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A B S T R A C T

We construct a new metapopulation model for the transmission dynamics and control of the Ebola Virus Disease
(EVD) in an environment characterized by considerable migrations and travels of people. It is an extended SEIR
model modified by the addition of Quarantine and Isolated compartments to account for travelers who undergo
the exit screening. The model is well-fitted by using the reported cases from the neighboring countries Guinea,
Liberia and Sierra Leone where the 2014–2016 Ebola outbreak simultaneously arose. We show that the unique
disease-free equilibrium (DFE) of the model is unstable or locally asymptotically stable (LAS) depending on
whether the control reproduction number is larger or less than unity. In the latter case, we prove that the
DFE is globally asymptotically stable (GAS) provided that the exit screening is 100% negative. We also prove
the GAS of the DFE by introducing more explicit thresholds, thanks to which the existence of at least one
boundary equilibrium is established. We design two new nonstandard finite difference (NSFD) schemes, which
preserve the dynamics of the continuous model. Numerical simulations that support the theory highlight that
exit screening is useful to mitigate the infection. They also suggest that the disease is controlled or the explicit
threshold is less than unity provided that the migration and the exit screening parameters are above a critical
value.
1. Introduction

The first cases of Ebola Virus Disease (EVD) were reported simul-
taneously in 1976 in Sudan, now the South Sudan, and in Zaire, now
the Democratic Republic of Congo [1]. Since then, the tropical region
of Sub-Saharan Africa has experienced the recurrence of 29 outbreaks
of which the 2014–2016 West Africa EVD is the largest and severest.
It had a significant impact on the world with a total of 28,616 cases
and 11,310 deaths [2,3]. Apart from the usual challenges associated
with Ebola outbreaks, the 2014–2016 one came with an additional
serious challenge. Namely, it arose in three different countries (viz.
Guinea, Liberia, and Sierra Leone) to and from which migrations and
travels of people by road and air were considerable [4–7]. For a better
understanding, we provide the narrative below. Contrary to all the pre-
vious EVD outbreaks, which were mainly confined in small villages, the
2014–2016 one started in a Guinean village near Guéckédou, moved
to some towns and quickly spread first to Liberia and Sierra Leone [3]
and later to Mali, Nigeria, Senegal [8,9], due to migrations and travels.
According to [4], even at the peak of the 2014–2016 outbreak, many
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flights were registered from Guinea, Liberia and Sierra Leone to any
destination in the world.

WHO recommended the exit screening of travelers at international
airports, seaports and major land crossings in the three most affected
countries to prevent cross-border transmission of EVD [10–12]. Note
that the exit screening is defined as a public health intervention aiming
at identifying persons with possible symptoms of a disease or who
had a risk of exposure to a disease, in order to prevent them from
traveling [12,13]. However, this preventive measure failed to fully
confine the EVD because some infected people escaped and caused
the exportation of Ebola viruses to other countries such as Spain, the
United Kingdom, USA, Mali, Senegal, and Nigeria [3,8,10,14,15]. Un-
derstanding the impact of the migrations and travels of people outside
the initially afflicted West Africa region on the international spread of
EVD is of paramount importance to inform public health interventions.
Mathematical modeling has proven for centuries to be a reliable tool
to analyze the transmission dynamics of infectious diseases, and to
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provide recommendations that help to mitigate/contain infectious dis-
eases spreading [16]. This is the main aim of this study.

Since the 2014–2016 EVD outbreak, an outfit of mathematical
odels have been developed to understand its expansion. A large
umber of these models assessed the efficiency of control strategies
uch as quarantine, isolation, vaccination, contact tracing, media cov-
rage [9,17–20], while only few were devoted to the influence of
migration/migration on the spatial spread of EVD [15,21,22]. In [21],

for instance, the authors evaluate the efficiency of travel restriction as
a control strategy of Ebola in a two-patch model that takes into account
the time residents of one patch spend in the other. They showed that
reducing the movement between high and low risk regions may have
a deleterious influence on the overall level of infection in the total
population. The mathematical model in [22] captured the movements
of people by only allowing susceptible and latent individuals to travel
and by implementing some control measures. The model, utilized to
estimate the final magnitude of West Africa EVD outbreak, gave figures
close to the exact total numbers of 28,616 cases and 11,310 deaths [3].
In [15], a multi-region model describing the dynamics of population
f different geographical areas was proposed, and the utility of travel-
locking at the borders was assessed. The findings there are a bit

controversial in that an epidemic region where travel blocking was
mplemented experienced a higher peak value of infected individuals
han in the absence of this intervention. Though the above-mentioned
orks helped to understand the spread of the EVD, they did not

onsider the importance of screening travelers at exit borders. As far
s the incorporation of entry/exit screening in disease modeling is
oncerned, many works have been done for other infectious diseases
uch as mosquito-borne ones and SARS [13,23].

To the best knowledge of the authors, the exit & entry screening
nterventions, which should be highly relevant for the EVD, has not
een investigated from the mathematical modeling perspective. This
ork aims to fill this gap in line with the recommendation of WHO [12]

o implement the exit screening for the 2014–2016 West Africa EVD
utbreak. More precisely:

• We construct and analyze a new metapopulation model in which
the exit screening, quarantine and isolation are incorporated. The
model is parameterized and calibrated using real data from the
2014–2016 outbreak.

• We carry out a quantitative, qualitative and computational anal-
ysis. Regarding the latter aspect, we construct two new nonstan-
dard finite difference schemes (NSFD), which are dynamically
consistent with respect to the continuous patchy model [24,25].

The rest of the paper is structured as follows: In Section 2, the model
with exit screening is formulated. Section 3 deals with the validation
of this model. In Section 4, we provide the quantitative and qualitative
nalysis. Based on two newly developed NSFD schemes, we study
umerically, in Section 5, the behavior of the model including the

impact of the exit screening and migration rates. In the same section
and associated appendix, we carry out the global sensitivity analysis
and use it to determine the most influential parameters that drive the
dynamics of EVD. In Section 6, we briefly present a more general
metapopulation model with exit & entry screening. Section 7 is about
oncluding remarks (including how our findings fit in the literature),
ome recommendations, and planned future research work.

2. Model formulation

The models proposed in this work involve the concepts, quarantine
nd isolation, of public health interventions whose definitions and clar-
fications given in [26,27] will shortly be recalled. Such explanations
re relevant considering the confusion observed in several works. The
efinition of isolation is straightforward. It is a measure to separate sick

people with a contagious disease from those who are not sick [26,27].
2 
A discussion on quarantine modeling is available in [28], where
the underlying definition of quarantine is the temporary removal of
susceptible individuals who are feared to have been exposed to a
communicable disease. This definition implies that in the majority of
the quarantine models in the literature, the term ‘‘quarantine’’ was
incorrectly used, as highlighted in [28]. In particular, we mention the

orks [29–32] where only infected individuals were quarantined, with
the aim to simplify the model [31,33,34].

Putting this definition in the ‘assumed perfect’ quarantined mod-
eling process described in [35], it is explained through an adjusted
quarantined model in [28] that the quarantined individuals are iso-
lated if they show clinical symptoms of the disease at the end of the
quarantine period. If they do not show such symptoms, they return
to the susceptible (and actively-mixing) population and they follow
 progression of the disease transmission that is parallel to that of

non-quarantined susceptible individuals.
In this work, we adopt the epidemiological definition of quarantine

whereby it is an intervention that separates and restricts the movement
of people who were exposed to a contagious disease to see if they
become sick. These people may have been exposed to the disease
nd do not know it, or they may have the disease but do not show
linical symptoms [26,27]. Hence, apart from the temporarily removed
usceptible individuals due to the fear of being exposed to the disease,

our quarantine compartment contains exposed and other individuals as
stated in the above definition. This enables us to simplify the study by
assuming that, unlike [28,35], there is no parallel progression of the
two subgroups of quarantined and non-quarantined individuals in the
ransmission of the disease (the parallel progression will be considered

in the general model presented in Section 6). In the current work, the
ocus is on positively screened travelers who are placed in quarantine
n the sense defined above. This is done in accordance with the exit
creening guidance given in [12].

2.1. Main assumptions

We build a metapopulation model with patches represented by
countries. We take into account the exit screening intervention and
consider the following main assumptions:

A1. Only susceptible and latently infected individuals can migrate/
move between different patches. Justifications for this assumption
include the following: (a) The Ebola virus is a highly virulent
pathogen, which gives rise generally to a severe disease [36].
Thus, symptomatic infected individuals are generally unable to
travel [22]; (b) The Ebola-deceased individuals are highly con-
tagious and should therefore be buried quickly; (c) Individuals
who recover from EVD remain infectious for several months and
suffer from several complications such as tiredness, headaches,
muscle and joint pains, eye and vision problems, stomach pain
and memory loss [37]. Thus, the survivors of EVD continue to
receive healthcare or attention in the patch where they have
recovered.

A2. Susceptible individuals who intend to travel will be quarantined.
A3. Positively screened travelers are properly isolated to stop their

transmission. Some of the isolated people can still travel, after
a negative laboratory test, or cancel their trip due to delay. The
assumption of isolation is made to simplify the model description.
It is achievable once health workers in isolation centers wear
appropriate protective clothes to take care of patients [18].

A4. Positively screened travelers who die after a positive diagnosis
are safely buried by a well-trained personnel and do not transmit
the disease. In fact, it is generally when the corpses are manip-
ulated during mourning, funerals and traditional beliefs that the
Ebola-deceased individuals transmit EVD.

A5. The rate at which individuals are positively screened at the exit
patch is the same, irrespective of their destinations.
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Table 1
Variables of the model.

Classes Description

𝑆𝑖 Susceptible individuals in patch 𝑖 who did not undergo screening or who
were negatively screened.

𝐸𝑖 Latent individuals in patch 𝑖.
𝐼𝑖 EVD symptomatic cases in patch 𝑖.
𝐷𝑖 Ebola-death cases in patch 𝑖 who are not safely buried.
𝑄𝑖 Travelers who are quarantined/on hold due to positive screening at

the exit borders of patch 𝑖.
𝑃𝑖 Isolated individuals in patch 𝑖 who failed to travel due to a positive

screening, followed by a positive diagnosis at the exit borders.
𝑅𝑖 Individuals who recover from EVD in patch 𝑖.

A6. The recovered individuals are immune during the outbreak. In
fact, it is documented that, recovered individuals develop anti-
bodies that last for at least 10 years [18,37].

A7. Infected individuals will recover or die. Those who die outside
isolation centers remain infectious until they are buried.

A8. During the screening process, many susceptible individuals who
show flu-and/or malaria-like symptoms can be wrongly positively
screened as EVD-infected individuals.

A9. All the individuals positively screened in a patch are sent into the
same compartment. This assumption is motivated by the fact that
susceptible and latent individuals are apparently not different.

2.2. Model variables

Considering the above assumptions, we choose the model variables
s described below. Let 𝑛 > 1 be an integer that represents the number

of patches. For each patch 𝑖 = 1, 2,… , 𝑛, we divide the total population
𝑁𝑖 = 𝑁𝑖(𝑡) at time 𝑡 into seven mutually disjoint compartments: 𝑆𝑖 =
𝑆𝑖(𝑡), 𝐸𝑖 = 𝐸𝑖(𝑡), 𝐼𝑖 = 𝐼𝑖(𝑡), 𝐷𝑖 = 𝐷𝑖(𝑡), 𝑄𝑖 = 𝑄𝑖(𝑡), 𝑃𝑖 = 𝑃𝑖(𝑡)
and 𝑅𝑖 = 𝑅𝑖(𝑡) defined in Table 1. The status of individuals in 𝑄𝑖 is
o be travelers (from 𝑆𝑖 and 𝐸𝑖) who are positively screened at the
xit borders. The replenishment of 𝑃𝑖 from 𝑄𝑖 results from a positive
iagnosis.

It is convenient to clarify at this stage the main notation we will
se throughout this paper. There are so many notation that we will
ccasionally deviate from the standard convention. Apart from the
otal population, 𝑁𝑖, we denote by 𝐻𝑖 = 𝐻𝑖(𝑡) the total population of

individuals who are alive in patch 𝑖. Thus,

𝐻𝑖 = 𝑆𝑖 + 𝐸𝑖 + 𝐼𝑖 +𝑄𝑖 + 𝑃𝑖 + 𝑅𝑖 and 𝑁𝑖 = 𝐻𝑖 +𝐷𝑖. (2.1)

We will denote the sums on all patches by bold uppercase letters. Hence

𝐇 =
𝑛
∑

𝑖=1
𝐻𝑖, 𝐃 =

𝑛
∑

𝑖=1
𝐷𝑖 and 𝐍 = 𝐇 + 𝐃. (2.2)

Given a compartment in patch 𝑖, the initial letter/acronym of that
compartment will denote the vector function having as components the
associated compartments of the 𝑛 patches. Hence

𝑆 = (𝑆1, 𝑆2,… , 𝑆𝑛). (2.3)

Furthermore, a calligraphic letter such as  denotes the 7𝑛-vector-
function given by

 = (𝑆 , 𝐸 , 𝐼 , 𝐷 , 𝑄, 𝑃 , 𝑅). (2.4)

2.3. Derivation of model equations

For any patch 𝑖, we assume a constant recruitment, 𝛬𝑖, through
births in the susceptible population, 𝑆𝑖, and we denote by 𝜇𝑖 the
natural mortality rate of all individuals in patch 𝑖. EVD is contracted by
contact with infectious individuals and manipulation of Ebola-deceased
individuals. For the latter channel of infection, some authors used the
mass action principle [24,38,39]. Here, we follow [21,28,40,41] and
 b

3 
use the standard incidence for both routes of transmission. Hence, the
force of infection, 𝜆𝑖, in patch 𝑖 is

𝜆𝑖 ≡ 𝜆𝑖(𝑡) ∶=
𝛽𝑖(𝐼𝑖 + 𝜈𝑖𝐷𝑖)

𝑁𝑖
(2.5)

where 𝛽𝑖 is the effective transmission rate per unit time of EVD, due
o contacts with the infected cases in the compartments 𝐼𝑖, and 𝜈𝑖 is
he modification parameter of the infectiousness of the Ebola-deceased
ndividuals.

