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Abstract: Monitoring crop growth conditions during the growing season provides information on
available soil nutrients and crop health status, which are important for agricultural management
practices. Crop growth frequently varies due to site-specific climate and farm management practices.
These variations might arise from sub-field-scale heterogeneities in soil composition, moisture levels,
sunlight, and diseases. Therefore, soil properties and crop biophysical data are useful to predict
field-scale crop development. This study investigates soil data and spectral indices derived from
multispectral Unmanned Aerial Vehicle (UAV) imagery to predict crop height at two winter wheat
farms. The datasets were investigated using Gaussian Process Regression (GPR), Ensemble Regression
(ER), Decision tree (DT), and Support Vector Machine (SVM) machine learning regression algorithms.
The findings showed that GPR (R2 = 0.69 to 0.74, RMSE = 15.95 to 17.91 cm) has superior accuracy
in all models when using vegetation indices (VIs) to predict crop growth for both wheat farms.
Furthermore, the variable importance generated using the GRP model showed that the RedEdge
Normalized Difference Vegetation Index (RENDVI) had the most influence in predicting wheat crop
height compared to the other predictor variables. The clay, calcium (Ca), magnesium (Mg), and
potassium (K) soil properties have a moderate positive correlation with crop height. The findings from
this study showed that the integration of vegetation indices and soil properties predicts crop height
accurately. However, using the vegetation indices independently was more accurate at predicting
crop height. The outcomes from this study are beneficial for improving agronomic management
within the season based on crop height trends. Hence, farmers can focus on using cost-effective VIs
for monitoring particular areas experiencing crop stress.

Keywords: winter wheat; crop growth; vegetation indices; soil properties; machine learning

1. Introduction

Wheat is one of the most widely grown cereal crops, covering about 220.62 million
hectares (ha) worldwide in 2022/23 [1–3]. During this period, the yield increased steadily,
providing about 789.02 million metric tons globally [4]. Wheat provides between 20% and
36% of calories for the world’s population [5,6]. The Food and Agriculture Organization
(FAO) emphasises that the rapidly growing population and escalating demands for cereal
production would require a 70% increase in cereal supply by 2050 [1,7,8]. Monitoring wheat
growth is essential for meeting future food demands and ensuring food security, which
promotes sustainable agricultural management and enhances yields. However, variations
in soil properties, agro-ecosystems, topography, and crop growth conditions within fields
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impact crop growth [1,7]. Furthermore, wheat growth is affected by variations in the
intra-field soil properties; biological, physical, and chemical factors; and management
practices [7]. Accurate in situ measurements and establishing the distribution of soil
properties within planted areas are crucial for understanding their impact on intra-field
crop growth and promoting sustainable agricultural management [9–11].

Soil physical and chemical properties regulate soil productivity, which influences crop
development [12]. Concurrently, infertile acidic soils are detrimental to crop development.
Infertile soils are characterised by high aluminium (Al) toxicity, low pH (acidic), low
microbial activity, low soil organic carbon, and a lack of essential chemical properties
that hinder wheat growth at the early development stages [5,13]. These soil conditions
and characteristics result in problems such as reduced root branching, deformed root tips,
lodging, and the discolouration of leaf tissue with shades of yellow and purple [13,14].
Furthermore, wheat cultivated within infertile acidic soil experiences a reduced protein
content and growth rate and lower yields, which result in reduced profits. Soil elements
such as phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), sodium (Na),
nitrogen (N), and pH are vital for crop growth and often exist in low concentrations
in arid and semi-arid environments [15–18]. Deficiencies of N, P, and K in soil affect
wheat growth and yield drastically [19]. The influence of intra-field soil physiochemical
properties’ variation and meteorological conditions are key factors on crop development
across various crop stages. Other detrimental effects on wheat growth include abiotic
stresses such as droughts, frost, waterlogging, salinity, high temperatures, and other natural
calamities [20,21]. The biotic factors, which include the infestation of diseases, competing
weeds, and pests, are common challenges for crop development [22–25].

