptake of ICA in research and industry com-
pared to reconstruction-focused approaches. Independent components (ICs) from FastICA
are often noisy and solved sequentially without returning ordered ICs. While this method
works well for signal reconstruction, it can lead to single sources spread across multiple
ICs, making latent vectors inherently noisy and less interpretable. Figure 1a shows a 3D
latent space from which various 2D latent representations can be constructed by projecting
the data onto different planes. Different combinations of latent variables lead to more or
less structure in the latent space as shown in Figure 1b–d.

This paper extends the optimal latent discovery approaches of the Latent Space Per-
spicacity and Interpretation Enhancement (LS-PIE) framework. In a previous study [2],
we proposed condensing a high-dimensional latent space using latent clustering (LC) into
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an optimal sub-dimensional latent space, referred to as latent condensing (LCON). In this
study, we extend the optimal latent discovery approaches of LS-PIE by proposing latent
expansion (LEXP), where we start with a low-dimensional latent space that we gradually ex-
pand to an optimal latent space as shown in Figure 2. We successively add latent directions
until the explanatory power of the smallest component falls below a user-defined threshold.

Figure 1. (top) Shows a 3D latent representation indicated by the axes X–Y–Z. Consider (a) the
three-dimensional latent representation that is projected onto (b) the X–Y plane, (c) the Z–X plane,
and (d) the Z–Y plane showing the variation in latent structure for the three projected latent spaces
for the same data.

For LEXP, at each extension, the total explanatory power of the latent space can
be measured, which is iteratively extended, ensuring minimal computation of the latent
directions. Depending on the LVM, this approach typically requires less computational time
and power than LCON. Both LCON and LEXP can discover optimal latent representations
according to user-defined metrics. The proposed extension, LEXP, complements and
simplifies the discovery of the latent spaces to enhance their interpretability.

In addition to extending the interpretability of latent spaces by introducing an ad-
ditional optimal latent discovery approach, this study investigates the similarities and
differences between LCON and LEXP on multiple datasets. These include a simple toy
problem, complex mixed signals, and two real-world examples in the form of ECG data
and simulated vibrational data generated using the SAFE model. In addition, some LVMs
such as FastICA split information sources over multiple ICs with an increase in the num-
ber of ICs. LCON and LEXP can be used to recover the optimal latent dimensions and
directions. This paper improves on the ability of the already proposed methods laid out
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in the previous paper to generate interpretable components. The simplification of the
approach to two methods that utilise the existing methods proposed in the previous paper
allows us to analyse and simplify latent spaces with minimal required user input. This
allows for the recovery of more optimal representations without requiring time-consuming
user-based analysis.

Latent Scaling 
(LS)

Latent Clustering
(LC)

Latent 
Expansion

(LEXP)

Latent
Condensing

(LCON)

Latent Ranking 
(LR)

LS-Pie

Optimal Latent
Discovery

Figure 2. The five key functionalities built into the LS-PIE framework. Latent scaling (LS) and
latent ranking (LR) scale and rank latent components. In contrast, latent clustering (LC) clusters
a higher-dimensional latent space into a user-specified number of clusters that ultimately define a
lower-dimensional latent space. The optimal latent discovery approaches include latent condensing
(LCON) that condenses the latent clusters to estimate the optimal number of latent dimensions
using LC. This study proposes a second optimal latent discovery approach by expanding the latent
dimensions from an initial low-dimensional representation.

2. Background
2.1. Latent Spaces

One of the most enduring problems of data science is the “Curse of Dimensionality”,
wherein the sparseness of collected data increases exponentially as the number of dimen-
sions increases. This increased sparseness and size of the data space leads to difficulty
interpreting results. Many methods have been proposed to extract lower-dimensional
representations of higher-dimensional data or latent spaces to counteract this. A latent
space, or a latent feature or embedding space, represents compressed data. In this space,
items that resemble each other are positioned closer to each other than less similar items.
The latent spaces used by latent models are usually of a lower dimension than the original
feature space. This is a simple and convenient form of dimensionality reduction [3].

2.2. Latent Vector Models

Many methods can be classified as latent vector models to extract latent spaces. By
mapping given data onto a simplified latent space, these models can make predictions,
generate new data, and generally simplify the analysis of large datasets. Figure 3 shows
the standard structure of LVMs, taking raw training data and compressing it to a latent
representation, which can then be sampled to reconstruct the input vector. Once a model
has been trained, the latent space can be sampled to generate new data. These latent spaces
allow for analysing vast amounts of data in a reduced format while retaining as much
information about the dataset as possible. This will enable us to generate interpretable
latent space representations of the input data. Two common methods to extract latent
spaces are variance-driven PCA and interpretation-driven ICA [4–7]. Hence, PCA and ICA
utilise different independence measures in the latent extraction process [8]. Blind source
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separation (BSS) is closely related to ICA [9,10]. BSS algorithms allow users to extract
useful, statistically independent information from large amounts of mixtures with little or
no prior information.
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Figure 3. Diagram showing the structure of an LVM. The training stage (top part) fits the model
on the provided data, and then the model samples from the latent space (bottom part) to generate
outputs or uses the latent space to map new inputs to new outputs. These models are commonly
used in many fields of data science for data compression and reconstruction.

2.2.1. PCA

PCA is a linear dimensionality reduction technique that seeks to find a dataset’s
principal components (PCs) using the covariance matrix and maximising the variance. This
allows us to extract a lower-dimensional representation of higher-dimensional data while
retaining optimal linear reconstructability [7,11]. One of the main features of PCA is the
generation of ranked components based on the explained variance of each component.
This allows us to calculate the fewest linear latent components for a given reconstruction
quality. This means that the extracted latent components are clear in their meaning and
easily interpretable, as the variance is often used as a stand-in for explained information,
implying that signals with higher variance capture more of the information about the
original signal; this means that the sorted components are organised from most to least
explained information. PCA is, however, limited in its application in many fields as the
algorithm assumes that the data process obeys a Gaussian distribution. In cases where the
generative processes are non-Gaussian, methods such as PCA can cause false alarms and
therefore, non-Gaussian approaches are needed.