The susceptible individuals in patch 𝑖 plan to travel to patch 𝑗 at
the rate 𝑎𝑗 𝑖. Since EVD has many similar symptoms to those of flu,
cholera, typhoid fever, and malaria [42,43], some positively screened
eople at the exit border of a patch may rather suffer from the latter
iseases (see Assumption A8). Let 𝜂𝑆𝑖 be the fraction of susceptible

individuals in the 𝑆𝑖 compartment who are positively screened at the
exit border of patch 𝑖. These individuals are placed in quarantine in
the 𝑄𝑖 compartment. Their fate is as described in Assumption 3. Let 𝜐𝑖
be the exit rate from the compartment 𝑄𝑖 by any means different from
eath. We define 𝜙𝑖(𝑆𝑖, 𝐸𝑖)𝜐𝑖 as the fraction of quarantined individuals
ho are positively diagnosed. In view of the homogeneous mixing of

ndividuals in the 𝑄𝑖 compartment, we take 𝜙𝑖 ≡ 𝜙𝑖(𝑆𝑖, 𝐸𝑖) = 𝐸𝑖∕(𝑆𝑖+𝐸𝑖)
.e the probability for a quarantined individual to be infected, though
or simplicity several authors adopt the exponential distribution of exit
rom 𝑄𝑖 [28,44,45].

Being negatively diagnosed, the remaining number, (1 − 𝜙𝑖(𝑆𝑖, 𝐸𝑖))
𝑖𝑄𝑖, of tested individuals are reverted to the susceptible compart-
ents in patches. More precisely, among those who leave the 𝑄𝑖

ompartment, (1 − 𝜙𝑖(𝑆𝑖, 𝐸𝑖))𝜐𝑖𝜉𝑖𝑖𝑄𝑖 cancel their trip (at cancellation
ate 𝜉𝑖𝑖) due to delay and thus return to the compartment 𝑆𝑖, while
1 − 𝜙𝑖(𝑆𝑖, 𝐸𝑖))𝜐𝑖𝜉𝑗 𝑖𝑄𝑖 leave the patch 𝑖 to the patch 𝑗 (𝑗 ≠ 𝑖), with
𝑗 𝑖 the rate to travel from the 𝑄𝑖 compartment to the compartment
𝑗 . Altogether, the evolution of susceptible individuals in patch 𝑖 is
overned by the following differential equation:
𝑑 𝑆𝑖(𝑡)
𝑑 𝑡 = 𝛬𝑖 − 𝜆𝑖𝑆𝑖 − 𝜇𝑖𝑆𝑖 −

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝑆𝑖 +

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝑆𝑗 )𝑆𝑗

+
𝑛
∑

𝑗=1
(1 − 𝜙𝑖(𝑆𝑗 , 𝐸𝑗 ))𝜐𝑗𝜉𝑖𝑗𝑄𝑗 . (2.6)

Note that the last sum in Eq. (2.6) (i.e. 𝑗 = 𝑖) involves the negatively
diagnosed individuals from the 𝑄𝑖 compartment who cancelled their
trips. It also includes the contributions of all negatively diagnosed
quarantine individuals from 𝑄𝑗 compartments in all the patches 𝑗 ≠ 𝑖
who traveled to 𝑆𝑖 in patch i.

Once infected, the susceptible individuals move to the 𝐸𝑖 com-
artment. These individuals progress to the symptomatic stage at the
ate 𝛼𝑖. We assume for the sake of simplicity that the individuals in
𝐸𝑖 compartment plan to travel to the patch 𝑗 at the same rate 𝑎𝑗 𝑖.

owever, some of them are stopped from traveling by the exit screening
mplemented at the border of patch 𝑖 at the rate 𝜂𝐸𝑖 . Positively screened
ndividuals are quarantined and those negatively screened travel. Thus,
𝑖 is governed by the equation:
𝑑 𝐸𝑖(𝑡)
𝑑 𝑡 = 𝜆𝑖𝑆𝑖 − 𝜇𝑖𝐸𝑖 − 𝛼𝑖𝐸𝑖 −

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝐸𝑖 +

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝐸𝑗 )𝐸𝑗 . (2.7)

Due to the exit screening at the border of patch 𝑖, there are 𝑎𝑗 𝑖𝜂𝑆𝑖 𝑆𝑖
and 𝑎𝑗 𝑖𝜂𝐸𝑖 𝐸𝑖 susceptible and latent individuals of patch 𝑖 who wanted
to travel to patch 𝑗 but are stopped and quarantined in 𝑄𝑖. Individuals
in quarantine are monitored [19] and undergo laboratory tests at rate
𝜐𝑖. This gives them a better chance to recover since they are treated
at an early stage of the disease [46]. The dynamics of individuals in
quarantine is:
𝑑 𝑄𝑖(𝑡)
𝑑 𝑡 =

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝐸𝑖 𝐸𝑖 +

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝑆𝑖 𝑆𝑖 − (𝜇𝑖 + 𝜐𝑖)𝑄𝑖. (2.8)

Quarantined individuals who are tested positive are isolated (Assump-
ion 3). Unlike those in the 𝐼𝑖 compartment, they enjoy special care,
eing identified early and followed in hospital training.
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Fig. 1. Flow diagram between two infected patches 𝑖 and 𝑗 (𝑖 ≠ 𝑗) for Model (2.13).
n
t

t

In the 𝑃𝑖 compartment, an individual can either recover at the rate
𝑖 or die at the disease-induced death rate 𝜓𝑖, apart from natural death
t rate 𝜇𝑖 [47,48]. Hence the dynamics of 𝑃𝑖 is
𝑑 𝑃𝑖(𝑡)
𝑑 𝑡 = 𝜙𝑖(𝑆𝑖, 𝐸𝑖)𝜐𝑖𝑄𝑖 − (𝜇𝑖 + 𝜓𝑖 + 𝜃𝑖)𝑃𝑖. (2.9)

Because of the virulence of the Ebola virus, we can assume that the
individuals in the 𝐼𝑖 compartment are so sick that they cannot travel.
These individuals may recover at the rate 𝛾𝑖, die naturally at the rate 𝜇𝑖,
or because of the disease at the rate 𝛿𝑖. Note that the individuals in 𝑃𝑖
re managed in the early stage of EVD, contrarily to those of 𝐼𝑖. Thus,
oth mortality and recovery rates in the 𝑃𝑖 and 𝐼𝑖 compartments can
e different. Taking into account the latent individuals who become
ymptomatic, the dynamics of the 𝐼𝑖 compartment is given by the
quation:
𝑑 𝐼𝑖(𝑡)
𝑑 𝑡 = 𝛼𝑖𝐸𝑖 − (𝜇𝑖 + 𝛿𝑖 + 𝛾𝑖)𝐼𝑖. (2.10)

The Ebola-deceased individuals as well as the symptomatic individuals
who die by any other causes are infectious since their corporal liquids
already contain the virus [47,48]. All these individuals are gathered in
he 𝐷𝑖 compartment. The individuals in the 𝐷𝑖 compartment are buried
t the rate 𝑏𝑖. The model for 𝐷𝑖 is given by
𝑑 𝐷𝑖(𝑡)
𝑑 𝑡 = (𝜇𝑖 + 𝛿𝑖)𝐼𝑖 − 𝑏𝑖𝐷𝑖. (2.11)

Individuals who recover from EVD in 𝐼𝑖 and 𝑃𝑖 compartments move to
the 𝑅𝑖 compartment. These recovered individuals have some sequelae
of the disease; so we may assume that they do not travel because they
still require some follow-up. The dynamic of 𝑅𝑖 is given by
𝑑 𝑅𝑖(𝑡)
𝑑 𝑡 = 𝛾𝑖𝐼𝑖 + 𝜃𝑖𝑃𝑖 − 𝜇𝑖𝑅𝑖. (2.12)

Putting everything together, the model parameters and their biological
meanings are summarized in Table 2. The flow diagram of the patch

odel is given on Fig. 1. The associated metapopulation model for 𝑛
atches reads as follows for 𝑖 = 1, 2,… , 𝑛:
4 
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑 𝑆𝑖(𝑡)
𝑑 𝑡 = 𝛬𝑖 − 𝜆𝑖𝑆𝑖 − 𝜇𝑖𝑆𝑖 −

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝑆𝑖 +

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝑆𝑗 )𝑆𝑗

+
𝑛
∑

𝑗=1
(1 − 𝜙𝑗 (𝑆𝑗 , 𝐸𝑗 ))𝜐𝑗𝜉𝑖𝑗𝑄𝑗 ,

𝑑 𝐸𝑖(𝑡)
𝑑 𝑡 = 𝜆𝑖𝑆𝑖 − 𝜇𝑖𝐸𝑖 − 𝛼𝑖𝐸𝑖 −

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝐸𝑖 +

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝐸𝑗 )𝐸𝑗 ,

𝑑 𝐼𝑖(𝑡)
𝑑 𝑡 = 𝛼𝑖𝐸𝑖 − (𝜇𝑖 + 𝛿𝑖 + 𝛾𝑖)𝐼𝑖,

𝑑 𝐷𝑖(𝑡)
𝑑 𝑡 = (𝜇𝑖 + 𝛿𝑖)𝐼𝑖 − 𝑏𝑖𝐷𝑖,

𝑑 𝑄𝑖(𝑡)
𝑑 𝑡 =

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝐸𝑖 𝐸𝑖 +

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝑆𝑖 𝑆𝑖 − (𝜇𝑖 + 𝜐𝑖)𝑄𝑖,

𝑑 𝑃𝑖(𝑡)
𝑑 𝑡 = 𝜙𝑖(𝑆𝑖, 𝐸𝑖)𝜐𝑖𝑄𝑖 − (𝜇𝑖 + 𝜓𝑖 + 𝜃𝑖)𝑃𝑖,

𝑑 𝑅𝑖(𝑡)
𝑑 𝑡 = 𝛾𝑖𝐼𝑖 + 𝜃𝑖𝑃𝑖 − 𝜇𝑖𝑅𝑖.

(2.13)

We obtain the following conservation law by adding the equations in
(2.13), excluding the equation of the deaths.
𝑑 𝐻𝑖(𝑡)
𝑑 𝑡 = 𝛬𝑖 − 𝜇𝑖𝐻𝑖 − 𝛿𝑖𝐼𝑖 − 𝜓𝑖𝑃𝑖. (2.14)

Moreover, for Model (2.13) to be epidemiological meaningful, it is
ecessary to assume that the initial conditions are non-negative such
hat

𝑆𝑖(0) > 0, ∀ 𝑖 ∈ {1,… , 𝑛},
𝑛
∑

𝑖=1
(𝐸𝑖(0) + 𝐼𝑖(0) +𝐷𝑖(0)) > 0. (2.15)

3. Model validation

To assess the usefulness of the exit screening measure, we restrict
his section to 𝑛 = 3 patches corresponding to Guinea, Liberia, and

Sierra Leone where the 2014–2016 West Africa Ebola outbreak was
more pronounced. The movements between patches being modeled by
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Table 2
Parameters of the model.
Parameters Epidemiological interpretation Units

𝑎𝑖𝑗 Rate of susceptible/latent individuals of patch 𝑗 who
wish to migrate to patch 𝑖. week−1

𝜇𝑖 Natural mortality rate in patch 𝑖. week−1

𝛬𝑖 Constant recruitment of susceptible individuals in patch 𝑖. indiv week−1

𝛽𝑖 Effective transmission rate of EVD in patch 𝑖 due
to individuals in 𝐼𝑖 compartment. indiv week−1

𝑏𝑖 Burial rate of Ebola-deceased in patch 𝑖. week−1

𝛾𝑖 , 𝜃𝑖 Recovery rate of infected who belong to the 𝐼𝑖 , 𝑃𝑖 compartment. week−1

𝛼𝑖 Exit rate of the 𝐸𝑖 compartment to the 𝐼𝑖 compartment. week−1

𝜈𝑖 Modification parameter for the infectiousness of
the Ebola-deceased. –

𝜂𝑆𝑖 Proportion of susceptible individuals in 𝑆𝑖 who –
are positively screened at the exit border of patch 𝑖.

𝜂𝐸𝑖 Proportion of latent individuals in 𝐸𝑖 who –
are positively screened at the exit border of patch 𝑖.

𝛿𝑖 Mortality rate due to EVD of infected individuals
in patch 𝑖 who belong to the 𝐼𝑖 compartment. week−1

𝜓𝑖 Mortality rate due to EVD of infected in patch 𝑖 who
belong to the 𝑃𝑖 compartment. week−1

𝜐𝑖 Exit rate from the 𝑄𝑖 compartment by any means
different from the death. week−1

𝜙𝑖(𝑆𝑖 , 𝐸𝑖)𝜐𝑖 Fraction of quarantined individuals
who are positively diagnosed. week−1

𝜉𝑖𝑗 Rate at which the quarantined who are negatively
diagnosed in patch 𝑗 left patch 𝑗 to patch 𝑖 (𝑗 ≠ 𝑖). week−1

𝜉𝑖𝑖 Rate at which the quarantined who are negatively
diagnosed in patch 𝑖 cancel their trip. week−1
g

e
v

W
d
M

i

Table 3
Estimation of the rates of travel 𝑎𝑖𝑗 between countries through Eq. (3.1).

Countries 𝑁𝑜𝑖 Population 𝑇𝑖 Annual migrant Travel rate
𝑀𝑖𝑗 from 𝑗 to 𝑖 from 𝑗 to 𝑖

1.Guinea 𝑇1 = 11,055,429 [52] 𝑀12 = 118,353 [5] 𝑎12 = 0.00054
𝑀13 = 226,415 [5] 𝑎13 = 0.00063

2.Liberia 𝑇2 = 4,248,000 [53] 𝑀21 = 37,026 [6] 𝑎21 = 0.000064
𝑀23 = 13,165 [6] 𝑎23 = 0.000036

3.Sierra Leone 𝑇3 = 6,964,859 [54] 𝑀31 = 61,510 [7] 𝑎31 = 0.0001
𝑀32 = 22,144 [7] 𝑎32 = 0.0001

Table 4
Initial values of the variables for Model (2.13).