There are various vegetation indices derived from the red and near-infrared (NIR)
bands, which aid in the understanding of vegetation absorption and reflectance properties.
These vegetation indices are commonly used in monitoring crop development, growth, and
associated stresses during various phenological stages of the crop for timely interventions in
farm management [26–28]. In addition to vegetation indices derived from satellite products,
UAV-derived indices can also aid in detecting the intra-field spatial variability of wheat
crop growth with a higher spatial resolution and accuracy compared to most satellite prod-
ucts. The existing conventional methods (i.e., scouting and automated observation systems
using computer vision) to monitor crop growth variation do not accommodate vegetation
indices to model and predict intra-field crop growth. Furthermore, traditional methods are
time-consuming, labour-intensive, and unrealistic for time-series modelling required by
large-scale farms. They usually result in many forms of inaccuracies associated with human
survey errors [29]. Recent developments of UAVs in remote sensing provide an efficient,
non-destructive, and rapid alternative approach that can provide cost-effective time-series
data of vegetation indices for modelling crop growth variability [29,30]. However, the
reflectance can be greatly affected by the surface temperature, atmospheric distortions,
water content, saturation, landscape heterogeneity, and vegetation type, which can affect
the modelling accuracies of actual crop growth [27,31]. Moreover, coarse spatial resolution
satellite imagery limits the regression model estimation accuracy due to spectral mixing of
different classes [32]. Combining high-resolution UAV-derived vegetation indices with in
situ soil properties’ data can enhance crop growth modelling. For example, a Belgian case
study confirmed that soil properties account for 15 to 26% of the wheat growth variance us-
ing machine learning methods with UAV imagery [7]. A case study of Southwest Montana
in the USA has successfully predicted accurate soil properties and wheat growth variation
using machine learning algorithms and vegetation indices derived from UAV imagery [13].
The integration of UAV-based imagery and elevation data improved modelling accuracies
based on machine learning methods for wheat height growth and above-ground biomass
in Fengling Reservoir fields in China [33]. Nevertheless, there is still a lack of methods,
which integrate the multiple factors influencing plant growth as well as quantifying their
importance in modelling.
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The common modelling approaches include parametric and non-parametric regression
for crop biophysical parameter estimation. These include partial least squares regression
(PLSR), random forest (RF), support vector machine (SVM), extreme gradient boosting
(Xgboost), conditional inference forest (CI-forest), artificial neural network (ANN), least
squares linear regression (LSLR), multiple linear regression (LR), neural network (NN),
decision tree (DT), regression tree (RegT), K-nearest neighbour (KNN), boost tree (BST),
and bagging tree (BagT) ensemble learning algorithms [7,18,30,34–36]. PLSR provides
a high level of interpretability and can overcome problems of collinearity in modelling,
enhancing the accuracy of the model [9,17]. However, other studies suggest that PLSR
is not always adequate for modelling the relationship between soil properties and crop
height because this relationship is not always linear [37–39]. This limitation has contributed
to the rising need for exploring the use of nonlinear machine learning algorithm (MLA)
methods and other models. RF has the capabilities to classify and handle complex data
with continuous values, but it is not robust and sensitive to outliers, which can cause
overfitting or poor generalisation, and it does not address collinearity when applied with
large or small input data [40–42]. SVM has similar merits and demerits to RF, except that
it uses kernel-based functions for mapping input features at higher dimensional space
and exploits support vectors for fixing regression fitting [43]. In general, several MLAs
such as NNs, RF, SVM, KNN, RegT, and Xgboost often experience black box problems,
among others [44–46]. Meanwhile, GPR has the capability of overcoming the black box
challenges by employing kernel functions, which offer uncertainty estimates for model
predictions across a spectrum of data inputs, ranging from simple to highly complex [45,46].
Kernel-based regression algorithms such as GPR are superior to several MLAs in retrieving
modelling accuracy [47,48]. Few studies have reported the feasibility of kernel-based
methods in modelling wheat biophysical variables such as crop height using time-series
vegetation indices’ data for an entire season [49]. A multispectral sentinel-2 dataset has
shown a potential estimation of crop biophysical variables such as the plant height, leaf area
index (LAI), leaf chlorophyll content (LCC), fraction of absorbed photosynthetically active
radiation (FAPAR), fraction of vegetation cover (FVC), and canopy chlorophyll content
(CCC) using random forest tree bagger (RFTB), BagT, LSLR, PLSR, and GPR [46,49–51].
However, studies focusing on soil properties and UAV datasets that have a high spatial,
spectral, and temporal resolution are lacking. UAVs have a high potential for estimating
field-scale wheat growth.

This study addresses a gap in the existing literature by focusing on the integration
of high-resolution UAV-derived vegetation indices with in situ soil properties’ measure-
ments [7,13]. This could contribute to a more comprehensive understanding of the factors
influencing wheat growth and enhance the modelling accuracy. Furthermore, this study
aims to investigate machine learning regressions such as GPR, ER, DT, and SVM for pre-
dicting wheat crop height using a combination of UAV-derived vegetation indices and
soil properties. By considering multiple factors simultaneously, the research aims to fill a
gap related to the absence of holistic approaches in previous studies that often focused on
individual aspects of wheat growth. Additionally, while previous studies have explored
UAV imagery and soil properties, this study specifically aims to address the gap in research
focusing on field-scale wheat growth variability [7,14,35]. This may involve considering
the spatial, spectral, and temporal resolution of data to provide more detailed insights
into wheat height variability patterns. The main objectives of this study were to (1) inves-
tigate and understand the contribution of soil properties and vegetation indices in mod-
elling crop height of heterogeneous winter wheat planted in a dryland environment, and
(2) assess the prediction accuracy changes when using the vegetation-index-only scenario
and combined vegetation indices with soil properties scenario for wheat crop height. Al-
though experiments were conducted in South Africa, the techniques developed in this
study can be tested in other semi-arid regions as well. An example is Australia, which is
a major producer of wheat and is also facing a decline in wheat production [52]. India is
also a significant wheat-producing country with diverse agro-climatic zones and unique
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challenges related to smallholder farming, decreasing soil nutrients, and issues in water
resource management [53].

2. Materials and Methods

Figure 1 provides an overview of the methodology used in this study to investigate the
contribution of vegetation indices and soil physical and chemical properties to wheat crop
height. The physical and chemical properties of the soil samples were used for generating
kriging spatial interpolation maps. UAV data bands were used to calculate the vegetation
indices’ map. The vegetation indices’ data were first used separately and secondly stacked
with kriging soil properties for model prediction. The datasets were divided into 80% for
the training set and 20% for the testing set for GRP, ER, DT, and SVM models. Thereafter,
model evaluation accuracy was generated for all the evaluated models.