2.2.2. ICA

Independent component analysis (ICA) is a computational method that separates
multivariate signals into their additive sub-components. The ICA method of separating a
multivariate signal into additive components aims to maximise the statistical independence
of these resulting ICs, often using a non-Gaussianity measure as a proxy [6,12,13]. For
this reason, it is commonly used as a separation method for mixed signals from multiple
sources. This can be seen in its application in solving the “cocktail party problem”, wherein
mixed signals from multiple sources are split to extract the source signals. ICA is applied
as its maximisation of independence allows for the recovery of statistically distinct signals.
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It differs from other methods like PCA. In this aspect, PCA aims to maximise the variance
rather than a measure of independence [14].

The two main drawbacks of ICA, specifically FastICA, in latent space extraction are
the lack of sorting of the ICs and splitting single sources over multiple ICs. This means that
the returned ICs are un-ranked and the source information dispersed. This paper proposes
a method to generate sorted ICs to put the FastICA algorithm on an equal footing with
other linear latent space extraction methods, such as PCA or singular value decomposition
(SVD), all of which organise their latent spaces [12].

Methods have been applied to improve the efficiency of the ICA algorithm, such as
robustification methods to minimise the effect of outliers. These have included outlier
rejection rules and pre-processing steps to improve the separability of the recorded data [15].
Combinations of PCA and ICA have been widely embraced, often using PCA as a pre-
processing step for the ICA process. By pre-processing the data using PCA, we transform
the data according to the explained variance; this limits our analysis in a way similar to
PCA [16].

2.3. Latent Clustering

Clustering methods have been proposed to improve the efficacy of ICA [17]. Methods
using Tree-Dependent Component Analysis (TDCA) have been suggested to enhance the
classes of dependencies derived by ICA. The TDCA combines graphical models and the
Gaussian Stationary contrast function to derive richer dependency classes. A large portion
of the focus on ICA and clustering has focused on using ICA in pattern recognition and
image classification analysis. Unsupervised methods such as Expectations Maximisation, K-
Means, and fuzzy C-Means have all shown satisfactory results when applied to the analysis
of MRI imaging. However, these clustering methods are not reliable in terms of accurate
classification in pathological analysis [18–20]. These methods depend on constructing
a similarity graph based on a transformation from a given set X to a set of pairwise
distances D or similarities S. Different methods utilise different distance and connection
methods to generate different graphs. Different choices of similarity function can lead to
the formation of different neighbourhoods and clusterings. For spectral clustering, the
local behaviour of these algorithms is more important than the “long-range” behaviours.
Therefore, algorithms such as Gaussian Similarity functions can be used.

Similarly, attempts have been made using neural networks to simplify and avoid
the local maxima. To adapt the FastICA algorithm to more highly non-linear data, neural
networks trained using genetic algorithms have used mutual information maximisation to
perform ICA [21].

These methods focus on improving the outputs of the FastICA models, focusing little
on the models’ latent spaces.

2.4. Pre-Processing—Hankelisation

A limitation of the FastICA algorithm is the requirement for multidimensional input
data. A transformation function is needed to apply the algorithm to single-dimensional
time series inputs. From [22], the following method is derived: A single observation of a
single channel time series data x ∈ Rm+n−2 can be transformed to enable LVMs to operate
on the data [23].

H =


x0 x1 x2 · · · xn−1
x1 x2 x3 · · · xn
x2 x3 x4 · · · xn+1
...

...
...

. . .
...

xm−1 xm xm+1 · · · xm+n−2

,

This resulting matrix is a symmetric matrix with constant diagonals. This allows for a
decomposition of a single-dimensional matrix into multiple shorter signals which can then
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be clustered. This method has only one variable other than the input signal: the choice of
the Hankel window length [18].

3. Materials and Methods

The algorithmic structure of the two optimal latent discovery approaches, LCON and
LEXP, is laid out in detail. LS-PIE application is complemented with Hankelisation to
increase the dimensionality of lower-dimensional signals and allow for a more in-depth
latent analysis. With this addition, the two approaches are showcased in their application
to crafted sinusoidal datasets, such as ECG data and SAFE vibrational analysis data.

3.1. Optimal Latent Discovery Framework

The main framework for optimal latent discovery is shown in Figure 4, indicating
latent condensing (LCON) [2] and latent expansion (LEXP).

Start Input: X
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StopOutput: L

Outputs

Compress/
Expand?

Method 2: LEXP

Method 1: LCON
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Figure 4. Graphical depiction of latent condensing (LCON) and latent expansion (LEXP) for optimal
latent discovery.

In this paper we extend the already proposed LCON method suggested in paper
one and we propose the LEXP approach, these two methods allow us to return organised
and interpretable latent spaces. By sorting the returned features we can maximise the
information contained within minimum features, extending the latent organisation present
in PCA to other LVMs as well as allowing for the re-ranking and reorganising of latent
spaces according to user preference.

3.2. Optimal Latent Discovery

Optimal latent discovery aims to find the optimal latent space, including its dimen-
sionality, according to a specified user metric. LS-PIE currently supports latent condensing
(LCON), as proposed in our previous study [2], briefly discussed in Section 3.2.1. This
study proposes a second optimal latent discovery approach, latent expansion (LEXP), as
outlined in Section 3.2.2.

These algorithms are designed to be applied to matricised input data. In this paper,
we specifically apply the Hankel transform to single-dimensional time series:

H = H(X̄(t))

If we already have multi-channel data, as is the case with the heartbeat data, we do not
need to pre-transform the data.