Countries E(0) I(0) D(0) Q(0) P(0) R(0) Total

Guinea 330 286 286 286 286 286 1760
Liberia 1319 1060 1060 1060 1060 1060 6619
Sierra Leone 1262 920 920 720 520 520 4862

an exponential distribution, it would be more appropriate to estimate
he migration rates as in [49]. However, due to the difficulty of this

approach and the lack of relevant data, we use a simple method.
Identifying the three countries by the number (i), 𝑖 = 1, 2, 3, the annual
number 𝑀𝑖𝑗 of migrants from a country number 𝑗 to a country number
𝑖 is provided in [5–7] as recorded in Table 3. Furthermore, Table 3 is
enriched with the weekly number, 𝑀𝑖𝑗∕52 of migrants and the total
opulation 𝑇𝑗 of country number 𝑗, which in turn gives

𝑎𝑖𝑗 =
𝑀𝑖𝑗

52 × 𝑇𝑗
(3.1)

as the travel rate from country number 𝑗 to country number 𝑖. More-
ver, for the 𝑃𝑖 compartment of isolated or hospitalized individuals, we
ake the death rates and the recovery rates given in [39,41,50,51] (see

Table 5). Parameters found in the literature are gathered in Table 5,
while the other parameters are obtained by fitting the model to the
reported data.

WHO recommended the exit screening of travelers at the border of
these countries on November 06 2014 [12]. We fit Model (2.13) to the
cumulative number 𝐶(𝑡) of infected recorded in these countries from 07
November 2014 (initial date) to 07 August 2015 (end-date) [55], which
5 
corresponds to 40 weeks. According to [56], the dynamics of 𝐶(𝑡) is
iven as �̇� =

∑3
𝑖=1 𝜆𝑖𝑆𝑖. We utilize the Nonlinear Least Squares fitting

method, implemented by ‘‘fminsearchbn’’ function in Matlab Software.
The Nonlinear Least Squares method allows the determination of the
set of parameters that minimizes the sum of the squares of the differ-
ences between the predicted cumulative infected by the model and the
observed cumulative cases [57]. The population of Guinea, Liberia and
Sierra Leone are assumed to be the number of susceptible individuals in
these countries. For the initial number of infected, we split on Table 4
the cumulative initial cases 1760 in Guinea, 6619 in Liberia and 4862
in Sierra Leone in the compartments 𝐸 , 𝐼 , 𝐷 , 𝑄, 𝑃 and 𝑅. Fig. 2 shows
xcellent fitting between cumulative cases of the Model (2.13) with the
alues displayed on Table 5.

4. Mathematical analysis

The mathematical analysis of Model (2.13) requires several nota-
tion. To those specified in (2.2), (2.3) and (2.4), we add the following.

e denote by diag(𝑥) or diag(𝑥𝑖)𝑖=𝑛𝑖=1 the 𝑛 × 𝑛 diagonal matrix, whose
iagonal entries are the coordinates of the vector 𝑥 = (𝑥1,… , 𝑥𝑛) ∈ R𝑛.
oreover, we add the notation

Λ =
𝑛
∑

𝑖=1
𝛬𝑖; Υ =

𝑛
∑

𝑖=1
[(𝜇𝑖 + 𝛿𝑖)]; 𝜇𝑚 = min

1≤𝑖≤𝑛
{𝜇𝑖}; 𝑗𝑖 = 𝜇𝑖𝑏𝑖𝑘𝑖(𝜇𝑖 + 𝛼𝑖),

𝑘𝑖 = (𝜇𝑖 + 𝛿𝑖 + 𝛾𝑖);
𝑏𝑚 = min

1≤𝑖≤𝑛
{𝑏𝑖}; 𝜇𝑀 = max

1≤𝑖≤𝑛
{𝜇𝑖 + 𝛿𝑖 + 𝜓𝑖};

𝜔𝑖 = 𝜇𝑖𝑏𝑖𝑘𝑖 + 𝜇𝑖𝑏𝑖𝛼𝑖 + 𝜇𝑖𝛼𝑖(𝜇𝑖 + 𝛿𝑖) + 𝛾𝑖𝑏𝑖𝛼𝑖;

𝑎𝑀 = max
1≤𝑖≤𝑛

(𝛽𝑖(1 + 𝜈𝑖) + 𝜇𝑖 +
𝑛
∑

𝑗=1
𝑎𝑗 𝑖); 𝛼𝑀 = max

1≤𝑖≤𝑛

(

𝜇𝑖 + 𝛼𝑖
)

;

𝛾𝑀 = max1≤𝑖≤𝑛
(

𝜇𝑖 + 𝛿𝑖 + 𝛾𝑖
)

;

𝑏𝑀 = max
1≤𝑖≤𝑛

(

𝑏𝑖
)

; 𝜐𝑀 = max
1≤𝑖≤𝑛

(

𝜇𝑖 + 𝜐𝑖
)

; 𝜃𝑀 = max
1≤𝑖≤𝑛

(

𝜇𝑖 + 𝜓𝑖 + 𝜃𝑖
)

;

𝜇𝑀 = max1≤𝑖≤𝑛
(

𝜇𝑖
)

;

(4.1)

Furthermore, considered for all 𝑛 patches, Model (2.13) can be written
n the compact form,
𝑑

𝑑 𝑡 = (), (4.2)
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Table 5
Parameters values to simulate System (2.13).

Par. Values Source Range Par. Values Source Range

𝜂𝐸1 0.0239 Fitted 0–1 𝜂𝐸2 0.0478 Fitted 0–1
𝜇1 0.0002 [58] 0–1 𝜐1 0.2758 Fitted 0–1
𝛽1 0.2556 Fitted 0–1 𝛽2 0.1209 Fitted 0–1
𝛽3 0.2822 Fitted 0–1 𝜐2 0.2565 Fitted 0–1
𝜈1 0.9374 Fitted 0–1 𝜈2 0.8524 Fitted 0–1
𝜈3 0.4044 Fitted 0–1 𝜂𝑆3 0.1935 Fitted 0–1
𝛿1 0.857 [59] 0–1 𝛿2 0.75 [60] 0–1
𝛿3 0.5 [50] 0–1 𝜐3 0.3173 Fitted 0–1
𝜓1 0.3 [41] 0–1 𝜓2 0.4 [39] 0–1
𝜓3 0.5 [50] 0–1 𝜉21 0.2823 Fitted
𝜉31 0.3813 Fitted 0–0.5 𝜉12 0.4067 Fitted 0–0.5
𝜉11 0.0572 Fitted 0–0.5 𝜉22 0.1307 Fitted 0–0.5
𝜉33 0.0893 Fitted 0–0.5 𝜂𝐸3 0.0578 Fitted 0–1
𝜉32 0.0686 Fitted 0–0.5 𝜉13 0.8997 Fitted 0–0.5
𝜉23 0.2483 Fitted 0–0.5 𝑎21 0.000064 Estimated 0–0.5
𝑎31 0.0001 Estimated 0–0.5 𝑎12 0.00054 Estimated 0–0.5
𝑎32 0.0001 Estimated 0–0.5 𝑎13 0.00063 Estimated 0–0.5
𝑎23 0.000036 Estimated 0–0.5 𝑏3 0.5 [50] 0–1
𝑏1 1∕2.01 [50] 0–1 𝑏2 1∕4.5 [60] 0–1
𝛾1 0.0059 [51] 0–1 𝛾2 0.026767 [51] 0–1
𝜃1 0.001120 [51] 0–1 𝜃2 0.031486 [51] 0–1
𝜃3 0.015743 [51] 0–1 𝛾3 0.010038 [51] 0–1
𝜂𝑆2 0.0299 Fitted 0–1 𝜇2 0.0002 [58] 0–1
𝜇3 0.0002 [58] 0–1 𝛬𝑖 , ∀ 𝑖 0.03703 [61] 0–1
𝛼1 0.4127 Fitted 0–1 𝛼2 0.4532 Fitted 0–1
𝛼3 1.9440 Fitted 0–1 𝜂𝑆1 0.8535 Fitted 0–1

where  ≡ (𝑡), as in (2.4), denotes the solution of the system with
ight-hand side, , structured as
() = (𝐺𝑆1 ,… , 𝐺𝑆𝑛 , 𝐹𝐸1

,… , 𝐺𝐸𝑛 , 𝐺𝐼1 ,… , 𝐺𝐼𝑛 , 𝐺𝐷1
,… , 𝐺𝐷𝑛 ,

𝐺𝑄1
,… , 𝐺𝑄𝑛 , 𝐺𝑃1 ,… , 𝐺𝑃𝑛 , 𝐺𝑅1

,… , 𝐺𝑅𝑛 )𝑇 ,
(4.3)

where 𝐺𝐴𝑖 represents the right-hand side of the equation of the dynam-
ics of the compartment 𝐴𝑖, 𝐴 = 𝑆 , 𝐸 , 𝐼 , 𝐷 , 𝑄, 𝑃 , 𝑅.

4.1. Well-posedness of the model

The well-posedness of Model (2.13) is given in the next result.

Theorem 4.1. Model (2.13) is a dynamical system on the following
iologically feasible and attractive region:
𝛤 ∶=

{

 = (𝑆 , 𝐸 , 𝐼 , 𝐷 , 𝑄, 𝑃 , 𝑅) ∈ R7𝑛
+ ∶ 𝐇 ≤ Λ

𝜇𝑚
and 𝐃 ≤ Υ𝛬

𝜇𝑚𝑏𝑚

}

.

Proof. The theorem results from the combination of the four facts
below [62].

• Model (4.2) possesses a unique local solution since its right-hand
side  is locally Lipschitz.

• The positive cone R7𝑛
+ is forward invariant with respect to the

system. This is obtained by the tangent condition applied to each
of the 7𝑛 hyperplanes that forms the boundary of R7𝑛

+ , observing
that the unit normal vector to each hyperplane is a vector of the
canonical basis of the space R7𝑛 [63,64].

• Any solution (𝑡) = (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝐷(𝑡), 𝑄(𝑡), 𝑃 (𝑡), 𝑅(𝑡)) ∈ R7𝑛
+

of Model (2.13) initiated at a point (0) ∈ 𝛤 satisfies a priori
estimates

𝐇(𝑡) ≤ Λ

𝜇𝑚
, ∀ 𝑡 > 0 and lim sup

𝑡⟶+∞
𝐇(𝑡) ≤ Λ

𝜇𝑚
(4.4)

and

𝐃(𝐭) ≤ Υ𝛬
𝑏𝑚𝜇𝑚

, ∀ 𝑡 > 0 and lim sup
𝑡⟶+∞

𝐃(𝑡) ≤ Υ𝛬
𝑏𝑚𝜇𝑚

. (4.5)

Indeed, by adding in (2.13), the equations of individuals who are alive
nd summing up over all patches the resulting equations as well as
6 
Fig. 2. Curve fitting for Model (2.13) from real data of the 2014–2016 EVD outbreak
n Guinea, Liberia, and Sierra Leone [55] from 7 November 2014 to 7 August 2015.

The values used for the simulation are in Table 5.

those of the Ebola-deceased individuals, we obtain the conservation
laws
𝑑𝐇
𝑑 𝑡 =

𝑛
∑

𝑖=1
[𝛬𝑖 − 𝜇𝑖𝐻𝑖 − 𝛿𝑖𝐼𝑖 − 𝜓𝑖𝑃𝑖] ≤ Λ − 𝜇𝑚𝐇 (4.6)

and
𝑑𝐃
𝑑 𝑡 =

𝑛
∑

𝑖=1
[(𝜇𝑖 + 𝛿𝑖)𝐼𝑖 − 𝑏𝑖𝐷𝑖] ≤

Υ𝛬
𝜇𝑚

− 𝑏𝑚𝐃. (4.7)

The application of Gronwall inequality to (4.6) and (4.7) yields for
every 𝑡 ≥ 0,

𝐇(𝐭) ≤ Λ

𝜇𝑚
+
(

𝐇(𝟎) − Λ

𝜇𝑚

)

𝑒−𝜇𝑚𝑡 and 𝐃(𝐭) ≤ Υ𝛬
𝑏𝑚𝜇𝑚

+
(

𝐃(𝟎) − Υ𝛬
𝑏𝑚𝜇𝑚

)

𝑒−𝑏𝑚𝑡,

(4.8)

from which (4.4) and (4.5) follow.
The set 𝛤 is attractive. This follows from the second inequalities in (4.4)
and (4.5).

4.2. Existence of the disease-free equilibrium

To find an equilibrium point ∗ ≡ (𝑆∗, 𝐸∗, 𝐼∗, 𝐷∗, 𝑄∗, 𝑃 ∗, 𝑅∗) ∈ R7𝑛
+

of System (2.13), we set its right hand side equal to zero. By definition,
 disease-free equilibrium (DFE), ∗, is such that the force of infection
iven in (2.5) and evaluated at ∗ is equal to zero: 𝜆∗ = 0 i.e. 𝐼∗ =
𝐷∗ = 0. This implies that 𝐸∗ = 𝑃 ∗ = 𝑅∗ = 0. Hence, finding the DFE
educes to solving the following linear system.
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛬𝑖 − 𝜇𝑖𝑆𝑖 −
𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝑆𝑖 +

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝑆𝑗 )𝑆𝑗 +

𝑛
∑

𝑗=1
𝜐𝑗𝜉𝑖𝑗𝑄𝑗 = 0

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝑆𝑖 𝑆𝑖 − (𝜇𝑖 + 𝜐𝑖)𝑄𝑖 = 0, 𝑖 = 1, 2,… , 𝑛.