Land 2024, 13, x FOR PEER REVIEW 4 of 26 
 

major producer of wheat and is also facing a decline in wheat production [52]. India is 
also a significant wheat-producing country with diverse agro-climatic zones and unique 
challenges related to smallholder farming, decreasing soil nutrients, and issues in water 
resource management [53]. 

2. Materials and Methods 
Figure 1 provides an overview of the methodology used in this study to investigate the 

contribution of vegetation indices and soil physical and chemical properties to wheat crop 
height. The physical and chemical properties of the soil samples were used for generating 
kriging spatial interpolation maps. UAV data bands were used to calculate the vegetation 
indices’ map. The vegetation indices’ data were first used separately and secondly stacked 
with kriging soil properties for model prediction. The datasets were divided into 80% for 
the training set and 20% for the testing set for GRP, ER, DT, and SVM models. Thereafter, 
model evaluation accuracy was generated for all the evaluated models. 

 
Figure 1. Methodology flowchart for intra-field crop growth modelling used in this study. 

2.1. Study Area 
The Clarens experiment wheat farms cover about 30 ha (Farm A) and 17 ha (Farm B). 

The two farms were prepared using Cireun 100 kg/ha fertilizer with a ratio of 
N:55:P:15:K:8 for cultivar PAN: 3161. This wheat cultivar is suitable for sowing in the dry-
land production areas of the Free State province. The two farms are located at the 
Dihlabeng Local Municipality (DLM) within the Thabo Mofutsanyane district in the 
northern part of the Free State province in South Africa (Figure 2). The municipality re-
ceives an annual average rainfall of 688 mm, a minimum of 7.8 °C in the summer season, 
and a maximum of 20.7 °C (average temperatures) during the winter and summer season 
[54]. Most rainfalls occur in summer with hot days and cold dry winter seasons [55,56]. 
The predominant soil type is sandy loam with Avalon and Pinedene characteristics that 

Figure 1. Methodology flowchart for intra-field crop growth modelling used in this study.

2.1. Study Area

The Clarens experiment wheat farms cover about 30 ha (Farm A) and 17 ha (Farm B).
The two farms were prepared using Cireun 100 kg/ha fertilizer with a ratio of N:55:P:15:K:8
for cultivar PAN: 3161. This wheat cultivar is suitable for sowing in the dryland production
areas of the Free State province. The two farms are located at the Dihlabeng Local Munici-
pality (DLM) within the Thabo Mofutsanyane district in the northern part of the Free State
province in South Africa (Figure 2). The municipality receives an annual average rainfall of
688 mm, a minimum of 7.8 ◦C in the summer season, and a maximum of 20.7 ◦C (average
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temperatures) during the winter and summer season [54]. Most rainfalls occur in summer
with hot days and cold dry winter seasons [55,56]. The predominant soil type is sandy loam
with Avalon and Pinedene characteristics that indicate moderately permeable soils [57].
The Thabo Mofutsanyane district is characterised by dryland production areas and is one
of the main rainfed winter wheat producers in the Free State province [58,59]. However,
long dry spells, droughts, and frost occurrence are prominent climatic drivers that affect
crop yields and agricultural production in this region [60–63]. The reliance of winter wheat
on rainfall in the Free State province makes it susceptible to the risk of altered rainfall
distribution patterns and declining rainfall amounts, which affect the rate of growth and
anticipated yields [61–63]. The selected case study locations cultivate wheat consistently.
Nevertheless, the farmers have been experiencing declining yields in recent years, which
could be linked to several factors such as soil properties’ variability and changing climate
conditions that cause crop stress. A previous study based on this region only focused on
the characterisation of wheat nematodes from cultivars [58]. There is currently a lack of
studies that focus on the biophysical properties of both soil and crops.
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Figure 2. Map showing the location of the Clarence wheat farms in the Thabo Mofutsanyane district
in the Free State province of South Africa.

Figure 3 displays the monthly rainfall and temperatures received by Clarens wheat
farms throughout 2021. The rainfall and temperatures were downloaded from NASA
POWER (https://power.larc.nasa.gov/, accessed on 12 January 2024). NASA POWER has
a spatial resolution of 0.5◦ latitude by 0.5◦ longitude to provide daily temperatures at 2 m
and precipitation (mm/day) among other climate variables [64]. Despite the low rainfall
amount and relatively moderate temperatures received during wheat-growing months,
an upward trend in average temperatures and rainfall was recorded between August and
November 2021.

https://power.larc.nasa.gov/


Land 2024, 13, 299 6 of 25Land 2024, 13, x FOR PEER REVIEW 6 of 26 
 

 
Figure 3. Average monthly meteorological rainfall and temperature data from January to December 
2021. 

2.2. Field Data Collection 
2.2.1. Analytical Analysis of Soil Samples 

The soil samples collected amounted to 97 (Farm A) and 76 (Farm B) collected within 
a 0–20 cm depth in the topsoil layer, during the dry month of August 2021. A handheld 
Global Positioning System (GPS) was used to capture the spatial position of each sampled 
point. All the soil-sample-processing procedures were administered by the Agricultural 
Research Council Institute for Soil, Climate and Water Analytical Laboratory. These pro-
cedures include air-drying the soil samples at 25 °C and crushing and sieving them into a 
less than 2 mm size to remove gravel stones and plant residues. All soil samples were 
mostly characterised by sandy loam and clay soil textures. Multiple analytical processing 
methods were used to classify soil physical properties, chemical nutrients, and texture (as 
described in Table 1 below). 