H = X
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3.2.1. Latent Condensing (LCON)

Latent condensing (LCON) aims to condense a high-dimensional latent space into an
optimal-dimensional latent space using a specified user metric. LCON can be achieved
using a variety of approaches and for numerous metrics. LCON is conveniently realised
using latent clustering (LC). Although LC finds a prescribed number of clusters, LCON
automates the cluster dimensionality using one of two main strategies by

1. selecting clustering algorithms that find the optimal number of latent clusters such as
balanced iterative reducing and clustering using hierarchies (BIRCH) [24,24], density-
based spatial clustering of applications with noise (DBSCAN) [25,26], Ordering Points
To Identify the Clustering Structure (OPTICS) [27,28], Mean Shift [29] and Affinity
Propagation [30,31];

2. systematically reducing the latent dimensions and minimising or maximising a se-
lected clustering index to find the optimal number of clusters.

From the algorithm in Algorithm 1, we can see that the method utilises two separate
approaches to compressing the latent representation. In both cases, we first transform
the data into the maximum number of components using an LVM, in this paper utilising
FastICA, and then we map the resulting latent components to a feature space using a
feature mapping function, in this case, explained variance. We can then proceed with one
of two approaches: The first, the manual approach, decreases the number of components
solved for in regular increments, 1 being the most thorough. We can then use the metric to
select the optimal number of components from our list.

The second, the automated approach (and the one we utilise in this paper), relies
on automatic algorithmic clustering. In this case, selective clustering algorithms can
automatically identify the optimal number of latent components. This paper uses the
BIRCH and DBSCAN algorithms for this purpose. We utilise our LVMs to resolve the
maximum number of components and cluster similar components based on their ranking
metric. We can then combine similar components and re-score them to find their final
scores/magnitudes.

There are several clustering indexes and approaches that can be used to determine the
optimal number of clusters. The Average Silhouette Method (ASM) finds the number of
clusters that maximises the average silhouette coefficient [32]. The Elbow Methods (EM)
determine the optimal within-cluster sum of squares (WSS) [33]. A gap statistic can be
maximised for the total within-cluster variation for different numbers of clusters with their
expected values under the null reference distribution of the data [34]. Minimising the
Davies–Bouldin Index measures the average similarity ratio of each cluster with the cluster
that is most similar to it [35]. Maximising the Calinski–Harabasz Index (CHI), also known
as the Variance Ratio Criterion (VRC), measures the ratio of the sum of between-cluster
dispersion and within-cluster dispersion [36].

The method proposed in Algorithm 1 is especially effective when applied to methods
such as FastICA wherein increased component numbers lead to the splitting of components.
However, with these methods, calculating larger numbers of components requires more
computational expense.

For methods such as PCA, where successive components are orthogonal, we can very
easily compare successive components from the maximally extracted components.

For the course of this paper, we utilise the automatic method within Algorithm 1,
maximally decomposing the inputs and then clustering using selected clustering strategies.
While this reduces the optimality of the eventual solution, it significantly reduces the
computational time. This is due to the unique solutions generated by each iteration of the
FastICA algorithm. The application of clustering methods allows for the optimisation of
latent condensing.
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Algorithm 1 Latent Condensing (LCON) for Hankelised Time Series Data

Require: Hankelised or multi-channel time series data matrix H, latent variable model LVM, clus-
tering algorithm C, feature mapping function f , distance metric d, cluster scoring function s,
specified or maximum number of latent vectors m, clustering approach Automatirc or not

Ensure: Best feature clustering Rbest, cluster score Sbest and latent components Lbest
1: Sbest ← −∞
2: Rbest ← ∅
3: for k← m to 1 do
4: L← LVM(H, k) ▷ Decompose H into k latent vectors
5: F̃← f (L) ▷ Map latent vectors to feature space
6: F← scale(F̃) ▷ User-specified feature space scaling
7: if Automatic then
8: Rauto, Lauto ← C(F, d, L) ▷ Automatic feature clustering Rauto using user-specified

distance metric d to find protype latent vectors Lauto
9: Sauto ← s(Rauto, Lauto) ▷ Cluster scoring

10: if Sauto > Sbest then
11: Sbest ← Sauto
12: Rbest ← Rauto
13: Lbest ← Lauto
14: end if
15: else
16: for j← k to 1 do
17: Rj, Lj ← C(F, d, L) ▷ Cluster into j clusters using distance metric d
18: Sj ← s(Rj, Lj, H) ▷ Cluster scoring
19: if Sj > Sbest then
20: Sbest ← Sj
21: Rbest ← Rj
22: Lbest ← Lj
23: end if
24: end for
25: end if
26: end for

return Rbest, Sbest, Lbest

Feature mapping function f :
f (L) = [ fi], where fi are selected individual feature functions that could include:
0. Identity: IL = L ▷ Keeps original vector unchanged
1. Variance: f1(L) =

[
Var(Lj)

]
, j = 1, . . . , k

2. Kurtosis: f2(L) =
[
Kurt(Lj)

]
, j = 1, . . . , k

3. Spectral centroid: f3(L) =
∑N/2

j=0 (j· fs
N )·|FFT(L)j |

∑N/2
j=0 |FFT(L)j |

4. Entropy: f4(L) = −∑k pk log pk, where pk is the probability of the k-th element in Lj

Distance metrics d for clustering:
- Euclidean distance: d(x, y) = ∥x− y∥2 [37]
- Manhattan distance: d(x, y) = ∥x− y∥1 [38]
- Cosine distance: d(x, y) = 1− x·y

∥x∥2∥y∥2
[39]

- Mahalanobis distance: d(x, y) =
√
(x− y)TS−1(x− y), where S is the covariance matrix [40]

Cluster scoring functions s:

1. Silhouette score: s(R, L, H) = 1
|L| ∑Lj∈L

b(Lj)−a(Lj)
max(a(Lj),b(Lj))

a(Lj) is the mean intra-cluster distance, and b(Lj) is the mean nearest-cluster distance

2. Variance-based: s(R, L, H) = 1
|L|

tr(LT HT HL)
tr(HT H)

3. Kurtosis-based: s(R, L, H) = 1
|L| ∑

|L|
j=1 |Kurt(LT

j H)|

4. Frequency-based: s(R, L, H) = 1
|L| ∑

|L|
j=1

∑k( fk−µj)
2|FFT((LT

j H))k |
∑k |FFT((LT

j H))k |
µj is the mean frequency for the j-th latent component
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Due to source-based LVMs, such as the FastICA algorithm, each component will be
a small fraction of larger sources, which are split to generate more components. These
can then be clustered using summative dimensionality methods. In this paper, we apply
either the DBSCAN algorithm to extract natural clusters or the BIRCH algorithm to extract
a specified number of components. These two clustering methods are applied due to their
comprehensive implementations in Python as well as their simplicity of application on
datasets; however, any method to reduce the dimensionality of the resulting latent data can
be used. The DBSCAN method is used as it does not require a number of components to be
specified before application; the BIRCH method is used as it allows for the specification of
a number of components as well as being able to handle noise components. The specific
metric used to determine component similarity is user specified.

3.2.2. Latent Expansion (LEXP)

The second and, depending on the choice of LVM, less computationally expensive
approach, LEXP, to improve linear latent spaces from latent vector models by systematically
expanding the latent space. In Algorithm 2, we begin with the fewest possible components
and then expand, increasing the dimensionality of our latent space. At each step, we
evaluate the latent clusters according to a user-specified metric to ensure we find the
optimal latent dimensionality and cluster within it.

Algorithm 2 Latent Expansion (LEXP) for Hankelised Time Series Data

Require: Hankelised or multi-channel time series data matrix H, latent variable model
LVM, clustering algorithm C, feature mapping function f , distance metric d, cluster
scoring function s, specified or maximum number of latent vectors m

Ensure: Best feature clustering Rbest, cluster score Sbest and latent components Lbest
1: Sbest ← −∞
2: Rbest ← ∅
3: for k← 1 to m do
4: L← LVM(H, k) ▷ Decompose H into k latent vectors
5: F̃← f (L) ▷ Map latent vectors to feature space
6: F← scale(F̃) ▷ User-specified feature space scaling
7: for j← 1 to k do
8: Rj, Lj ← C(F, d, L) ▷ Cluster into j clusters using distance metric d
9: Sj ← s(Rj, Lj, H) ▷ Cluster scoring

10: if Sj > Sbest then
11: Sbest ← Sj
12: Rbest ← Rj
13: Lbest ← Lj
14: end if
15: end for
16: end for

return Rbest, Sbest, Lbest

Feature mapping function f : See Algorithm 1

Distance metrics d for clustering: See Algorithm 1

Cluster scoring functions s: See Algorithm 1

4. Numerical Analysis

LS-PIE with optimal latent discovery approaches, LCON and LEXP, is showcased
for problems. For each problem, we apply both methods. First, we analyse a simple
single-channel sinusoidal example problem to compare LCON and LEXP critically. We then
analyse multi-channel signals for a foundation cocktail party problem. We consider two
experimental datasets where we make the most of the LS-PIE module’s rank functionality.
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A real-life medical heartbeat data to demonstrate LS-PIE’s applicability to actual signal
separation problems. To conclude, we consider SAFE-guided wave data to showcase the
practicality of simplifying data representations and improving latent analysis.

4.1. Datasets Overview
4.1.1. Foundational Problem: Single-Channel

To show the effects of the LS-PIE module on the generated latent spaces, we consider
a foundational example f(t) = sin(2πt), uniformly sampled at 4000

12π samples per second
using Hankelisation with a window length of 300. In turn, Figure 5(right) is a signal with
decreasing frequency over time, expressed by f (t) = sin(2πt0.85).
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Figure 5. Two example signals, (left) f (t) = sin(2πt), and (right) f (t) = sin(2πt0.85) to illustrate
some of the functionality of LS-PIE. The signals are generated with an arbitrary y value; therefore, at
each point, only the magnitude can be measured.

4.1.2. Foundational Problem: Complex Mixed Signal

One of the main applications of source-based LVMs is extracting component sources
from mixed signals. This is the classic “Cocktail Party Problem”, wherein the data are
generated by mixing periodic signals and random noise. This is one of the foundational
problems to which the FastICA can be applied to extract the component signals. In this
case, a combination of sinusoids, square signals, and saw-tooth signals are used [41].

4.1.3. Experimental Data: ECG Heartbeat Categorisation

To showcase the application of the module to real-world, multi-channel data, we apply
the module to a compiled ECG Heartbeat Categorisation Dataset. This dataset consists of
14,552 samples at 125 Hz fall within two categories: healthy and unhealthy.

This dataset has been used to train deep neural networks [42]. However, each of these
samples is of a very high dimension, consisting of 188 data points requiring larger deep
neural networks to analyse.

These data are available through PhysioNet as a combination of the MIT-BIH Arrhyth-
mia Database and the PTB Diagnostic ECG Database. Optimal latent discovery is applied
to examine the scores of the outputted components rather than the components themselves,
as we wish to demonstrate the effect of an increasing component number on source-based
LVMs like ICA compared to variance-based methods such as PCA.

4.1.4. Experimental Data: Vibration Guided Wave-Based Monitoring

Accurate guided wave system monitoring relies on precisely understanding mode
propagation characteristics.