(4.9)

The System (4.9) takes the matrix form

𝑈 = 𝛱 , (4.10)

with 𝑈 = (𝑆1, 𝑆2,… , 𝑆𝑛, 𝑄1, 𝑄2,… , 𝑄𝑛)𝑇 ≡ (𝑆 , 𝑄)𝑇 , 𝛱 = (𝛬1, 𝛬2,… ,
𝛬𝑛, 0,… , 0)𝑇 and  (see Eq. (4.11) in Box I). Since the sum of each
column of  is 𝜇𝑖 (𝜇𝑖 > 0) and all the off-diagonal entries of  are non-
positive,  is a non singular M-matrix and −1 ≥ 0 [65]. Thus, Eq. (4.10)
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 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜇1 +
𝑛
∑

𝑗=2
𝑎𝑗1 −𝑎12(1 − 𝜂𝑆2 ) ⋯ −𝑎1𝑛(1 − 𝜂𝑆𝑛 ) −𝜐1𝜉11 −𝜐2𝜉12 ⋯ −𝜐𝑛𝜉1𝑛

−𝑎21(1 − 𝜂𝑆1 ) 𝜇2 +
𝑛
∑

𝑗=1,𝑗≠2
𝑎𝑗2 ⋯ −𝑎2𝑛(1 − 𝜂𝑆𝑛 ) −𝜐1𝜉21 −𝜐2𝜉22 ⋯ −𝜐𝑛𝜉2𝑛

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

−𝑎𝑛1(1 − 𝜂𝑆1 ) −𝑎𝑛2(1 − 𝜂𝑆2 ) ⋯ 𝜇𝑛 +
𝑛−1
∑

𝑗=1
𝑎𝑗 𝑛 −𝜐1𝜉𝑛1 −𝜐2𝜉𝑛2 ⋯ −𝜐𝑛𝜉𝑛𝑛

−
𝑛
∑

𝑗=2
𝑎𝑗1𝜂

𝑆
1 0 ⋯ 0 (𝜇1 + 𝜐1) 0 … 0

0 −
𝑛
∑

𝑗=1,𝑗≠2
𝑎𝑗2𝜂

𝑆
2 ⋯ 0 0 (𝜇2 + 𝜐2) … 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 ⋯ −
𝑛−1
∑

𝑗=1
𝑎𝑗 𝑛𝜂𝑆𝑛 0 0 ⋯ (𝜇𝑛 + 𝜐𝑛)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4.11)

Box I.
r

(

has a unique positive solution given by 𝑈0 = (𝑆0, 𝑄0)𝑇 = −1𝛱 . We
ave established the following result.

Proposition 4.2. System (2.13) has a unique disease-free equilibrium 0,
iven by
0 = (𝑆0, 0, 0, 0, 𝑄0, 0, 0). (4.12)

The matrix (𝑎𝑖𝑗 )1≤𝑖,𝑗≤𝑛 of the rates of migration of susceptible and
atent individuals between patches can be irreducible. Practically, this
eans that, susceptible and latent individuals can travel between any

wo sets of patches directly or indirectly (e.g nonstop or connecting
lights). Indirect travel from patch 𝑗 to patch 𝑖 means that there is a
equence (𝑗𝑘)1≤𝑘≤𝑛−2 on the set {1,… , 𝑛} such that there are a direct
ravels 𝑗 → 𝑗𝑘−2, 𝑗𝑘−2 → 𝑗𝑘−3,. . . , 𝑗𝑘1 → 𝑖. This being clarified, we have
he following result.

Proposition 4.3. Assume the matrix (𝑎𝑖𝑗 )1≤𝑖,𝑗≤𝑛 is irreducible. If one patch
is disease-free and System (2.13) is at equilibrium, then all the patches are
disease-free.

Proof. Without loss of generality, we denote by 𝑖 the disease-free patch
and 𝐴𝑖 the set of indices directly connected to the patch 𝑖. That is
𝐴𝑖 = {𝑗 ∶ 𝑎𝑖𝑗 > 0, 𝑗 = 1,… , 𝑛, 𝑗 ≠ 𝑖}. (4.13)

Since System (2.13) is at equilibrium, we have �̇�𝑖(𝑡) = 0 and
𝑛
∑

=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝐸𝑗 )𝐸𝑗 = 0. (4.14)

Thus, for all 𝑗 ∈ 𝐴𝑖, 𝐸𝑗 = 0. This implies that 𝐼𝑗 = 𝐷𝑗 = 𝑃𝑗 = 𝑅𝑗 = 0,
o that all the patches for which the subscripts belong to 𝐴𝑖 are disease-
ree. If 𝑗 ∉ 𝐴𝑖, the fact that the matrix (𝑎𝑖𝑗 )1≤𝑖,𝑗≤𝑛 is irreducible proves
hat there exist 𝑗1, 𝑗2,… , 𝑗𝑝 such that, 𝑎𝑗1𝑗 , 𝑎𝑗2𝑗1 ,… , 𝑎𝑗𝑝𝑗𝑝−1 , 𝑎𝑖𝑗𝑝 > 0.

Hence 𝑗𝑝 ∈ 𝐴𝑖 and thus 𝐸𝑗𝑝 = 𝐼𝑗𝑝 = 𝐷𝑗𝑝 = 𝑃𝑗𝑝 = 𝑅𝑗𝑝 = 0. Similarly,
𝑗𝑝−1 ∈ 𝐴𝑗𝑝 , i.e 𝐸𝑗𝑝−1 = 𝐼𝑗𝑝−1 = 𝐷𝑗𝑝−1 = 𝑃𝑗𝑝−1 = 𝑅𝑗𝑝−1 = 0. By mathematical
induction, one has 𝑗 ∈ 𝐴𝑗1 and so, 𝐸𝑗 = 𝐼𝑗 = 𝐷𝑗 = 𝑃𝑗 = 𝑅𝑗 = 0, ∀𝑗 ∉ 𝐴𝑖.

ence all the 𝑛 patches are disease-free. □

Proposition 4.3 points out that, when the matrix (𝑎𝑖𝑗 )1≤𝑖,𝑗≤𝑛 is irre-
ducible, the model does not admit a positive frontier boundary equilib-
rium. The case where the matrix (𝑎𝑖𝑗 )1≤𝑖,𝑗≤𝑛 is reducible is addressed in
the next subsection.
7 
4.3. Patch boundary equilibria

In this subsection, we investigate the existence of boundary equilib-
ium,  𝑖0, characterized by the fact that, ∀ 𝑗 = 1,… , 𝑛, 𝑗 ≠ 𝑖, the patch 𝑗

is disease-free, while patch 𝑖 has positive equilibrium:
 𝑖0 ∶= (𝑆0

1 , 0, 0, 0, 𝑄0
1, 0, 0,… , 𝑆0

𝑖−1, 0, 0, 0, 𝑄0
𝑖−1, 0, 0, 𝑆∗

𝑖 , 𝐸∗
𝑖 , 𝐼∗𝑖 ,

𝐷∗
𝑖 , 𝑄∗

𝑖 , 𝑃 ∗
𝑖 , 𝑅∗

𝑖 ,

𝑆0
𝑖+1, 0, 0, 0, 𝑄0

𝑖+1, 0, 0,… , 𝑆0
𝑛 , 0, 0, 0, 𝑄0

𝑛, 0, 0).

Let us fix 𝑘 ∈ {1,… , 𝑛}, 𝑘 ≠ 𝑖. The patch 𝑘 is disease-free. Thus, at the
equilibrium  𝑖0, by using the equation of �̇�𝑖 one has

𝑛
∑

𝑗=1,𝑗≠𝑘
𝑎𝑘𝑗 (1 − 𝜂𝐸𝑗 )𝐸𝑗 = 0,

which implies that

𝑎𝑘𝑖(1 − 𝜂𝐸𝑖 )𝐸∗
𝑖 = 0.

Since we find a positive equilibrium, we get

𝑎𝑘𝑖 = 0, ∀ 𝑘 ∈ {1,… , 𝑛}, 𝑘 ≠ 𝑖.

This means that the matrix (𝑎𝑖𝑗 )1≤𝑖,𝑗≤𝑛 is reducible.

In this case,
𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖 = 0,

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝐸𝑖 = 0,

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝑆𝑖 = 0 (4.15)

and therefore 𝑄∗
𝑖 = 𝑃 ∗

𝑖 = 0 from System (2.13).

Since ∀ 𝑗 ≠ 𝑖, the patch 𝑗 is disease-free, 𝜙𝑗 (𝑆𝑗 , 𝐸𝑗 ) = 0. Hence,
finding  𝑖0 amounts to solving the following system obtained from
2.13)
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝛬𝑖 − 𝜆∗𝑖 𝑆
∗
𝑖 − 𝜇𝑖𝑆

∗
𝑖 +

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝑆𝑗 )𝑆0

𝑗 +
𝑛
∑

𝑗=1,𝑗≠𝑖
𝜐𝑗𝜉𝑖𝑗𝑄

0
𝑗 = 0,

𝜆∗𝑖 𝑆
∗
𝑖 − 𝜇𝑖𝐸

∗
𝑖 − 𝛼𝑖𝐸

∗
𝑖 = 0,

𝛼𝑖𝐸
∗
𝑖 − 𝑘𝑖𝐼

∗
𝑖 = 0,

(𝜇𝑖 + 𝛿𝑖)𝐼∗𝑖 − 𝑏𝑖𝐷∗
𝑖 = 0,

𝛾𝑖𝐼
∗
𝑖 − 𝜇𝑖𝑅∗

𝑖 = 0.

(4.16)
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Simple computations lead to
𝐸∗
𝑖 =

𝜆∗𝑖 𝑆
∗
𝑖

𝜇𝑖 + 𝛼𝑖
, 𝐼∗𝑖 =

𝛼𝑖𝜆∗𝑖 𝑆
∗
𝑖

𝑘𝑖(𝜇𝑖 + 𝛼𝑖)
, 𝐷∗

𝑖 =
(𝜇𝑖 + 𝛿𝑖)𝛼𝑖𝜆∗𝑖 𝑆

∗
𝑖

𝑏𝑖𝑘𝑖(𝜇𝑖 + 𝛼𝑖)
,

𝑅∗
𝑖 =

𝛾𝑖𝛼𝑖𝜆∗𝑖 𝑆
∗
𝑖

𝜇𝑖𝑘𝑖(𝜇𝑖 + 𝛼𝑖)

𝑆∗
𝑖 =

𝛬𝑖 +
∑𝑛
𝑗=1,𝑗≠𝑖 𝑎𝑖𝑗 (1 − 𝜂𝑆𝑗 )𝑆0

𝑗 +
∑𝑛
𝑗=1,𝑗≠𝑖 𝜐𝑗𝜉𝑖𝑗𝑄

0
𝑗

(𝜆∗𝑖 + 𝜇𝑖)

Moreover, one can easily get that

𝑁∗
𝑖 =

𝑆∗
𝑖 (𝑗𝑖 + 𝜔𝑖𝜆

∗
𝑖 )

𝑏𝑖𝑘𝑖𝜇𝑖(𝜇𝑖 + 𝛼𝑖)
and 𝜆∗𝑖 =

𝜇𝑖𝛽𝑖
[

𝑏𝑖𝛼𝑖 + 𝜈𝑖𝛼𝑖(𝜇𝑖 + 𝛿𝑖)
]

𝜆∗𝑖 𝑆
∗
𝑖

𝑆∗
𝑖 (𝑗𝑖 + 𝜔𝑖𝜆

∗
𝑖 )

Therefore,

𝜆∗𝑖 =
𝑗𝑖
𝜔𝑖

(

0
𝑖 − 1) , where 0

𝑖 =
𝛽𝑖
[

𝑏𝑖𝛼𝑖 + 𝜈𝑖𝛼𝑖(𝜇𝑖 + 𝛿𝑖)
]

𝑏𝑖𝑘𝑖(𝜇𝑖 + 𝛼𝑖)
.

This proves that the frontier equilibrium  𝑖0 exists if and only if 0
𝑖 > 1,

as comprehensively stated in the next result.

Proposition 4.4. Assume that the matrix (𝑎𝑖𝑗 )1≤𝑖,𝑗≤𝑛 is reducible. Then
Model (2.13) admits 𝑝 boundary equilibria 𝐸𝑖0, whenever 0

𝑙𝑖
> 1, 𝑙1, 𝑙2 … ,

𝑙𝑝 ∈ {1,… , 𝑛}, 𝑖 = 1,… , 𝑝. Otherwise, the disease-free equilibrium 0 is the
unique boundary equilibrium for Model (2.13) if ∀ 𝑖 = 1,… , 𝑛, 0

𝑖 ≤ 1.

4.4. Control reproduction number and stability of the disease-free equilib-
rium

The control reproduction number for Model (2.13) is defined as
the average number of secondary infections produced by an index case
introduced in the population during its entire infectious period when
the exit screening is implemented. The terminology control reproduc-
tion number is preferred to the usual terminology of basic reproduction
number because, we are considering the average number of secondary
infections introduced rather in a ‘‘reduced’’ (by the quarantine process)
population of susceptible instead of the entire population. To compute
this number, we use the next generation matrix approach presented
in [66].

The infected classes for our model are 𝐸 , 𝐼 and 𝐷. The matrices, 𝐹 ,
f appearance of new infections and, 𝑉 , of transition are

𝐹 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 ⋮ 𝐹12 ⋮ 𝐹13
⋯ ⋯ ⋯
0 ⋮ 0 ⋮ 0
⋯ ⋯ ⋯
0 ⋮ 0 ⋮ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

and 𝑉 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑉11 ⋮ 0 ⋮ 0
⋯ ⋯ ⋯
𝑉21 ⋮ 𝑉22 ⋮ 0
⋯ ⋯ ⋯
0 ⋮ 𝑉32 ⋮ 𝑉33

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(4.17)

where 𝐹12, 𝐹13, 𝑉21, 𝑉32, 𝑉22, 𝑉11 and 𝑉33 are 𝑛× 𝑛 block matrices defined
y

𝐹12 = diag(𝛽𝑖
𝑆0
𝑖

𝑁0
𝑖
)𝑖=𝑛𝑖=1, 𝐹13 = diag(𝛽𝑖𝜈𝑖

𝑆0
𝑖

𝑁0
𝑖
)𝑖=𝑛𝑖=1, 𝑉21 = diag(−𝛼𝑖)𝑖=𝑛𝑖=1,

32 = diag(−𝜇𝑖 − 𝛿𝑖)𝑖=𝑛𝑖=1,

22 = diag(𝜇𝑖 + 𝛿𝑖 + 𝛾𝑖, )𝑖=𝑛𝑖=1, 𝑉33 = diag(𝑏𝑖)𝑖=𝑛𝑖=1,

11 = diag(
𝑛
∑

𝑗≠𝑖
𝑎𝑗 𝑖 + 𝜇𝑖 + 𝛼𝑖)𝑖=𝑛𝑖=1 −𝑀

𝐸 ,

(4.18)

with 𝑁0
𝑖 = 𝑆0

𝑖 + 𝑄0
𝑖 and 𝑀𝐸 = (𝑎𝑖𝑗 (1 − 𝜂𝐸𝑗 ))1≤𝑖,𝑗≤𝑛. The matrix 𝑉11

is an irreducible M-matrix with positive column sum. Hence 𝑉 −1
11 is

non-negative [65]. Moreover, 𝑉22 and 𝑉33 are non-negative diagonal
atrices, and so are 𝑉 −1

22 and 𝑉 −1
33 . To go further, the following result

on block matrices is instrumental [67].