Table 1. Summary of analytical soil physical and chemical properties. 

Soil Physical Properties and 
Chemical Nutrients 

Analytical Processing Methods References 

P Bray-1 method [65,66] 
K, Ca, Na, Mg Ammonium acetate method [67,68] 

pH H2O [69] 

Sand, Silt, Clay  
Crushed and sieved (particle size < 2 mm), 
remove gravel stones and plant residues [68] 

2.2.2. UAV Data Collection and Crop Height Measurements 
Between August and November 2021, UAV flight missions and in situ measurements 

were conducted during early tillering and heading stages of winter wheat growth on both 
farms. Table 2 displays the results. Ground crop height measurements were performed 
using a metal tape measure in centimetres (cm). All flight missions were planned at a 120 
m height above the surface and the UAV imagery overlap was set at 75% for both frontal 
and lateral overlaps. Thus, a spatial resolution with a pixel size of 8 cm UAV imagery was 
obtained under clear sky conditions and moderate wind speeds. Figure 4a depicts the 
multi-rotor UAV DJI-Matrice 600 Pro system with a MicaSense RedEdge-MX 

0.0

5.0

10.0

15.0

20.0

25.0

0.0

5.0

10.0

15.0

20.0

25.0

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Ra
in

fa
ll

(m
m

)

Te
m

pe
ra

tu
re

 (°
C

)

Clarence wheat farm, Free State province 

Monthly Rainfall Average monthly temperatures

Figure 3. Average monthly meteorological rainfall and temperature data from January to December 2021.

2.2. Field Data Collection
2.2.1. Analytical Analysis of Soil Samples

The soil samples collected amounted to 97 (Farm A) and 76 (Farm B) collected within a
0–20 cm depth in the topsoil layer, during the dry month of August 2021. A handheld Global
Positioning System (GPS) was used to capture the spatial position of each sampled point.
All the soil-sample-processing procedures were administered by the Agricultural Research
Council Institute for Soil, Climate and Water Analytical Laboratory. These procedures
include air-drying the soil samples at 25 ◦C and crushing and sieving them into a less
than 2 mm size to remove gravel stones and plant residues. All soil samples were mostly
characterised by sandy loam and clay soil textures. Multiple analytical processing methods
were used to classify soil physical properties, chemical nutrients, and texture (as described
in Table 1 below).

Table 1. Summary of analytical soil physical and chemical properties.

Soil Physical Properties and
Chemical Nutrients Analytical Processing Methods References

P Bray-1 method [65,66]
K, Ca, Na, Mg Ammonium acetate method [67,68]

pH H2O [69]

Sand, Silt, Clay
Crushed and sieved

(particle size < 2 mm), remove
gravel stones and plant residues

[68]

2.2.2. UAV Data Collection and Crop Height Measurements

Between August and November 2021, UAV flight missions and in situ measurements
were conducted during early tillering and heading stages of winter wheat growth on both
farms. Table 2 displays the results. Ground crop height measurements were performed
using a metal tape measure in centimetres (cm). All flight missions were planned at a
120 m height above the surface and the UAV imagery overlap was set at 75% for both frontal
and lateral overlaps. Thus, a spatial resolution with a pixel size of 8 cm UAV imagery was
obtained under clear sky conditions and moderate wind speeds. Figure 4a depicts the multi-
rotor UAV DJI-Matrice 600 Pro system with a MicaSense RedEdge-MX multispectral sensor.
Figure 4b shows the calibration reflectance panel (CPR) used to calibrate the acquired UAV
tiles during data processing.
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Table 2. UAV-Survey Scheduled and ground-based measurements at different winter wheat growth
stages across Farm A and Farm B.

Activities Crop Phenological Stage Crop Height UAV-Survey Dates

Planting Seeding No 2 July 2021
First flight Tillering Yes 17 August 2021

Second flight Jointing Yes 14 September 2021
Third flight Booting Yes 18 October 2021

Fourth flight Flowering Yes 15 November 2021
Fifth flight Heading/ripening Yes 29 November 2021
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(a) and a MicaSense Calibration Reflectance Panel serial number: RP04-1918107-OB (b).

The information in Table 3 presents spectral information about MicaSense RedEdge-
MX camera wavelength (475–840 nm), bandwidth (20–40 nm), and constant laboratory-
calibrated reflectance panel (CRP) values ranging from 0.532 to 0.536, respectively. The
integration of sensor measurements’ irradiance of a Downwelling Light Sensor (DLS) and
CRP is vital during the calibration process to construct accurate surface reflectance in all
spectral bands.

Table 3. Properties of the MicaSense RedEdge-MX series sensor.