In this case, sets of material and geometric attributes were provided to a Semi-
Analytical Finite Element (SAFE) model, with each observation generated considering
a rail with uniform material properties described by a density, an elastic modulus, and
a Poisson’s ratio [43]. The time series data are transformed into dispersion curves for
the various isolated propagating modes [44]. These dispersion curves are scaled to cover
a range of longitudinal speeds of sound of the rail material. This allows us to test the
multi-channel methods on a variety of problems. The resulting dispersion curves can be
hard to analyse as they are complex and highly non-linear. Finding lower-dimensional
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representations of these data simplifies the analysis of rail systems and allows for greater
interpretability of both the SAFE models and the measured rail data [43,45].

4.2. Optimal Latent Discovery: Single Channel

For each of the single-channel signals, Hankelisation was used to increase the dimen-
sionality of the data using a window length of 400. The data did not require normalisation.
In this section, we show the resulting analysis using eight latent variables using PCA
and ICA in Figure 5(left). Here, we expect identical results for PCA and ICA, merely
a single-frequency Fourier sine–cosine decomposition as shown in Figure 6. Note the
improvement in informativeness as LEXP is applied. In turn, note the improvement in
the informativeness of the latent directions of LEXP and enhancement of LCON on ICA.
For ICA, LCON combined the second- and third-ranked ICs. Here, we expect to see some
differentiation in the latent directions between PCA and ICA, as shown in Figure 7. The
improvement in the interpretation and informativeness of the latent directions using LS-PIE
is evident. LS-PIE isolates and enhances the essential latent directions, which allows time
for a critical interpretation of the latent directions and a comparison between LVMs.
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Figure 6. For the time series signal f (t) = sin(2πt), depicting (top row) normalised latent directions
for PCA (left) and ICA (right), without applying latent ranking (LR), or latent scaling (LS), (middle
row) variance-explained ranked and variance-explained scaled latent directions for PCA (left) and
ICA (right), (bottom row) variance-explained ranked and variance-explained scaled latent directions
with latent condensing (LC) for PCA (left) and ICA (right). As the latent variables are compressed
and translated again we simply recover a magnitude for each signal.
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Figure 7. For the time series signal f (t) = sin(2πt0.85), depicting (top row) normalised latent
directions for PCA and ICA, without applying latent ranking (LR) or latent scaling (LS), (middle
row) variance-explained ranked and variance-explained scaled latent directions for PCA and ICA,
(bottom row) variance-explained ranked and variance-explained scaled latent directions with latent
condensing (LC) for PCA and ICA. As the latent variables are compressed and translated again we
simply recover a magnitude for each signal.

4.3. Optimal Latent Discovery: Complex Mixed Signals

The complex mixed signals did not require Hankelisation as a pre-processing step. In
this case, the mean-centred, normalised data were used as an input to the LVMs applied.

While these methods are effective for analysing lower-dimensional mixed signals, we
can also generate simulated examples with higher-dimensional mixed signals, as illustrated
in Figure 8. By comparing the sorted and unsorted ICA in this figure, it is evident that ICA
outperforms PCA in source separation or recovering mixed signals. Specifically, the LS-
PIE-augmented FastICA method returns a scaled version of the input signals, successfully
recovering the unmixed components. In contrast, PCA only extracts the largest single
signal, flattening the rest of the mixed inputs. In this case, the application of LEXP allows
us to recover a similar shape to the unsorted inputs.

We can also apply LCON to this problem using two clustering methods. In the first
case, we can see in Figure 9 where we apply clustering to the data but allow it to recover
the number of input signals. In this case, we recover very similar results to those of the
LEXP due to the data’s limited dimensionality. However, in this case, the processed data
do not match up as neatly to the original signals.
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We can also apply LCON, allowing the cluster method to extract the number of
components. This can be seen in Figure 10. In this case, we allow the DBSCAN algorithm
to compress the latent space to one component maximally. This reduces the information
as we cover only one signal; however, we can see that it acts as an approximation of all
10 input signals.
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Figure 8. Comparison of FastICA with and without LS-PIE on higher-dimensional input data:
(top) unmixed input signals, (centre right) unsorted ICA decomposition, (bottom right) sorted ICA
decomposition, (centre left) PCA with and (bottom left) without LS-PIE on higher-dimensional input
data. In this case, the left column represents the analysis using PCA, while the right column is the
analysis using FastICA. As the signals are normalised combinations of unit vectors, the magnitude of
these signals, represented in the colour bar, is again arbitrary.



Math. Comput. Appl. 2024, 29, 65 14 of 26

0 250 500 750 1000 1250 1500 1750

 

0

1

2

3

4

5

 
0.5

1.0

1.5

2.0

2.5

3.0

0 250 500 750 1000 1250 1500 1750

 

0

1

2

3

4

5

 

0.5

1.0

1.5

2.0

2.5

3.0

Figure 9. Here, we see the data with LCON applied to the latent components. In this case, the
returned components are compressed to match the dimensionality of the inputs. However, it is still
an improvement on the unsorted signals. (top) Unmixed input signals (centre right) unsorted ICA
decomposition, (bottom right) LCON ICA decomposition, (centre left) PCA with and (bottom left)
without LS-PIE LCON on higher-dimensional input data. In this case, the left column represents the
analysis using PCA, while the right column is the analysis using FastICA. In this case, the compressed
signals lose their magnitude information and thus represent explained variance.
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Figure 10. If we repeat the application of LCON allowing for maximal compression. In this case, we
compress the data down to a single component. This results in the loss of much of the information;
however, we can see that the compressed signal acts almost as an average of the inputs: (top) unmixed
input signals (centre right) unsorted ICA decomposition, (bottom right) sorted ICA decomposition,
(centre left) PCA with and (bottom left) without LS-PIE on higher-dimensional input data. In this
case, the left column represents the analysis using PCA, while the right column is the analysis using
FastICA. In this case, the compressed signals lose their magnitude information and thus represent
explained variance.