Lemma 4.5. Let 𝐴 be a square nonsingular matrix and 𝑅 be the block
atrix defined by:

𝑅 =
(

𝐴 𝐵
)

𝐶 𝐷

8 
where 𝐴, 𝐵 , 𝐶 and 𝐷 have the order 𝑘× 𝑘, 𝑘×𝑚, 𝑚× 𝑘, 𝑚×𝑚, respectively.
If 𝐷 − 𝐶 𝐴−1𝐵 is nonsingular, then 𝑅 is nonsingular and

𝑅−1 =

(

𝐴−1 + 𝐴−1𝐵(𝐷 − 𝐶 𝐴−1𝐵)−1𝐶 𝐴−1 −𝐴−1𝐵(𝐷 − 𝐶 𝐴−1𝐵)−1

−(𝐷 − 𝐶 𝐴−1𝐵)−1𝐶 𝐴−1 (𝐷 − 𝐶 𝐴−1𝐵)−1

)

Lemma 4.5 can be used for the matrix 𝑉 in (4.17) and (4.18) that
has the structure

𝑉 =
(

𝐴 𝐵
𝐶 𝐷

)

, where 𝐴 =
(

𝑉11 0
𝑉21 𝑉22

)

, 𝐵 =
(

0
0

)

, 𝐶 =
(

0 𝑉32
)

and 𝐷 = 𝑉33.

Since A is nonsingular, the matrix 𝑉 is nonsingular and

𝐴−1 =

(

𝑉 −1
11 0

−𝑉 −1
22 𝑉21𝑉

−1
11 𝑉 −1

22

)

⟹ 𝑉 −1 =

⎛

⎜

⎜

⎜

⎝

𝑉 −1
11 0 0

−𝑉 −1
22 𝑉21𝑉

−1
11 𝑉 −1

22 0

𝑉 −1
33 𝑉32𝑉

−1
22 𝑉21𝑉

−1
11 −𝑉 −1

33 𝑉32𝑉
−1
22 𝑉 −1

33

⎞

⎟

⎟

⎟

⎠

.

From the expression of the next generation matrix,

𝐹 𝑉 −1 = −𝐹12𝑉 −1
22 𝑉21𝑉

−1
11 + 𝐹13𝑉 −1

33 𝑉32𝑉
−1
22 𝑉21𝑉

−1
11 ,

it is clear, in light of (4.18), that the first term is due to living infected
individuals, while the second term comes from the Ebola-deceased
individuals. It is therefore not surprising to have a similar double
ontribution to the control reproduction number, 𝑐 , obtained, thanks

to [66], as the spectral radius of 𝐹 𝑉 −1:

𝑐 = 𝜌(𝐹 𝑉 −1) = 𝜌(−𝐹12𝑉 −1
22 𝑉21𝑉

−1
11 + 𝐹13𝑉 −1

33 𝑉32𝑉
−1
22 𝑉21𝑉

−1
11 ). (4.19)

The relevance of the control reproduction number is given in the next
result [66].

Proposition 4.6. When 𝑐 < 1, the disease-free equilibrium, 0, for
Model (2.13) is locally asymptotically stable (LAS), and it is unstable when
𝑐 > 1.

The global asymptotic stability of the disease-free equilibrium is an
issue of interest that we address now. This requires some restrictions
on the control of the population. First, we assume that all susceptible
travelers are negatively screened so that 𝑆0

𝑖 = 𝑁0
𝑖 , 𝑄0

𝑖 = 0 at the DFE
and only latent travelers are quarantined. Mathematically, this means
that we introduce from (4.18)

𝐹 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 ⋮ 𝐹12 ⋮ 𝐹13
⋯ ⋯ ⋯
0 ⋮ 0 ⋮ 0
⋯ ⋯ ⋯
0 ⋮ 0 ⋮ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝑉 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑉11 ⋮ 0 ⋮ 0
⋯ ⋯ ⋯
𝑉21 ⋮ 𝑉22 ⋮ 0
⋯ ⋯ ⋯
0 ⋮ 𝑉32 ⋮ 𝑉33

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (4.20)

where 𝐹12, 𝐹13, 𝑉11 above are defined by:
𝐹12 = diag

(

𝛽1,… , 𝛽𝑛
)

, 𝐹13 = diag
(

𝛽1𝜈1,… , 𝛽𝑛𝜈𝑛
)

,

𝑉11 = diag
( 𝑛
∑

𝑗=2
𝑎𝑗1𝜂𝐸1 + 𝜇1 + 𝛼1,… ,

𝑛−1
∑

𝑗=1
𝑎𝑗 𝑛𝜂𝐸𝑛 + 𝜇𝑛 + 𝛼𝑛

)

.
(4.21)

We therefore set

 ∶= 𝜌(𝐹𝑉 −1) = 𝜌(−𝐹12𝑉 −1
22 𝑉21𝑉

−1
11 + 𝐹13𝑉 −1

33 𝑉32𝑉
−1
22 𝑉21𝑉

−1
11 ),

which is obviously given by

 = max
1≤𝑖≤𝑛

( 𝑖) with  𝑖 =
𝛽𝑖𝛼𝑖(𝑏𝑖 + 𝜈𝑖(𝜇𝑖 + 𝛿𝑖))

𝑏𝑖𝑘𝑖
(

(𝜇𝑖 + 𝛼𝑖) +
∑𝑛
𝑗=1,𝑗≠𝑖 𝑎𝑗 𝑖𝜂𝐸𝑖

) . (4.22)

Theorem 4.7. If  < 1, then the disease-free equilibrium 0 for Model
2.13) is globally asymptotically stable (GAS) in 𝛤 .
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Proof. Consider on 𝛤 the candidate Lyapunov function

 = (𝑆 , 𝐸 , 𝐼 , 𝐷 , 𝑄, 𝑃 , 𝑅) =
𝑛
∑

𝑖=1
𝐸𝑖 +

𝑛
∑

𝑖=1
𝑓𝑖𝐼𝑖 +

𝑛
∑

𝑖=1
𝑔𝑖𝐷𝑖,

where 𝑓𝑖, 𝑔𝑖, 𝑖 = 1,… , 𝑛 are positive constants to be determined shortly.
The derivative along the trajectories, ̇, of  is

̇ =
𝑛
∑

𝑖=1
�̇�𝑖 +

𝑛
∑

𝑖=1
𝑓𝑖�̇�𝑖 +

𝑛
∑

𝑖=1
𝑔𝑖�̇�𝑖,

where the notation (�̇�𝑖, �̇�𝑖, �̇�𝑖, �̇�𝑖, �̇�𝑖, �̇�𝑖, �̇�𝑖) is used to represent the
ector function in the right-hand side of Model (2.13) for the patch
umber 𝑖. Thus,

̇  ≤
𝑛
∑

𝑖=1
(𝛽𝑖(𝐼𝑖 + 𝜈𝑖𝐷𝑖) − (𝜇𝑖 + 𝛼𝑖)𝐸𝑖) −

𝑛
∑

𝑖,𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝐸𝑖 𝐸𝑖

+
𝑛
∑

𝑖=1
𝑓𝑖(𝛼𝑖𝐸𝑖 − (𝜇𝑖 + 𝛿𝑖 + 𝛾𝑖)𝐼𝑖)

+
𝑛
∑

𝑖=1
𝑔𝑖((𝜇𝑖 + 𝛿𝑖)𝐼𝑖 − 𝑏𝑖𝐷𝑖)

=
𝑛
∑

𝑖=1

(

𝑓𝑖𝛼𝑖 − (𝜇𝑖 + 𝛼𝑖) −
𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝐸𝑖

)

𝐸𝑖

+
𝑛
∑

𝑖=1
𝐼𝑖(𝛽𝑖 − 𝑓𝑖(𝜇𝑖 + 𝛿𝑖 + 𝛾𝑖) + 𝑔𝑖(𝜇𝑖 + 𝛿𝑖))

+
𝑛
∑

𝑖=1
𝐷𝑖(𝛽𝑖𝜈𝑖 − 𝑔𝑖𝑏𝑖).

We choose in the sequel the numbers 𝑓𝑖 and 𝑔𝑖 such that
{

𝛽𝑖 − 𝑓𝑖(𝜇𝑖 + 𝛿𝑖 + 𝛾𝑖) + 𝑔𝑖(𝜇𝑖 + 𝛿𝑖) = 0,
𝛽𝑖𝜈𝑖 − 𝑔𝑖𝑏𝑖 = 0 .

That is
𝑔𝑖 =

𝛽𝑖𝜈𝑖
𝑏𝑖
, 𝑓𝑖 =

𝛽𝑖(𝑏𝑖 + 𝜈𝑖(𝜇𝑖 + 𝛿𝑖))
𝑏𝑖(𝜇𝑖 + 𝛿𝑖 + 𝛾𝑖)

. (4.23)

With these values, we have

̇  ≤
𝑛
∑

𝑖=1

(

𝛽𝑖𝛼𝑖(𝑏𝑖 + 𝜈𝑖(𝜇𝑖 + 𝛿𝑖))
𝑏𝑖(𝜇𝑖 + 𝛿𝑖 + 𝛾𝑖)

− (𝜇𝑖 + 𝛼𝑖) −
𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝐸𝑖

)

𝐸𝑖

=
𝑛
∑

𝑖=1

(

(𝜇𝑖 + 𝛼𝑖) +
𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝐸𝑖

)

( 𝑖 − 1)𝐸𝑖

< 0 when  < 1

This shows that  is indeed a strict Lyapunov function for Model (2.13)
ear the DFE, 0, and the global asymptotic stability of the DFE follows

by LaSalle invariance principle. □

Theorem 4.7 guarantees the elimination of the disease if one reduces
nd maintains the value of  below one.

In the case where the exit screening is not misleading to record false-
positive and false-negative individuals i.e all the susceptible travelers
re negatively screened, while all the latent travelers are positively

screened, one will get 𝑐 =  . Indeed, in this case: (a) only the latent
individuals will be quarantined, (which, as observed earlier, leads to
he simplifications 𝑄0

𝑖 = 0, and 𝑆0
𝑖 = 𝑁0

𝑖 , ∀ 𝑖 at the DFE); (b) 𝜂𝐸𝑖 = 1, ∀ 𝑖.
ence,  is the basic reproduction number for the model in this case.
he corresponding value of  being its minimum value, relatively small
ffort is necessary to overcome the disease if the exit screening is not
isleading.

The second restrictive condition on the control for the GAS of the
DFE is considered in the next theorem the proof of which is based on
the decomposition in [68] and is given in Appendix A.

Theorem 4.8. Assume that the exit screening is 100% negative in the
sense that 𝜂𝑆𝑖 = 0, 𝜂𝐸𝑖 = 1,∀ 𝑖 = 1,… , 𝑛, then the disease-free equilibrium is
GAS whenever 𝑐 < 1.
9 
Note that with the parameters estimated in Table 5, we found 𝑐 =
0.7737 and  = 0.7767 meaning that the EVD will be overcome.

Remark 4.9. The comparison of  𝑖 with the threshold 0
𝑖 used in

Proposition 4.4 for the existence of boundary equilibria is obvious:

 𝑖 ≤ 0
𝑖 , ∀ 𝑖 = 1,… , 𝑛. (4.24)

Note that the model does not admit positive frontier equilibria when
0
𝑖 ≤ 1, ∀ 𝑖 = 1,… , 𝑛.

The quantity

0 = max
1≤𝑖≤𝑛

(0
𝑖 )

is the basic reproduction number of Model (2.13) when all the patches
are isolated (that is when there are no migrations between the patches).
Eq. (4.24) combined with Theorems 4.7 or 4.8 highlight that less effort
is required to control the disease when the patches are interconnected.

5. Numerical simulations

The complexity of Model (2.13) rules out the possibility of com-
letely solving it by analytical techniques. We have developed two
SFD schemes in Appendix C and have proved mathematically that

hey are dynamically consistent with respect to some properties of the
ontinuous model. In this section, we illustrate the theory presented

there by numerical simulations based on our NSFD schemes. For com-
arison purposes, we also use the ODE 45 (Runge Kutta of order 4). We

work in the setting of three patches in order to be close to the West
Africa 2014–2016 EVD outbreak that affected simultaneously three
countries: Guinea, Liberia, and Sierra Leone. We use the values of the
parameters given in Table 5.

Fig. 3 shows that the ODE 45-based solution curves of Model (2.13)
fail to stay in the biologically feasible region 𝛤 , while the NSFD
schemes do. More precisely, the NSFD schemes resulting total popu-
ation of human individuals is below the carrying capacity 𝛬∕𝜇 in 2500

weeks (middle and right pictures), which is not the case for the ODE-45
after 200 weeks (left picture). Note that the fact that the nonstandard
approach replicates non negative property of solutions, while classical
schemes do not is well documented, see for instance [69,70].