Band Name Centre Wavelength (nm) Bandwidth (nm) Calibrated
Reflectance Panel

Blue 475 20 0.536
Green 560 20 0.536
Red 668 10 0.534

RedEdge 717 10 0.529
NIR 840 40 0.533

2.3. UAV Data Processing

Generally, the process of UAV image processing involves (1) aerial triangulation,
(2) Digital Surface Model (DSM) generation, (3) the rectification of individual images,
and (4) an orthomosaic [70]. Radiometric, geometric-corrected, vignette-corrected, and
mosaicking of UAV imagery collections from different surveys on winter wheat fields were
carried out using Pix4Dmapper software 4.8.0 version (Pix4D SA, Lausanne, Switzerland)
to produce accurate orthorectified surface reflectance images. Before each flight, pictures
from the radiometrically calibrated target, the position of the sun, and incoming radiance
were simultaneously measured. The data captured are used to generate surface reflectance
imagery. The UAV onboard Global Positioning System (GPS) sensor data are used in the
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bundle block adjustment process by applying the Structure from Motion (SfM) algorithm
to compute the relative locations of the sensors during the flight and to simultaneously
calculate the sensor parameters of each image [71]. A DSM was generated using the
dense point cloud by applying multi-view stereo matching [72] and grid interpolation.
Orthomosaicked individual images are combined into five multispectral bands. This
process was also followed by similar studies such as [73,74].

2.4. Wheat Crop Growth Band Spectral Response

The earth’s surface features have different spectral reflectance (spectral signatures) in
the electromagnetic spectrum [75]. Figures 5 and 6 in Farm A and Farm B (A–E) present
five different spectral bands of reflectance generated after UAV processing from tillering to
ripening wheat growth stages. Generally, the reflectance from the five spectral bands varied
from August 2021 to November 2021. The Blue (A), Green (B), and Red (C) spectral bands
were less sensitive to surface reflectance of wheat growth canopies because of chlorophyll
absorption in visible light of the electromagnetic spectrum. However, the RedEdge (D) and
NIR (E) spectral bands showed a substantial wheat surface reflectance variation at different
stages. Overall, both RedEdge and NIR are very important spectral bands in detecting
intra-season crop growth changes.
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2.5. Derived Vegetation Spectral Indices

The list of vegetation indices in Table 4 was computed using different spectral bands
from the UAV imagery. This study used the following vegetation indices: Normalized
Difference Vegetation Index (NDVI), RedEdge Normalized Difference Vegetation Index
(RENDVI), Normalized Difference Index (NDI), and Ratio Vegetation Index 2 (RVI 2). The
selection of the above indices was based on the previous literature of similar studies that
showed their capacity to characterise crop growth heterogeneity, reduce saturation, and
improve model predictions [7,76].

Table 4. Vegetation spectral indices were used in this study.

Vegetation Indices Formula (s) Justification Reference

NDVI NIR−Red
NIR+Red

Common index used for leaf coverage
and crop health [77]

RENDVI NIR−RedEdge
NIR+RedEdge

Sensitive to chlorophyll content in crop
leaves against soil background effects [7]

NDI RedEdge−Red
RedEdge+Red

Sensitive to crop stress [7]

RVI2 Red
RedEdge

High potential to indicate the stress level
of crops [76]

2.6. Intra-Field Crop Growth Modelling Using Different Machine Learning Regressions

In this study, the four models including GPR, ER, DT, and SVM were selected for
intra-field crop growth modelling and mapping. These regression models are explained in
the following sub-sections.

2.6.1. Gaussian Process Regression (GPR)

The GPR is a non-parametric kernel-based MLA, which can learn the relationship
between the dependent and independent variables by fitting Bayesian statistics [78,79].



Land 2024, 13, 299 10 of 25

GPR generally uses simple parameter optimisation in comparison to other machine learning
regression methods [80,81]. However, it can be automatically completed by maximising
the marginal likelihood in the training dataset [5]. The GPR used in this study was applied
in MATLAB software R2019b version.

2.6.2. Ensemble Regression (ER)

ER consists of least squares boosting trees (LSboost) and bagging trees (BGTs). En-
semble approaches construct a baseline group of learning (classifiers) procedures that are
combined by voting on their estimations [81,82]. Bagging creates baseline learners by pro-
ducing simulated bootstrap data and boosting the weights of the training set samples [83].
However, there are several differences in bagging and boosting learning algorithms [84].
Bagging selects the training samples randomly and autonomously while boosting has
succession relation to the previous learning. Furthermore, bagging has equal weights and
boosting has different weights for all base learners. Bagging generates parallel base learners
and boosting chronologically. Both the bagging and boosting regression approaches often
perform better than a single classifier. This occurs because of the generation of classifiers
with higher accuracy through combining diverse classifiers with lower accuracy, which is
often applied to learn complex and nonlinear data in solving practical problems [44]. This
study applied ensemble learning algorithms using MATLAB software [83,85].

2.6.3. Decision Trees (DTs)

DT belongs to non-parametric algorithms, which are used for both regression and
classification tasks [86,87]. DT is a supervised machine learning method and its principle
relies on using probability trees to facilitate the decision-making process and estimate
the value of a target feature. Additionally, DT is a built model to learn all the decision
rules inferred from the input data variables and later can be used to make decisions and
estimations. Optimisable DT uses optimal parameters and hyperparameters to create a
system that can define search space for distinct hyperparameters. This study used MATLAB
software to train the DT model.