Comparison: Impact of Increasing Number of Components

From Figure 11, we can see the potential of automating the process of LS-PIE for some
cutoff metric. In this case, if we choose an explained variance of less than 10% for the
least informative component, we can see that this component is found for ncomponents = 3.
However, if we increase the number of solved components, the information in existing
components drops. This contrasts with the solution found by variance-driven methods
such as PCA, for which the explained variance per component is independent of the total
number of components found.

This showcases a classic flaw with source-based LVMs, which can be countered by the
combination of LS-PIE and automation, ensuring that sources are not overly decomposed.

Figure 11. Showing the impact of increasing components on the source-, e.g., FastICA (left), and
variance-based, e.g., PCA (right) LVMs, with a cutoff explained variance of 10% shown in dashed red.
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4.4. Experimental Datasets: Heartbeat Data

The ECG data did not require Hankelisation as a pre-processing step as the signals
were already multi-channel. In this case, the mean centring and normalisation were applied
to the data before they were input to the LVMs. First, we apply LS-PIE-enhanced LVMs to
normal and abnormal heartbeat sets. For this example, Hankelisation was not required,
as each input sample could be taken as a channel, allowing us to rank/cluster without
transforming. This would allow us to compress the dataset from 10,000+ signals sampled at
125 Hz into 10,000+ signals consisting of a limited number of predetermined components, in
this case, three and four, respectively. The increased complexity of the abnormal heartbeat
data leads to the generation of additional components.

This is shown in Figure 12. Here, we can see a distinct difference between the two sets,
with normal heartbeats returning one large component and two smaller ones. At the
same time, the unhealthy data generate two larger and two smaller components. This
distinct difference means that the latent scaling algorithm should be able to function as
pre-processing for classification. Hankelisation was not required in this case, as each input
sample could be taken as a channel.
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Figure 12. Comparison of normal and abnormal multi-channel datasets using Fast ICA augmented
with LS-PIE’s LEXP functionality, decomposition of the normal (left) and abnormal (right) heartbeat
datasets showing a clear difference in the independent component (IC) distributions. The bottom row
compares the same two datasets using the unranked ICs, showing a distinct lack of interpretability.
The transformed signal magnitude represents the un-scored component multiplied by the normalised
scoring of the signal.
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From Figure 13, we can see that the clustering functionality overly compensates for the
noise in the data, gathering all meaningful information into a single signal while returning
two noise signals. This means that the statistically significant distribution generated by the
ranked LS-PIE functionality is absent in the clustered signals.
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Figure 13. Comparison of normal and abnormal multi-channel datasets using FastICA augmented
with LS-PIE’s LCON functionality, normal (left) and abnormal (right) heartbeat datasets showing
a clear difference in the IC distributions. The bottom row compares the same two datasets using
the un-ranked ICs, showing a distinct lack of interpretability The transformed signal magnitude
represents the un-scored component multiplied by the normalised scoring of the signal.

Comparison: LCON and LEXP

This section clearly shows the improvements added using the LS-PIE functionality
to improve the analysis of large datasets. From Figure 14, we can see an even clearer
representation in the difference between LCON and LEXP. In the case of noisy, less linear
data, the ranking functionality was able to separate clear differences in magnitude between
the two data types, whereas the clustered method overcompensated, forcing all the infor-
mation into one meaningless vector. However, both of these contain more information than
undirected FastICA decomposition; in this case, the components were over-decomposed,
and the information was lost to random noise.
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Figure 14. Comparison of the fast Fourier transformed latent components of the normal heartbeat
data (left) and the abnormal heartbeat data (right). The (top) row showcases the LR components, the
(middle) row showcases the CL components, and the (bottom) row showcases normal FastICA. The
transformed signal magnitude represents the un-scored component multiplied by the normalised
scoring of the signal.

4.5. Experimental Data: Vibration Guided Wave-Based Monitoring

In this section, we compare the breakdown of three separate input modes; each of
these three cases consists of a choice of one of the modes generated by the SAFE model.

This model generates randomised samples that fall into a set of mode shapes, as shown
in Figure 15. In this case, we sample example signals from three of the mode shapes; each
of these samples is then normalised using the mode’s mean.

The SAFE data did not require Hankelisation as a pre-processing step as the signals
were already multi-channel; however, the Householder transform was applied to the data
first to recover multi-dimensional latent representations. In this case, the mean centring
and normalisation were applied to the data before they were used as input to the LVMs.
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(a) (b)
Figure 15. (a) Mean of similar signals for normalising and (b) a sample signal from the mode.

By ranking the outputs, we can minimise the number of components. This ensures
that the information contained within each source is maintained.

The examples show that the ranked LS-PIE-augmented components do not decay as
quickly as the PCA results and retain less noise than the initial Eigenvalue decompositions.
In Figure 16, we can see that the FastICA decompositions spread their explained variance
across components, whereas PCA and Eigenvalue decomposition, with their inbuilt ranking
systems, concentrate the variance in the first component. In both of these methods, noise
from the normalisation is reflected in the extracted components. This is especially clear in
Figure 17; in the latter case, we can see that the primary component extracted in both cases
is influenced by the normalisation noise and the curvature of the shape. By ranking the
extracted ICs, we managed to avoid noise-based distortion.

(a) PSD (b) Component Scores
Figure 16. Power spectral density of input signal and explained variance per component of each
extraction method. Here, we can see that PCA and Eigenvalue decomposition explain similar
amounts of variance per component; in this case, ICA explains less variance due to a duplication of
components. This is due to the sign invariance of the method. The magnitude of the scores, in this
case, represents the explained variance of the extracted components.