Thereafter, only the NSFD Euler scheme, (C.7), is used in this section
to illustrate the features of Model (2.13). The figures for the other NSFD
cheme, which besides are similar, are presented in Appendix D.

In Fig. 4, the top row of three figures illustrates the dynamic
onsistency of the NSFD scheme (C.7) with respect to the GAS of the

DFE of Model (2.13), as stated in Theorems 4.7 and C.5, assuming that
 < 1. Likewise, the bottom row of the three figures deals with the
preservation by the NSFD scheme (C.7) of the GAS of the DFE of Model
(2.13) in the case where 𝑐 < 1 <  for which we did not obtain
heoretical results.

From several initial conditions, we plot the curves of infected indi-
iduals in all patches during 400 weeks with the values 𝑐 = 0.9864 <

1 <  = 1.1972. The figures show that the EVD dies out for either NSFD
scheme. This motivates the conjecture: ‘‘the DFE is GAS for 𝑐 < 1 <
 ’’.

Proposition 4.4 on the existence of positive boundary equilibria for
System (2.13) when the matrix (𝑎𝑖𝑗 )1≤𝑖,𝑗≤𝑛 is reducible is illustrated on
he top row of three plots on Fig. 5, for the NSFD scheme (C.7). The

values used are 𝑎21 = 𝑎31 = 0 and 1
0 > 1, while both 2

0 and 3
0 are

less than one. This figure highlights that the disease is eliminated in the
patches 2 and 3, but it persists in patch 1. However, the figure does not
suggest the LAS of the boundary equilibrium 1

0 when 1
0 > 1. Finally,

the bottom row of three plots of Fig. 5 suggests the existence of an
interior equilibrium point when 𝑐 > 1, a fact that we could not prove
heoretically. Both NSFD schemes (C.3) and (C.7) initiated at several

points stabilize at a positive value as 𝑡 → ∞.
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Fig. 3. Dynamic inconsistency of ODE 45 (left picture) and dynamic consistency of NSFD schemes (C.3) & (C.7) (middle and right plots) with respect to remaining in 𝛤 . Figures
lotted with the initial conditions 𝑆1(0) = 4,000,000, 𝑆2(0) = 4,000,000 and 𝑆3(0) = 4,000,000 and the recruitment constant 𝛬𝑖 = 2000,∀𝑖 = 1, 2, 3, 𝛽1 = 0.1017. The carrying capacity of

the total population is 𝛬∕𝜇𝑚 = 30,000,000. The other parameters and initial conditions are as in Table 5 and Table 4, respectively.
Fig. 4. Graphs of the infected respective compartments 𝐼1 , 𝐼2 and 𝐼3 are shown in each row plots for different initial conditions. Top row of 3 plots: Dynamic consistency of NSFD
scheme (C.7) with respect to the GAS of Model (2.13), using the parameters in Table 5 and the threshold values 𝑐 = 0.7737 and  = 0.7767 < 1. Bottom row of 3 plots: GAS of
he DFE by the NSFD scheme (C.7) when 𝑐 < 1 <  . Here 𝛽2 = 0.24;𝑐 = 0.9864 < 1,  = 1.1972 > 1. The other values are as in Table 5.
t

Given the huge number of parameters involved in our model and
eeing that most of these parameters are not available in the liter-
ture, we carry out a global sensitivity analysis that is reported in

Appendix B. This enables us to numerically assess the influence of the
exit screening and the impact of migrations by simulating System (2.13)
ia the NSFD scheme (C.7) for Guinea, Liberia and Sierra Leone, using
he parameters in Table 5. We give, for 𝑖 = 1, 2, 3, three values of 𝜂𝑆𝑖 and
𝐸
𝑖 : (i) 𝜂𝑆𝑖 = 𝜂𝐸𝑖 = 0, (ii) 𝜂𝑆𝑖 = 𝜂𝐸𝑖 = 0.3 and (iii) 𝜂𝑆𝑖 = 𝜂𝐸𝑖 = 0.5. In Fig. 6,

the top two rows of three plots each shows that the impact of the exit
creening is weak. Apart from the curve of latent individuals in Guinea,
ll the other curves are merged. The weakness of the exit screening
ould be attributed to the reduced values of migration rates. This
eduction is due to the fact that travel by road (e.g. bus, car, bicycle,
oot, etc.), which is the most common means of transport between these

eighboring countries was not considered. To account for this means of p

10 
travel, we assume that the migration rates between these countries are
50 times greater than those estimated in Table 3. Keeping unchanged
the other parameters used earlier, we plot in the bottom two rows of
Fig. 6 the same curves as before. These rows show that the number of
infected in every patches decreases as the exit screening rate increases.
This highlights the usefulness of this measure to mitigate the number
of EVD-infected individuals.

To overcome the EVD, it is sufficient, in view of Theorem 4.7,
to reduce and maintain the explicit threshold,  , below one. It is
important to check how this can be achieved through the control of
migration and exit screening rates. We address this in the particular
case when the migration rates 𝑎𝑖𝑗 are equal and the exit screening rates
𝜂𝐸𝑖 are equal as well. Fig. 7 shows the bifurcation behavior of the
hresholds  𝑖 in the space (𝜂𝐸𝑖 , 𝑎𝑖𝑗 ): one sees from these three contour
lots that the EVD will be eliminated whenever both parameters 𝜂𝐸
𝑖
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Fig. 5. Graphs of the infected respective compartments 𝐼1 , 𝐼2 and 𝐼3 are shown in each row plots for different initial conditions. Top row of three plots: Existence of patch 1
boundary equilibrium and persistence of the disease in patch 1 for 1

0 > 1 with the NSFD scheme (C.3). We used 𝛽2 = 0.01209, 𝛽1 = 0.556, 𝛾2 = 4, 𝛾3 = 0.8. The other values are in
Table 5 and give 2

0 = 0.0099,3
0 = 0.03048,1

0 = 1.6838 > 1,𝑐 = 1.6831,  = 1.6838. Bottom row of three plots: Existence of a positive interior equilibrium and its stability for the
NSFD scheme (C.7) (first row). The values used are in Table E.8 and yield 𝑐 = 3.9537 > 1,  = 4.2333 > 1.
Table 6
Parameters of the model.
Parameters Epidemiological interpretation Units

𝜗𝑖 Recovery rate of infected who belong to the 𝐼𝑞𝑖 compartment. week−1

𝜃𝑖 Recovery rate of individuals who belong to the 𝑃𝑖 compartment. week−1

𝜚𝑖 Exit rate of the 𝐸𝑖&𝐸
𝑞
𝑖 compartment to the 𝐼𝑖&𝐼

𝑞
𝑖 compartment. week−1

𝜏𝑆𝑖 Efficiency of entry screening in patch 𝑖 for individuals in 𝑆𝑗 , 𝑆𝑞𝑗 , 𝑗 ≠ 𝑖. –
𝜏𝑄𝑖 Efficiency of entry screening in patch 𝑖 for individuals in 𝑄𝑗 , 𝑗 ≠ 𝑖. –
𝜏𝐸𝑖 Efficiency of entry screening in patch 𝑖 for individuals in 𝐸𝑗 , 𝐸𝑞

𝑗 , 𝑗 ≠ 𝑖. –
𝜛𝑖 Mortality rate due to EVD of infected individuals

in patch 𝑖 who belong to the 𝐼𝑞𝑖 compartment. week−1
c
c
w

p

and 𝑎𝑖𝑗 are higher than 0.4. The figure also shows that as the exit
creening rates significantly increase, the conditions on high migration
ates become more relaxed.

6. Towards a more general metapopulation EVD model

In principle, the content of this section should be part of the Conclu-
ion section, being devoted to our planned future research. However, to
void having a lengthy conclusion, we opted to include a section here.

From previous sections, it came out clearly that the exit screening,
though useful, needs to be combined with other interventions such
as the entry screening, especially since many countries implemented
he entry screening [71–73]. Below, we highlight the key points of

the formulation of a general meta-population model with entry-exit
screening intervention.

Obviously, Assumptions A3 in Section 2.1 must be supplemented as
follows:

A3∗ Travelers who test negative for exit screening will undergo entry
screening.
11 
For each patch 𝑖 = 1, 2,… , 𝑛, the usual compartments 𝑆𝑖, 𝐸𝑖 and 𝐼𝑖
of susceptible, exposed and infectious individuals are associated with
the compartments 𝑆𝑞𝑖 , 𝐸𝑞𝑖 and 𝐼𝑞𝑖 , respectively, defined in Table 6.
The superscript ‘‘𝑞’’ on the variables is in accordance with [28,35]
to emphasize that among the susceptible individuals who were quar-
antined, some denoted by 𝑆𝑞𝑖 , came out cleared from the quarantine
ompartment but cancelled their travel. Typically in [28,35], the sus-
eptible individuals in the 𝑆𝑞𝑖 class return to the initial 𝑆𝑖 class from
here they progress first to 𝐸𝑞𝑖 if they become exposed to the disease.

However, due to the fear created by the Ebola disease, which leads to
articular stigmatization of suspected cases [74], individuals in 𝑆𝑖 do

not practically mix up with those in 𝑆𝑞𝑖 . Hence, the latter individuals
follow in our model a parallel progression, leading to a two-group
model, contrary to the simplification we considered in Section 2. The
force of infection becomes

𝜆𝑖 ≡ 𝜆𝑖(𝑡) ∶=
𝛽𝑖(𝐼𝑖 + 𝐼

𝑞
𝑖 + 𝜈𝑖𝐷𝑖)
𝑁𝑖

. (6.1)

A description similar to that in Section 2.3 leads to the general entry-
exit screening model, where the new parameters are defined in Table 6.
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Fig. 6. Top two rows of three plots each: Weak impact of exit screening in the scenarios (i) 𝜂𝑆𝑖 = 𝜂𝐸𝑖 = 0 (dotted curves), (ii) 𝜂𝑆𝑖 = 𝜂𝐸𝑖 = 0.3 (dashed curves), (iii) 𝜂𝑆𝑖 = 𝜂𝐸𝑖 = 0.5
(solid curves), and with migration rates limited to travel by air (see Table 3). We use 𝛼3 = 0.440. The other parameters are in Table 5. Bottom two rows of three plots each: Strong
impact of exit screening when the migration rates are significantly increased to take into account all types of travels, while keeping unchanged the other parameters.
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Fig. 7. Contour plot of  𝑖 versus the migrations and the exit screening rates 𝜂𝐸𝑖 , showing the space zone where the EVD can be eradicated. The first figure is plotted with 𝑏1 = 0.2,
the second with 𝑏2 = 0.1 and the third with 𝑏3 = 0.2. The other parameters are on Table 5.
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𝑑 𝑆𝑖(𝑡)
𝑑 𝑡 = 𝛬𝑖 − 𝜆𝑖𝑆𝑖 − 𝜇𝑖𝑆𝑖 −

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝑆𝑖 +

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝑆𝑗 )(1 − 𝜏𝑆𝑖 )𝑆𝑗 ,

𝑑 𝑆𝑞𝑖 (𝑡)
𝑑 𝑡 =

𝑛
∑

𝑗=1,𝑗≠𝑖
(1 − 𝜙)𝜐𝑗𝜉𝑖𝑗 (1 − 𝜏𝑄𝑖 )𝑄𝑗 + (1 − 𝜙)𝜐𝑖𝜉𝑖𝑖𝑄𝑖 − 𝜆𝑖𝑆𝑞𝑖

−𝜇𝑖𝑆
𝑞
𝑖 −

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝑆𝑞𝑖 +

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝑆𝑗 )(1 − 𝜏𝑆𝑖 )𝑆𝑞𝑗 ,

𝑑 𝐸𝑖(𝑡)
𝑑 𝑡 = 𝜆𝑖𝑆𝑖 − 𝜇𝑖𝐸𝑖 − 𝛼𝑖𝐸𝑖 −

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝐸𝑖

+
𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝐸𝑗 )(1 − 𝜏𝐸𝑖 )𝐸𝑗 ,

𝑑 𝐸𝑞𝑖 (𝑡)
𝑑 𝑡 = 𝜆𝑖𝑆

𝑞
𝑖 − 𝜇𝑖𝐸

𝑞
𝑖 − 𝜚𝑖𝐸

𝑞
𝑖 −

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝐸𝑞𝑖

+
𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝐸𝑗 )(1 − 𝜏𝐸𝑖 )𝐸𝑞𝑗 ,

𝑑 𝐼𝑖(𝑡)
𝑑 𝑡 = 𝛼𝑖𝐸𝑖 − (𝜇𝑖 + 𝛿𝑖 + 𝛾𝑖)𝐼𝑖,

𝑑 𝐼𝑞𝑖 (𝑡)
𝑑 𝑡 = 𝜚𝑖𝐸

𝑞
𝑖 − (𝜇𝑖 + 𝜗𝑖 +𝜛𝑖)𝐼

𝑞
𝑖 ,

𝑑 𝐷𝑖(𝑡)
𝑑 𝑡 = (𝜇𝑖 + 𝛿𝑖)𝐼𝑖 + (𝜇𝑖 +𝜛𝑖)𝐼

𝑞
𝑖 − 𝑏𝑖𝐷𝑖,

𝑑 𝑄𝑖(𝑡)
𝑑 𝑡 =

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝐸𝑖 𝐸𝑖 +

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝑆𝑖 𝑆𝑖 +

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝑆𝑖 𝑆𝑞𝑖

+
𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝐸𝑖 𝐸𝑞𝑖

+
𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝐸𝑗 )𝜏𝐸𝑖 𝐸𝑗 +

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝑆𝑗 )𝜏𝑆𝑖 𝑆𝑗

+
𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝑆𝑗 )𝜏𝑆𝑖 𝑆𝑞𝑗

+
𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝐸𝑗 )𝜏𝐸𝑖 𝐸𝑞𝑗 +

𝑛
∑

𝑗=1,𝑗≠𝑖
(1 − 𝜙)𝜐𝑗𝜉𝑖𝑗𝜏𝑄𝑖 𝑄𝑗

−(𝜇𝑖 + 𝜐𝑖)𝑄𝑖,
𝑑 𝑃𝑖(𝑡)
𝑑 𝑡 = 𝜙𝜐𝑖𝑄𝑖 − (𝜇𝑖 + 𝜓𝑖 + 𝜃𝑖)𝑃𝑖,

𝑑 𝑅𝑖(𝑡)
𝑑 𝑡 = 𝛾𝑖𝐼𝑖 + 𝜃𝑖𝑃𝑖 + 𝜗𝑖𝐼

𝑞
𝑖 − 𝜇𝑖𝑅𝑖,

(6.2)
13 
Fig. 8. Curve fitting for Model (6.2) from real data of the 2014–2016 EVD outbreak
in Guinea, Liberia, and Sierra Leone [55] from 7 November 2014 to 7 August 2015.
The values used for the fitting are in Tables E.8 and 5, respectively.

with 𝜙 ∶= 𝜙(𝑆 , 𝑆𝑄, 𝐸 , 𝐸𝑄), (𝑆 , 𝑆𝑄, 𝐸 , 𝐸𝑄) ∈ R𝑛 × R𝑛 × R𝑛 × R𝑛 defined
as:

𝜙(𝑆 , 𝑆𝑄, 𝐸 , 𝐸𝑄) =
∑𝑛
𝑖=1(𝐸𝑖 + 𝐸

𝑄
𝑖 )

∑𝑛
𝑖=1(𝑆𝑖 + 𝑆

𝑄
𝑖 + 𝐸𝑖 + 𝐸

𝑄
𝑖 )
. (6.3)

Fig. 8 illustrates the good curve fitting of Model (6.2) to real EVD
data, from 07 November 2014 to 07 August 2015 [55], with the
initial conditions and parameters values gathered in Appendix E in
Tables E.7 and E.8. Considering this good fitting and some preliminary
quantitative and qualitative results that we obtained, we are working
towards a full mathematical, computational and statistical analysis of
the general model (6.2), with the aim to influence policy makers in the
fight against EVD.