2.6.4. Support Vector Machines (SVMs)

The SVM is a nonlinear and non-parametric method that relies on kernel functions
(mathematical functions) [88–90]. The kernel functions transform the input data into
the required format using SVM algorithms [91]. The principle of kernel functions is
to help translate input data into higher-dimensional space for receiving it linearly and
separately by a hyperplane in solving quadratic optimisation problems [92]. The SVM
algorithms use different types of kernel functions, which consist of the radial basis function
(RBF) and sigmoid, Gaussian polynomial, linear, and sinusoidal functions [93,94]. The
nonlinear kernels such as RBF usually perform better than linear kernels, while the linear
kernels have efficient computation [95]. To improve performance in RBF kernels, both the
sigma parameter and complexity C (regularisation) parameter need to be enhanced in the
prediction process [96]. Furthermore, SVM has several hyperparameters that influence its
performance, such as the choice of kernel, regularisation parameter, and kernel-specific
parameters. These hyperparameters need to be carefully tuned using techniques like cross-
validation to obtain the best model performance [90,97]. SVM is a common regression
method for modelling different crop biophysical parameters. This study applied SVM
using MATLAB software.

2.6.5. Kriging

Kriging is the geostatistical algorithm that predicts the value of unsampled points us-
ing the procedure of weighing neighbouring point values [98,99]. The ordinary kriging (OK)
procedure was applied to interpolate the value of unsampled points and generate maps of
soil physical and chemical properties with Equation (1). The soil sampled input data were
used to compute spatial variation structure and evaluated using a semi-variogram [100,101].
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All OK spatial interpolation semi-variogram maps were produced based on the least RMSE
on cross-validation during the selection of spherical (2), Gaussian (3), stable (4), exponential
(5), and circular (6) models.
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where Z(Si) is the measured value at the ith location; λi is an unknown weight for the
measured value at the ith location; Ẑ(S0) is the prediction location; n is the number of
measured values separated by the distance h. The values of co, c, and a are derived on
estimated standard error (SE) parameters fitted to semi-variograms.

2.7. Experiments

The study investigated the contribution of soil properties and vegetation indices to
improve the modelling accuracy of intra-field crop growth variability for two winter wheat
farms. The first experiment used vegetation-index-only datasets as predictor variables for
wheat crop height (Table 5). Furthermore, the second experiment used a combination of
vegetation indices and soil properties as predictor variables. The K-10-fold cross-validation
was applied to divide datasets into 80% (400 points) for the training set and 20% (100 points)
for the testing set for Farm A, while datasets for Farm B were split into 80% (304 points) for
the training set and 20% (76 points) for the testing set. MATLAB software was used to run
the four machine learning regressions consisting of GPR, ER, DT, and SVM.

Table 5. Experimental dataset for training and testing GPR, ER, DT, and SVM models.

Experiment Number of Predictor Variables Data Configuration

1 4 Vegetation indices
2 12 Vegetation indices and soil properties
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2.8. Validation and Accuracy of the Models

To monitor wheat growth using different datasets, including soil properties and
vegetation indices, data were used individually and synergistically with applying machine
learning. The predictive model accuracy performances of GPR, ER, DT, and SVM were
evaluated using the RMSE, mean absolute error (MAE), and R2 presented in the equations
below, Equations (7) to (9). Both RMSE and MAE are non-negative metrics with lower
values indicating better model performance. R2 ranges from 0 to 1, where 0 indicates the
model and explains none of the variance in the dependent variable, and 1 signifies a perfect
fit, explaining all the variance.

RMSE =

√√√√ 1
n

n

∑
i=1

(Pi − Oi)
2 (7)

MAE =
1
(n)

n

∑
i=1

|(Pi − Oi)| (8)

R2 =

n

∑
i=1

(
Pi − Oi

)2

n

∑
i=0

(
Pi − Oi

)2
(9)

where n in the equations represents the number of sample points; Pi and Oi represent the
estimated and observed crop height. The i and σ represent the standard deviations [102].
The crop heights measured in the field using a tape measure were compared to the values
predicted by the UAV imagery to assess the validity of the models.

This study used a k-fold strategy, where k is the number of folds with a value of 10,
which repeats the data split 10 times during the process for both the training and validation
of models to avoid overfitting. All samples are split into 80% and 20% for both training and
testing, respectively. At least for each time, random split sub-datasets were used iteratively
for training and the remaining sub-subset was used for validation. Repeating the training
procedure multiple times resulted in all observations for both training and validation with
each observation being used for validation once [103]. This study performed assumptions’
diagnosis to assess residual normality distribution in Figure A1 (Appendix A). A random
distribution of the residuals was observed, which indicates that the linear model was
suitable to fit wheat growth with vegetation indices and soil data measurements. The
histograms showed a positive skew to the right of residuals and more residuals were closer
to the straight line. In contrast, the QQ plot revealed variations in terms of distribution
around the diagonal line.

3. Results
3.1. Descriptive Statistical Analysis for Soil Physical and Chemical Properties

The descriptive statistics for collected soil physical and chemical properties’ measure-
ments are presented in Table 6 for both winter wheat farms. The pH values ranged from
3.94 to 6.94, which is classified under acidic soils for both farms. However, sand was the
predominant soil physical property ranging from 62 to 92%, followed by smaller amounts
of clay (8–22%) and silt (0–18%). These physical properties are characteristics of loamy soils
suitable for wheat growth [104]. Other soil chemical properties such as Ca, K, P, Na, and
Mg show high intra-field variation in both farms, individually.
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Table 6. Statistical description of soil parameters across Farm A and Farm B.