We can also apply the LCON approach to the decomposed signals. In this case, we
run into complications due to the higher dimensionality and non-linearity of the input.
Applying the clustering algorithm to the same dataset in Figure 18, we can see that the
initial clustered component matches the first Eigenvector almost exactly. However, the
non-linearity decomposes where we only have a single “source” that accounts for all
the variance across the data. This showcases one of the foremost issues in using linear
decomposition methods to analyse non-linear data. We find increasingly similar sources
as we further increase the number of sources to be solved. These are clustered into a
single source containing maximal information and a noise source. This can be seen in
Figure 18. However, when we examine Figure 19, we can see that, in the cases of both PCA
and Eigenvalue decomposition, a single maximally informative source is recovered that
explains almost 100% of the variance.
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Figure 17. Breakdown of components comparing Eigenvalue decomposition (left), principal compo-
nent analysis (middle), and LS-PIE LEXP-enhanced ICA (right). In each figure, the Y axis represents
the frequency of the input signal while the X axis represents the sample number.

Figure 18. Breakdown of components comparing Eigenvalue decomposition (left), principal com-
ponent analysis (middle), and LS-PIE LCON-enhanced ICA (right). The calculated components are
arrayed across the x axis in each case. This corresponds to the time measurements in seconds, and
the y axis shows the component’s values across a range of frequencies. In this case, two naturally
occurring components are compared; this is the minimal number of components required to explain
the maximal amount of variance. If we look at the PC and Eigenvalue scores, we can see that the
second component explains almost no variance.



Math. Comput. Appl. 2024, 29, 65 21 of 26

(a) (b)
Figure 19. (a) Comparison of metric scores of maximally extracted components, clustered into similar
components and (b) explained variance per extracted component.

Comparison: LCON and LEXP

From Figures 17 and 18, we can see the difference in extracted components using the
two methods. Both cases extract peaks around the 200 sample mark, reflecting the signal’s
concentrated information. LEXP show a clear difference between the three methods: while
all three find the same peaks, the Eigenvalue decomposition is far more “smeared” than
either PCA or ICA. In this case, ICA isolates the narrowest frequency band as shown in
Figure 17.

When we apply LCON, we can see that the Eigenvalue decomposition and PCA
generate the same results as expected. These methods generate specific ranked components.
However, we can see that the clustered ICA result matches the Eigenvalue response.

By comparing LCON and LEXP, we can see that the two methods often do not converge
on the same solution, even if we solve for a similar number of components using a source-
based method such as FastICA. By comparing Figure 11, we can see a clear difference
in the expanded scores of FastICA and PCA, with PCA consistently recovering the same
components. At the same time, FastICA decomposes existing sources to generate more.
This means the impact of additive noise increases as we increase the number of sources,
meaning that, for more non-linear examples, large portions of the information can be lost.
This is especially clear in comparing Figures 17 and 18, which shows that the components
recovered by LCON and LEXP do not solve for the same components when applied to
sufficiently non-linear problems. This suggests that the two approaches are better suited to
different styles of problem.

5. Results

This paper shows the results of applying the two optimal latent discovery approaches,
LCON and LEXP, to various datasets utilising several user-selected metrics. Combined
with the proposed Hankelisation functionality, this allows for a more in-depth analysis of
time series data that would be impossible to analyse using traditional methods.

In the cases of the simple sinusoids, the mixed signals, and the ECG data, LEXP
allowed us to generate organised latent spaces using the FastICA as our choice of LVM. In
these cases, the latent results are more interpretable, allowing us to see clear signals in the
cases of sinusoids, mixed signals, and ECG data. Especially with the ECG data, this can be
used as a pre-processing step, allowing us to see clear differences between the two classes
of sample type. If we examine the un-augmented data in Figure 12 as well as in Figure 13,
we can see that the noise added by the FastICA decomposition makes it unclear which
components represent important information about the data. In these cases, the unranked
components seem to simply show random noise; however, when ranking is applied to the
components, we can see clear differences emerge in the structure of the two datasets, with
the normal data dominated by one single main component, whereas the abnormal data are
dominated by two components explaining two-thirds of the total score.
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We can see the limits of the linear ranking and clustering methods depending on
the input data. Often, in high-dimensional, highly non-linear datasets, methods such
as FastICA will generate split singular components; this means that two identical but
opposite signals will be extracted. This can often be countered by taking the norm of the
signal as the input. Additionally, the clustered form is hampered by the iterative nature of
FastICA, which leads to noisier extracted components and reduced component magnitude
and information as the number of components increases. Over-corrections often occur in
attempting to correct the noise added by the FastICA, and information can be lost.

This paper shows that the software use case simplifies the ICA process, allowing
the FastICA algorithm to be applied to traditional PCA problems. Combined with the
Hankelisation functionality, this allows for more in-depth analysis of time series data, such
as trend analysis.

The addition of ranking, as well as scaling, means that we can more easily apply ICA,
or any other linear method, to problems, and the addition of Hankelisation allows us to
analyse more wide-ranging data than are potentially solvable with one choice of linear
dimensionality reduction method [46]. In this case, LCON is useful when dealing with
highly multi-channel signals, whereas LEXP can be applied to a wider range of input types.

Finally, we briefly showcase the importance of supplementing optimal latent discovery
with LEXP in improving the performance of the LS-PIE algorithm with source-based LVMs.
Not only does this help improve the ease of application of the algorithm, but it also increases
the performance of large datasets as it ensures that minimal components are calculated.

6. Discussion

The LS-PIE algorithm extends various dimensionality reduction methods, simplifying
the generation of latent vectors and organising the latent space according to the user’s
chosen metric. When combined with Hankelisation, this facilitates more in-depth analysis
of time series data, such as trend analysis and other signal processing tasks. This paper
demonstrates that optimal latent discovery in LS-PIE simplifies the application of LVMs,
using ICA as an example, and enables the FastICA algorithm to be applied to problems
typically addressed by PCA. With the addition of Hankelisation, the analysis of both
traditional multi-channel data and single-channel time series data is enhanced.