7. Conclusion

Ebola Virus Disease (EVD) outbreaks in Sub-Saharan Africa often
come with unprecedented challenges [24,70]. Of particular interest
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to this work is the huge migrations and travels that caused the wide
pread of the disease during the 2014–2016 West Africa outbreak.
e constructed a metapopulation model to assess the impact, on the

transmission dynamics and control of the EVD, of the exit screening at
borders that was recommended by WHO for the 2014–2016 West Africa
EVD outbreak. Our strategy went beyond this by involving many more
interventions such as the quarantine.

Our main findings are summarized as follows:

1. The model was well-fitted and parameterized, using the total re-
ported cases from Guinea, Liberia and Sierra Leone, the countries
that were most affected by the 2014–2016 EVD.

2. The control reproduction number, 𝑐 , was computed by the
next generation matrix approach, and two additional explicit
threshold parameters,  and 0, were obtained such that 𝑐 ≤
 ≤ 0.

3. The unique disease-free equilibrium (DFE) of the model is locally
asymptotically stable (LAS) whenever 𝑐 < 1 and unstable if
𝑐 > 1. Moreover, the DFE is globally asymptotically stable
(GAS) if  < 1. It is also GAS for 𝑐 < 1 provided that the exit
screening is 100% negative.

4. There exists at least one boundary equilibrium if 0 > 1.
5. The analysis showed the usefulness and benefit of the exit

screening measure while suggesting its combination with other
measures such as the entry screening for disease control im-
provement.

6. The recommendations that arise from this work include:

(a) To train ‘legions of disease-fighters’ as well as to have the
science on the one hand and speak truth to power, and
to be connected with the people on the other hand, as
promoted by J.J. Muyembe, the first virologist ever to see
an Ebola patient and who discovered the Ebola virus in
1976 (see [75]).

(b) To manage travels and migrations between patches by
combining exit screening with other interventions such as
entry screening.

Our plan for future research is:

(a) To pursue the analysis of the general metapopulation model with
parallel progression subgroups introduced in Section 6.

(b) To develop an optimal control metapopulation model and associ-
ated NSFD schemes for a better control of EVD.
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Appendix A. Proof of Theorem 4.8

The proof is based on a decomposition theorem in [68]. Since
𝜂𝐸𝑖 = 𝜂𝑆𝑖 = 0,∀ 𝑖 = 1,… , 𝑛, the compartments 𝑄𝑖 and 𝑃𝑖 simply
isappear in Model (2.13). Denote the uninfected compartment and

infected compartment by 𝑋 = (𝑆 , 𝑅) and 𝑍 = (𝐸 , 𝐼 , 𝐷), respectively.
Using the same notation as in [68], System (2.13) can be rewritten as

⎧

⎪

⎨

⎪

⎩

𝑑 𝑋
𝑑 𝑡 = 𝐻(𝑋 , 𝑍),

𝑑 𝑍
𝑑 𝑡 = 𝐺(𝑋 , 𝑍), 𝐺(𝑋 , 0) = 0.

(A.1)

To prove the global asymptotic stability of the DFE for 𝑐 < 1, all we
have to do is to show that

• 0 ∶= 𝑆0 is GAS for the sub-system

𝑑 𝑋
𝑑 𝑡 = 𝐻(𝑋 , 0) ∶= [𝛬1 − 𝜇1𝑆1 −

𝑛
∑

𝑗=1,𝑗≠1
𝑎𝑗1𝑆1 +

𝑛
∑

𝑗=1,𝑗≠1
𝑎1𝑗𝑆𝑗 ,⋯ , 𝛬𝑛 − 𝜇𝑛𝑆𝑛

−
𝑛
∑

𝑗=1,𝑗≠𝑛
𝑎𝑗 𝑛𝑆𝑛

+
𝑛
∑

𝑗=1,𝑗≠𝑛
𝑎𝑛𝑗𝑆𝑗 , 0⋯ 0]𝑇

(A.2)

𝐺(𝑋 , 𝑍) = 𝐿𝑍 − 𝐺(𝑋 , 𝑍) where 𝐺(𝑋 , 𝑍) ≥ 0 in 𝛤 and 𝐿 = 𝐷𝑍𝐺
𝑆0, 0, 0, 0, 0), the Jacobian matrix of 𝐺 evaluated at the disease-free
quilibrium, is a Metzler matrix.

Using the analog of the vector notation 𝑆 and 𝛬 in (2.3), the GAS of
0 for the system (A.2) is equivalent to the GAS of 𝑆0 for the system
𝑑 𝑆
𝑑 𝑡 = 𝛬 − 𝐶 𝑆 , (A.3)

where 𝐶 is the following nonsingular 𝑀-matrix with all the eigenvalues
f − having negative real parts:

𝐶 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜇1 +
𝑛
∑

𝑗=1,𝑗≠1
𝑎𝑗1 −𝑎12 ⋯ −𝑎1𝑛

−𝑎21 𝜇2 +
𝑛
∑

𝑗=1,𝑗≠2
𝑎𝑗2 ⋯ −𝑎2𝑛

⋮ ⋮ ⋮ ⋮

−𝑎𝑛1 −𝑎𝑛2 ⋯ 𝜇𝑛 +
𝑛
∑

𝑗=1,𝑗≠𝑛
𝑎𝑗 𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.4)

It follows then from [65] that the solution 𝑆(𝑡) = −𝑒−𝑡𝐶𝐶−1𝛬 + 𝐶−1𝛬
f (A.3) converges to 𝐶−1𝛬. This proves the claim in the above first

bullet. Regarding the claim in the second bullet, one can, in the above
decomposition of 𝐺, like in [68], write the matrix 𝐿 in terms of the
matrices 𝐹 and 𝑉 in (4.17) and specify 𝐿 (see the equation in Box II).

It is clear that 𝐿 is indeed a Metzler matrix, and its eigenvalues have
real parts less than zero whenever 𝑐 < 1. We then take

𝐺(𝑋 , 𝑌 ) ∶=
(

𝛽1(𝐼1 + 𝜈1𝐷1)
(

1 − 𝑆1
)

,⋯ , 𝛽𝑛(𝐼𝑛 + 𝜈𝑛𝐷𝑛)
(

1 − 𝑆𝑛
)

,

𝑁1 𝑁𝑛
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𝐿 = 𝐹 − 𝑉

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−(𝜇1 + 𝛼1) −
𝑛
∑

𝑗=1,𝑗≠1
𝑎𝑗1 ⋯ 𝑎1𝑛 𝛽1 ⋯ 0 𝛽1𝜈1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑎𝑛1 ⋯ −(𝜇𝑛 + 𝛼𝑛) −
𝑛
∑

𝑗=1,𝑗≠𝑛
𝑎𝑗 𝑛 0 ⋯ 𝛽𝑛 0 ⋯ 𝛽𝑛𝜈𝑛

𝛼1 ⋯ 0 −𝑘1 ⋯ 0 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 … 𝛼𝑛 0 … −𝑘𝑛 0 … 0
0 … 0 (𝜇1 + 𝛿1) … 0 −𝑏1 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 … 0 0 … (𝜇𝑛 + 𝛿𝑛) 0 … −𝑏𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Box II.
Fig. B.9. PRCCs of 𝐼1 + 𝐼2 + 𝐼3.
0,⋯ , 0,… , 0
)𝑇

≥ 0.

Hence, the global asymptotic stability of the DFE follows when 𝑐 <
1. □

Appendix B. Global sensitivity analysis

We carry out a global sensitivity analysis of (𝐼1 + 𝐼2 + 𝐼3), using
the Latin Hypercube Sampling (LHS) scheme on the understanding
that values outside the interval (−0.05, 0.05) are considered to have
a significant impact. The results used in Section 5 and presented on
Fig. B.9 show that the parameters 𝛼1 & 𝛼2 of the transitions from
𝐸1 & 𝐸2 compartments to 𝐼1&𝐼2 compartments are the more influential
ones with regard to the increase of the infective individuals. The same
thing applies to the parameters 𝜇1, 𝜇2, 𝛿1, 𝛾2 and 𝛾1 with regard to the
decrease in the total number of infected individuals. Moreover, the
parameters (𝜂𝑆2 , 𝜂𝑆3 , 𝜂𝐸1 , 𝜂𝐸3 ) and (𝜂𝑆1 , 𝜂𝐸2 ) influence the increase and the
decrease of infected individuals, respectively.
15 
Appendix C. Nonstandard finite difference schemes

We construct in this section two nonstandard finite difference
(NSFD) schemes that are dynamically consistent with respect to Model
(2.13). We follow Mickens’ rules presented in [25,76] and formalized
in [69]. Let

𝑘 = (𝑆𝑘, 𝐸𝑘, 𝐼𝑘, 𝐷𝑘, 𝑄𝑘, 𝑃 𝑘, 𝑅𝑘)𝑇

denote an approximation of the solution (𝑡𝑘) at 𝑡 = 𝑡𝑘, where 𝑡𝑘 =
𝑘𝛥𝑡, 𝑘 ∈ N and ℎ = 𝛥𝑡 > 0 is the step size.

We start with the NSFD backward–forward Euler scheme based
on the destructive-productive structure of Model (2.13) [77] and the
Gauss–Seidel cycle as done in [78]. Considering a nontrivial denomi-
nator function, 𝑟, defined by

𝑟 ≡ 𝑟(ℎ) = 1 − 𝑒−𝑞 ℎ
𝑞

= ℎ + (ℎ2), (C.1)

where

(1 − 𝑟
𝑛
∑

𝑎𝑗 𝑖) ≥ 0, (1 − 𝑟𝜐𝑖) ≥ 0, ∀ 𝑖.

𝑗=1,𝑗≠𝑖



A.J.O. Tassé et al.

c

s

c

Mathematical Biosciences 378 (2024) 109321 
and, with 𝜐𝑀 = max1≤𝑖≤𝑛(𝜐𝑖),

𝑞 ≥ min( 1
𝜐𝑀

,
𝑛
∑

𝑖,𝑗=1,𝑖≠𝑗
𝑎𝑗 𝑖), (C.2)

the NSFD backward–forward scheme, reads as follows for 𝑖 = 1, 2,… , 𝑛:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑆𝑘+1𝑖 − 𝑆𝑘𝑖
𝑟

= 𝛬𝑖 − 𝜆𝑘𝑖 𝑆
𝑘+1
𝑖 − 𝜇𝑖𝑆𝑘+1𝑖 −

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝑆𝑘𝑖

+
𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝑆𝑗 )𝑆𝑘𝑗

+
𝑛
∑

𝑗=1
(1 − 𝜙𝑗 (𝑆𝑘𝑗 , 𝐸𝑘𝑗 ))𝜐𝑗𝜉𝑖𝑗𝑄𝑘𝑗 ,

𝐸𝑘+1𝑖 − 𝐸𝑘𝑖
𝑟

= 𝜆𝑘𝑖 𝑆
𝑘+1
𝑖 − 𝜇𝑖𝐸𝑘+1𝑖 − 𝛼𝑖𝐸𝑘+1𝑖 −

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝐸𝑘𝑖

+
𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝐸𝑗 )𝐸𝑘𝑗 ,

𝐼𝑘+1𝑖 − 𝐼𝑘𝑖
𝑟

= 𝛼𝑖𝐸𝑘+1𝑖 − (𝜇𝑖 + 𝛿𝑖 + 𝛾𝑖)𝐼𝑘+1𝑖 ,

𝐷𝑘+1
𝑖 −𝐷𝑘

𝑖
𝑟

= (𝜇𝑖 + 𝛿𝑖)𝐼𝑘+1𝑖 − 𝑏𝑖𝐷𝑘+1
𝑖 ,

𝑄𝑘+1𝑖 −𝑄𝑘𝑖
𝑟

=
𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝐸𝑖 𝐸𝑘𝑖 +

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝑆𝑖 𝑆𝑘𝑖 − 𝜇𝑖𝑄𝑘+1𝑖 − 𝜐𝑖𝑄𝑘𝑖 ,

𝑃 𝑘+1𝑖 − 𝑃 𝑘𝑖
𝑟

= 𝜙𝑖(𝑆𝑘𝑖 , 𝐸𝑘𝑖 )𝜐𝑖𝑄𝑘𝑖 − (𝜇𝑖 + 𝜓𝑖 + 𝜃𝑖)𝑃 𝑘+1𝑖 ,

𝑅𝑘+1𝑖 − 𝑅𝑘𝑖
𝑟

= 𝛾𝑖𝐼𝑘+1𝑖 + 𝜃𝑖𝑃 𝑘+1𝑖 − 𝜇𝑖𝑅𝑘+1𝑖 .