Soil Parameters Minimum Maximum Mean SD Median Skewness Kurtosis

Farm A
Clay % 8 22 13.2 2.8 12 0.8 0.6
Sand % 62 90 83.5 4.29 84 −1.8 5.9
Silt % 0 18 3.3 2.4 4 2.6 15.1

pH 3.98 6.94 5.1 0.6 5.0 0.6 0.16
Ca mg/kg 123 1570 418.6 21.5 385 2.3 9.6
K mg/kg 46 344 110.5 40.0 103.5 2.4 11.9
P mg/kg 15.3 132.9 67.1 20.3 69.6 −0.2 0.6

Na mg/kg 3.5 141 10.0 16.7 5.3 5.9 41.6
Mg mg/kg 31 338 78.2 41.7 72.5 2.9 15.4

Farm B
Clay % 10 22 14.7 2.5 14 0.3 −0.3
Sand % 72 90 82.1 3.5 82 −0.2 −0.4
Silt % 0 6 3.2 1.5 4 −0.07 −0.3

pH 3.94 6.26 4.9 0.6 4.8 0.4 −0.3
Ca mg/kg 80 3289 442.1 382.8 382 5.7 41.9
K mg/kg 81 251 134.3 32.2 130 0.8 1.1
P mg/kg 31.2 4459.2 59.9 14.3 58.9 0.6 0.7

Na mg/kg 3.5 233 16.9 32.4 7.4 5.1 29.7
Mg mg/kg 28 202 91.5 32 85 0.7 0.71

Note: The top nine variables of Clay%; Sand%; Silt%; pH; Ca mg/kg; K mg/kg; P mg/kg; Na mg/kg; Mg mg/kg
are derived from Farm A. The bottom nine variables of Clay%; Sand%; Silt%; pH; Ca mg/kg; K mg/kg; P mg/kg;
Na mg/kg; Mg mg/kg are derived from Farm B.

3.2. Ordinary Kriging Semi-Variogram and Residuals for Soil Physical and Chemical Properties

This study computed the ordinary kriging spatial interpolation and evaluated the
spherical, Gaussian, stable, and exponential models for experimental semi-variograms
based on cross-validation. The lowest RMSE was the criteria to select optimal models in
Table 7. The summary of semi-variogram model parameters included the Nugget, range
(m), sill, number of lags (nlag), lag size, and Nugget/Sill ratio. The Nugget/Sill ratio
(spatial dependencies) was 0–5.35 in Farm A and 0.001–6.43 in Farm B, which shows a high
spatial correlation of soil physical and chemical properties in both farms [104], and the
range (effective spatial dependence distance) was 100.31–575.68 and 0.001–0.009 m, which
means beyond this distance there is little or no autocorrelation in the soil physical and
chemical properties.

Table 7. OK best-fitted semi-variogram and residuals of model parameters for soil physical and
chemical properties.

Soil Parameters Nugget Range (m) Sill Nlag Lag Size Nugget/Sill RMSE Model

Farm A
Clay 1.93 301.09 8.22 12 33.52 0.24 1.59 Gaussian
Sand 4.85 304.29 20.85 12 33.98 0.23 2.72 Gaussian
pH 0.91 100.31 0.17 12 13.35 5.35 0.46 Gaussian
Ca 4872.53 419.81 50,983.53 12 47.55 0.09 121.45 Gaussian
K 990.94 575.68 1080.17 12 69.75 0.92 33.89 Exponential
P 0 136.33 309.69 12 16.00 0 13.83 Stable

Na 99.56 99.57 52.83 12 13.35 1.88 14.38 Spherical
Mg 579.29 308.31 1541.26 12 51.19 0.38 28.68 Stable

Farm B
Clay 5.51 0.006 7.64 12 0.005 0.72 2.82 Circular
Sand 62.46 0.005 94.97 12 0.0004 0.66 10.74 Stable
pH 0.44 0.001 0.12 12 0.0001 3.67 0.80 Stable
Ca 185.29 0.009 185,288.60 12 0.0001 0.001 440.98 Stable
K 861.18 0.005 1138.30 12 0.0005 0.76 33.61 Stable
P 214.64 0.002 33.38 12 0.0002 6.43 15.36 Stable
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Table 7. Cont.

Soil Parameters Nugget Range (m) Sill Nlag Lag Size Nugget/Sill RMSE Model

Na 744.86 0.006 811.83 12 0.0005 0.91 33.20 Stable
Mg 271.50 0.001 946.09 12 0.0001 0.28 29.22 Spherical

Note: The top nine variables of Clay; Sand; Silt; pH; Ca; K; P; Na; Mg are derived from Farm A. The bottom nine
variables Clay; Sand; Silt; pH; Ca; K; P; Na; Mg are derived from Farm B.

The soil physical and chemical properties’ spatial interpolation maps generated by
ordinary kriging are presented in Figures A2 and A3 (Appendix A). These interpolation
maps show a high intra-field variation of all measured soil physical and chemical properties
in both winter wheat farms.