The application of these methods to traditionally un-ordered latent models such as
ICA allows us to sort and order the independent components generated. By compressing
or ranking, and sorting the resulting ICs we allow for the resulting latent spaces to be more
interpretable. This can be seen clearly in Figure 12 as well as in Figure 13: in these cases,
the un-ranked components appear as random noise before the application of LS-PIE. This
promotes more meaningful, and focused, data analysis by more clearly showing underlying
generative principles, as well as statistical differences between datasets. The separation of
meaningful latent signals from random noise allows us to clearly distinguish between the
two, for example, deriving clear sinusoids from seemingly random noise in Figure 6. This
allows for more carefully directed, in-depth analysis in future steps.

The two optimal latent discovery methods included within the module, LCON and
LEXP, facilitate the application of reconstruction-centred LVMs, such as ICA, to problems
traditionally analysed using interpretation-centred LVMs. These methods help organise
latent spaces, resulting in clearer and more meaningful outcomes. Hankelisation broadens
the scope of data analysis, making it possible to apply linear dimensionality reduction
methods to a wider range of data. For iterative models such as FastICA, LEXP allows for
computationally efficient dataset analysis, reducing the computational load in cases where
computational cost increases with the number of components. Conversely, LCON identifies
more naturally occurring components but can become time consuming with large datasets.
However, linear methods struggle to provide informative insights with the more non-linear
datasets. This framework has been applied to a wide range of data, including financial,
medical, and in-depth vibrational data, as well as traditional signal separation methods. It
offers a novel approach by applying ICA to problems typically tackled with PCA, allowing
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for analysis without relying on the variance of components for signal separation, and
instead applying metrics better suited to the nature of the problem.

This approach shows its merits in application to linear methods. The LS-PIE frame-
work is designed to improve the latent representations generated by LVMs; currently, the
implementation focuses on linear methods. Further research is needed to extend this frame-
work to non-linear methods such as auto-encoders and other neural networks. Extending
this method to include non-linear methods would allow for more detailed analysis of
complicated datasets, such as vibrational data. A future implementation to improve the
latent representations generated by auto-encoders should be explored in future research.

As this framework exists as a post-processing/structural framework designed to incor-
porate existing dimensionality reduction techniques, it is less computationally efficient than
using un-augmented techniques. This is due to the repeated latent component calculations
involved in LCON, and with methods such as FastICA, a large number of components
needs to be solved. However, the algorithm makes up for the reduced computational
efficiency by the improved interpretability of the resulting components. The complexity
of the application depends on the methods used to rank/compress/expand the result-
ing latent components, user-specified metrics and optimal latent discovery approaches
to properly compare the computational efficiency. From Figures 13 and 18, we can see
that the clustering approach is often sensitive to signal noise. This is especially true when
applying iterative methods such as FastICA to large, non-linear datasets. In these cases, the
excessive splitting of components can severely reduce the per-signal information so that
the combined signals reflect the noise. However, this is consistent with methods such as
Eigenvalue decomposition as seen in Figure 18.

Additionally, the optimality of the solutions found by LCON and LEXP depend on
the LVM applied. For closed-form LVMs such as PCA, in which all components are solved,
we can easily condense very large latent spaces across reducing numbers of components
without re-solving the latent variables. This allows us to optimally compress the data.
However, with approaches such as FastICA where the resulting components are dependent
on the number of components generated, the model needs to be re-applied at each step,
increasing the computational cost. In cases like these, the LEXP method allows us to
iteratively solve for smaller solution matrices until an optimal solution is recovered.

7. Conclusions

This paper illustrates the potential and effectiveness of the LS-PIE methodology,
demonstrating its competence even in scenarios with high non-linearity. This capability
allows reconstruction-focused methods like FastICA to deliver results comparable to those
of interpretation-focused methods like PCA. The ranking and scoring features of this
approach enable a broader range of LVMs to address various problems. This is evident
when comparing the ICA results shown in Figure 6 to the original FastICA results presented
at the beginning of the paper. Additionally, the methodology’s applicability to real-world
data is demonstrated in the analysis of the ECG data and the SAFE data.

The efficacy of this methodology is clear when comparing the ICA results with the
original FastICA results presented earlier. The method also proves effective on real-world
data, with latent expansion (LEXP) optimal latent discovery producing interpretable results
without fine-tuning, unlike traditional FastICA.

Analysing the SAFE curve shows that using a variance-driven ranking metric yields
similar scores for the extracted components. However, the ranked ICA algorithm is more
resilient to noise than traditional PCA.

Comparing the newly proposed clustering transformation to traditional FastICA re-
veals that the reconstruction errors are comparable, but the latent space of latent condensing
(LCON) is more interpretable. One limitation is that certain LVMs, like ICA, cannot gener-
ate components beyond the smallest dimension of the input matrix, restricting the LCON
algorithm’s power for smaller datasets. In such cases, LEXP is a better option.
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This paper introduces two approaches that aid in creating more organised and in-
terpretable latent spaces. LCON with BIRCH or DBSCAN identifies naturally occurring
components within a dataset, simplifying data structure understanding. LEXP grows the
components sequentially, reducing necessary steps and ensuring sufficient information
retention. Both algorithms enhance the application of LVMs like the FastICA algorithm,
promoting more focused and deliberate data analysis.

Examining Figure 6 shows that the LS-PIE application generates more similar results
between the two approaches. This behaviour stems largely from the choice of cluster-
ing/ranking algorithm. Using the dot product to rank extracted components aligns the
results closer to PCA. This behaviour also arises from using raw ICs as a similarity met-
ric, prioritising intrinsic component shape similarity. Applying other metrics allows for
different dataset analyses.

In all scenarios, the latent spaces extracted by the LS-PIE-augmented FastICA are more
meaningful and understandable to human observers than the un-augmented latent spaces
produced by FastICA or similar methods.
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