(C.3)

We derive the following result:

Theorem C.1. The NSFD scheme (C.3) is dynamically consistent with the
ontinuous Model (2.13) in the sense that it is a discrete dynamical system
on the biologically feasible region 𝛤 of the continuous System (2.13) and it
enjoys the discrete conservation law (C.4) below.

Proof. By construction, the non negativity of solutions is preserved.
The forward invariance of 𝛤 follows from the discrete conservation
laws,

𝐇𝑘+1 −𝐇𝑘

𝑟
=

𝑛
∑

𝑖=1
[𝛬𝑖 − 𝜇𝑖(𝑆𝑘+1𝑖 + 𝐸𝑘+1𝑖 + 𝐼𝑘+1𝑖 +𝑄𝑘+1𝑖 + 𝑃 𝑘+1𝑖 + 𝑅𝑘+1𝑖 )

−𝑏𝑖𝐷𝑘+1
𝑖 − 𝜓𝑖𝑃 𝑘+1𝑖 ].

𝐃𝑘+1 − 𝐃𝑘
𝑟

=
𝑛
∑

𝑖=1
[(𝜇𝑖 + 𝛿𝑖)𝐼𝑘+1𝑖 − 𝑏𝑖𝐷𝑘+1

𝑖 ],

(C.4)

obtained by simple computation and to which the discrete Gronwall
inequality is applied. □

Unlike the NSFD scheme (C.3) where both Mickens’ rules on the
nontrivial denominator function of discrete derivatives (i.e. Rule 2) and
the nonlocal discretization of nonlinear terms (i.e. Rule 3) [76] were
used, the second NSFD scheme, the NSFD forward Euler scheme, we
proposed is only based on Rule 2 in which the denominator function is
𝑟 in (C.3). The parameter 𝑞 is such that

𝑞 ≥ min( 1
𝑎𝑀

, 1
𝛼𝑀

, 1
𝛾𝑀

, 1
𝑏𝑀

, 1
𝜐𝑀

, 1
𝜃𝑀

, 1
𝜇𝑀

). (C.5)

and
|𝜗|2
𝑞 >
2|ℜ𝑒𝜗|

, (C.6)

16 
where 𝜗 is any eigenvalue of the Jacobian matrix of the continuous
Model (2.13) at the DFE. The NSFD forward Euler schemes reads as
follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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𝑆𝑘+1𝑖 − 𝑆𝑘𝑖
𝑟

= 𝛬𝑖 − 𝜆𝑘𝑖 𝑆
𝑘
𝑖 − 𝜇𝑖𝑆𝑘𝑖 −

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝑆𝑘𝑖 +

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝑆𝑗 )𝑆𝑘𝑗

+
𝑛
∑

𝑗=1
(1 − 𝜙𝑗 (𝑆𝑘𝑗 , 𝐸𝑘𝑗 ))𝜐𝑗𝜉𝑖𝑗𝑄𝑘𝑗 ,

𝐸𝑘+1𝑖 − 𝐸𝑘𝑖
𝑟

= 𝜆𝑘𝑖 𝑆
𝑘
𝑖 − 𝜇𝑖𝐸𝑘𝑖 − 𝛼𝑖𝐸𝑘𝑖 −

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝐸𝑘𝑖

+
𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑖𝑗 (1 − 𝜂𝐸𝑗 )𝐸𝑘𝑗 ,

𝐼𝑘+1𝑖 − 𝐼𝑘𝑖
𝑟

= 𝛼𝑖𝐸𝑘𝑖 − (𝜇𝑖 + 𝛿𝑖 + 𝛾𝑖)𝐼𝑘𝑖 ,
𝐷𝑘+1
𝑖 −𝐷𝑘

𝑖
𝑟

= (𝜇𝑖 + 𝛿𝑖)𝐼𝑘𝑖 − 𝑏𝑖𝐷𝑘
𝑖 ,

𝑄𝑘+1𝑖 −𝑄𝑘𝑖
𝑟

=
𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝐸𝑖 𝐸𝑘𝑖 +

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑎𝑗 𝑖𝜂𝑆𝑖 𝑆𝑘𝑖 − 𝜇𝑖𝑄𝑘𝑖 − 𝜐𝑖𝑄

𝑘
𝑖 ,

𝑃 𝑘+1𝑖 − 𝑃 𝑘𝑖
𝑟

= 𝜙𝑖(𝑆𝑘𝑖 , 𝐸𝑘𝑖 )𝜐𝑖𝑄𝑘𝑖 − (𝜇𝑖 + 𝜓𝑖 + 𝜃𝑖)𝑃 𝑘𝑖 ,
𝑅𝑘+1𝑖 − 𝑅𝑘𝑖

𝑟
= 𝛾𝑖𝐼𝑘𝑖 + 𝜃𝑖𝑃 𝑘𝑖 − 𝜇𝑖𝑅𝑘𝑖 .

(C.7)

A similar result to Theorem C.1 is stated below.

Theorem C.2. The NSFD forward Euler scheme (C.7) is a discrete
dynamical system on the biologically feasible region, 𝛤 , of the continuous
Model (2.13).

When 𝑐 < 1, the NSFD forward Euler scheme is elementary
stable [69,76], a fact that can be deduced from the next theorem.

Theorem C.3. Under the conditions (C.5) and (C.6), the disease-free fixed
(DFF) point of the NSFD scheme (C.7) is exactly the disease-free equilibrium
of the continuous model and it preserves its stability. That is the DFF is LAS
if 𝑐 < 1, and unstable if 𝑐 > 1.

The decomposition theorem in [68] that is abundantly used to
prove the GAS of the DFE was recently extended to discrete dynamical
ystems in [24, Theorem 5.3]. Combining this discrete analog theorem

with the earlier proof of the stability of the DFE for 𝑐 < 1 and using
(C.6), we readily obtain the following global stability result:

Theorem C.4. Assume that the exit screening is 100% negative in the
sense that 𝜂𝑆𝑖 = 𝜂𝐸𝑖 = 0,∀ 𝑖 = 1,… , 𝑛. Then, Model (C.7) is dynamically
onsistent with the GAS of the DFE of the continuous model when 𝑐 < 1.

A more general result on the dynamic consistency of the NSFD
scheme (C.7) with respect to the global asymptotic stability of the DFE
is provided in the next theorem.

Theorem C.5. When  < 1, the DFF for the discrete System (C.7) is GAS.

Proof. This theorem follows from LaSalle invariance principle, using
the following discrete Lyapunov function:

𝑘 = 1
𝑟
(
𝑛
∑

𝑖=1
𝐸𝑘𝑖 +

𝑛
∑

𝑖=1
𝑓𝑖𝐼

𝑘
𝑖 +

𝑛
∑

𝑖=1
𝑔𝑖𝐷

𝑘
𝑖 ),

where 𝑓𝑖 and 𝑔𝑖 are defined in (4.23). □
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Fig. D.10. Graphs of the infected respective compartments 𝐼1 , 𝐼2 and 𝐼3 are shown in each row plots for different initial conditions. Top row of 3 plots: Dynamic consistency of
NSFD scheme (C.3) with respect to the GAS of Model (2.13), using the parameters in Table 5 and the threshold values 𝑐 = 0.7737 and  = 0.7767 < 1. Bottom row of 3 plots: GAS
of the DFE by the NSFD scheme (C.3) when 𝑐 < 1 <  . Here 𝛽2 = 0.24;𝑐 = 0.9864 < 1,  = 1.1972 > 1. The other values are as in Table 5.

Fig. D.11. Graphs of the infected respective compartments 𝐼1 , 𝐼2 and 𝐼3 are shown in each row plots for different initial conditions. Top row of three plots: Existence of patch 1
boundary equilibrium and persistence of the disease in patch 1 for 1

0 > 1 with the NSFD scheme (C.3). We used 𝛽2 = 0.01209, 𝛽1 = 0.556, 𝛾2 = 4, 𝛾3 = 0.8. The other values are in
Table 5 and give 2

0 = 0.0099,3
0 = 0.03048,1

0 = 1.6838 > 1,𝑐 = 1.6831,  = 1.6838. Bottom row of three plots: Existence of a positive interior equilibrium and its stability for the
NSFD scheme (C.3). The values used are in Table E.8 and yield 𝑐 = 3.9537 > 1,  = 4.2333 > 1.
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Table E.7
Initial values of the variables for Model (6.2).
Countries E(0) I(0) D(0) Q(0) P(0) R(0) 𝑆𝑞 (0) 𝐸𝑞 (0) 𝐼𝑞 (0) Total

Guinea 280 236 286 186 286 286 100 50 50 1760
Liberia 1119 860 1060 760 1060 1060 300 200 200 6619
Sierra Leone 1062 620 720 520 720 720 200 200 100 4862
Table E.8
Parameters values to calibrate System (6.2) and parameters used to plot the Fig. 5.

Par. Est. Val. Source Val. Fig. 5 Par. Est. Val. Source Val. Fig. 5
𝜂𝐸1 0.9671 Fitted 0.5433 𝜏𝑆1 0.327 Fitted
𝜇1 0.0002 [58] 0.00004 𝜐1 0.4844 Fitted 0.51868
𝛽1 0.2018 Fitted 0.0015 𝛽2 0.1077 Fitted 0.0006312
𝛽3 0.2492 Fitted 0.3128 𝜐2 0.2131 Fitted 0.53906
𝜈1 1.3672 Fitted 0.508 𝜈2 1.3071 Fitted 3.0656
𝜈3 0.4718 Fitted 0.867 𝜏𝐸3 0.9930 Fitted 0.022
𝛿1 0.857 [59] 0.857 𝛿2 0.75 [60] 0.075
𝛿3 0.5 [50] 0.5 𝜐3 0.4518 Fitted 0.5764
𝜓1 0.3 [41] 0.3 𝜓2 0.4 [39] 0.04
𝜓3 0.5 [50] 0.5 𝜉21 0.1109 Fitted 0.0764
𝜉31 0.1735 Fitted 0.4679 𝜉12 0.0072 Fitted 0.5018
𝜉11 0.7325 Fitted 0.4557 𝜉22 0.1356 Fitted 0.5109
𝜉33 0.2922 Fitted 0.7053 𝜏𝑆2 0.0791 Fitted
𝜉32 0.7506 Fitted 0.4873 𝜉13 0.0851 Fitted 0.2328
𝜉23 0.136 Fitted 0.0612 𝑎21 0.000064 Estimated 0.000284
𝑎31 0.0001 Estimated 0.0121 𝑎12 0.00054 Estimated 0.05548
𝑎32 0.0001 Estimated 0.0150 𝑎13 0.00063 Estimated 0.000122
𝑎23 0.000036 Estimated 0.0131 𝑏3 0.5 [50] 0.5
𝑏1 1∕2.01 [50] 1∕2.01 𝑏2 1∕4.5 [60] 1∕4.5
𝛾1 0.0059 [51] 0.059 𝛾2 0.026767 [51] 0.6026767
𝜃1 0.001120 [51] 0.75 𝜃2 0.031486 [51] 0.075
𝜃3 0.015743 [51] 0.75 𝛾3 0.010038 [51] 0.010038
𝜏𝑆3 0.3107 Fitted 𝜇2 0.0002 [58] 14/1000
𝜇3 0.0002 [58] 10.17/1000 𝜋𝑖 , ∀ 𝑖 0.03703 [61] 0.03703
𝛼1 7.6999 Fitted 10.5239 𝛼2 3.8393 Fitted 0.083333
𝛼3 0.7607 Fitted 0.1 𝜂𝑆1 0.2019 Fitted 0.21
𝜂𝑆2 0.1978 Fitted 0.21 𝜂𝑆3 0.1514 Fitted 0.2317
𝜂𝐸2 0.5539 Fitted 0.2226 𝜂𝐸3 0.4008 Fitted 0.4229
𝜏𝑄1 0.2067 Fitted 𝜏𝑄2 0.4515 Fitted
𝜏𝑄3 0.2013 Fitted 𝜚1 0.4355 Fitted
𝜚2 2.1073 Fitted 𝜚3 0.2717 Fitted
𝜗1 0.3906 Fitted 𝜗2 0.0725 Fitted
𝜗3 0.9384 Fitted 𝜛1 0.3668 Fitted
𝜛2 0.4316 Fitted 𝜛3 0.3509 Fitted
𝜏𝐸1 0.1536 Fitted 𝜏𝐸2 0.709 Fitted
Appendix D. Model simulations using the scheme (C.7)

In Fig. D.10, the top row of three figures illustrates the dynamic
onsistency of the NSFD scheme (C.3) with respect to the GAS of the

DFE of Model (2.13), as stated in Theorems 4.7 and C.5, assuming that
< 1. Likewise, the bottom row of the three figures deals with the

preservation by the NSFD scheme (C.3) of the GAS of the DFE of Model
(2.13) in the case where 𝑐 < 1 <  for which we did not obtain
theoretical results.

Proposition 4.4 on the existence of positive boundary equilibria for
System (2.13) when the matrix (𝑎𝑖𝑗 )1≤𝑖,𝑗≤𝑛 is reducible is illustrated on
he top row of three plots on Fig. D.11, for the NSFD scheme (C.3),

respectively. The values used are 𝑎21 = 𝑎31 = 0 and 1
0 > 1, while both

2
0 and 3

0 are less than one. This figure highlights that the disease is
eliminated in the patches 2 and 3, but it persists in patch 1. However,
the figure does not suggest the LAS of the boundary equilibrium 1

0
when 1

0 > 1. Finally, the bottom row of three plots of Fig. D.11 suggest
the existence of an interior equilibrium point when 𝑐 > 1.

Appendix E. Initial conditions and estimated values for model
6.2)

See Tables E.7 and E.8.
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Data will be made available on request.
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