3.3. Correlation Matrix

The Pearson correlation matrix shows that soil properties—particularly Ca, Mg, K,
and clay–have a moderate positive correlation with crop height compared to the vegetation
indices in both winter wheat farms appearing in Figures A4 and A5, respectively. However,
there was a high variability for all collected soil properties in Farm A and Farm B. For
instance, Farm B had a higher correlation with actual crop height with Mg (r = 0.7), K
(r = 0.61), and clay (r = 0.49) than Farm A with Mg (r = 0.34), k (r = 0.33), and clay (r = 0.18).
The difference in both soil chemical and physical properties’ correlation can be attributed
to an imbalance in the fertilisation rate and the availability of nutrients.

3.4. Model Validation

The performance of the GPR, ER, DT, and SVM models’ accuracy statistics is summarised
in Table 8 (Farm A) and Table 9 (Farm B). The GPR (R2 = 0.69 to 0.74, RMSE = 15.95 to
17.91 cm) model performed better than ER (R2 = 0.67 to 0.70 and RMSE = 17.13 to 18.68 cm)
and other models for both farms using vegetation indices as input features, respectively.
The UAV-derived vegetation indices’ input features showed a slight improvement in model
accuracies compared to the data fusion of vegetation indices and soil properties scenario.
Overall, the evaluated GPR, ER, DT, and SVM models achieved a satisfactory accuracy
result with training datasets. However, the minimal difference between the training and
testing sets shows that sufficient data were used to reduce model overfitting. The difference
between the training and testing datasets was minimal with an R2 of 0.62–0.78 for Farm A
and an R2 of 0.5–0.69 for Farm B. This validates the model and indicates the robustness of
the model in handling variations.

Table 8. GPR, ER, DT, and SVM model evaluation statistics for Farm A.

Training Set Testing Set
Wheat Farm Predictor Variables Model R2 RMSE MAE R2 RMSE MAE

Farm A

Vegetation indices GPR 0.74 15.95 11.59 0.73 16.67 11.64
Vegetation indices ER 0.70 17.13 12.58 0.69 18.14 12.97
Vegetation indices DT 0.69 17.36 12.46 0.62 19.90 13.26
Vegetation indices SVM 0.64 18.58 14.23 0.63 19.58 14.00

Vegetation indices and
soil properties GPR 0.73 16.41 11.69 0.78 14.47 11.07

Vegetation indices and
soil properties ER 0.68 17.84 12.87 0.77 17.93 10.98

Vegetation indices and
soil properties DT 0.67 18.04 13.18 0.73 15.97 12.29

Vegetation indices and
soil properties SVM 0.62 19.37 14.99 0.71 16.63 13.23
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Table 9. GPR, ER, DT, and SVM model evaluation statistics for Farm B.

Training Set Testing Set
Wheat Farm Predictor Variables Model R2 RMSE MAE R2 RMSE MAE

Farm B

Vegetation indices GPR 0.69 17.91 11.87 0.61 19.71 13.36
Vegetation indices ER 0.67 18.68 12.05 0.58 20.29 14.17
Vegetation indices DT 0.67 18.69 11.92 0.58 20.26 13.87
Vegetation indices SVM 0.67 18.55 13.68 0.58 20.43 15.74

Vegetation indices and
soil properties GPR 0.65 19.07 13.09 0.68 18.14 12.65

Vegetation indices and
soil properties ER 0.63 16.61 13.66 0.66 18.62 13.29

Vegetation indices and
soil properties DT 0.61 20.17 13.05 0.66 18.60 11.93

Vegetation indices and
soil properties SVM 0.58 20.75 15.74 0.50 22.68 17.74

The best-performing GPR model was used to produce scatterplots using training
datasets. The data points close to the diagonal line show a good agreement between
measured and predicted crop height values. The GPR model produced with vegetation
indices’ training data had a slightly better performance (R2 = 0.74, RMSE = 15.95, and
MAE = 11.59) compared to the GPR model (R2 = 0.73, RMSE = 16.41, and MAE = 11.69)
generated using a soil properties and vegetation indices data fusion for Farm A (Figure 7).
Similar results were observed in Farm B when the GPR model achieved a coefficient of
determination of 0.4 with vegetation indices’ input features (Figure 8).
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3.5. GPR Model Variable Importance

The GPR robust performance model was used to rank the importance of predictor
variables using the training data for different farms, respectively (Figure 9). The most
important input features for GPR were RENDVI and NDI in Farm A, while RENDVI, RVI2,
and NDVI ranked highly for the GPR model in Farm B. pH is the only soil chemical property
that had a lower ranking in Farm A, while other soil properties had no contribution in both
farm experiments.
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4. Discussion

According to descriptive statistics, the soil pH of both farms is acidic, ranging from 3.5
to 6.94. The range of the pH conforms with previous findings that indicate a pH of about
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5.5 in the study area [105]. This scenario is anticipated in dryland wheat production within
the study area. Low pH is detrimental to wheat growth [106,107]. Furthermore, results
revealed that soil properties, particularly Ca, Mg, K, and clay, have a moderate positive
correlation with wheat crop height. Similar findings from other studies have revealed that
an abundance of soil chemical properties such as K, Mg, and Ca have an influence on the
wheat crop height throughout the growth period [7,21,59]. Other studies also demonstrated
that the clay content, silt%, and pH values are more significant factors influencing plant
growth [8,104]. Vegetation indices showed a weak positive correlation with wheat crop
height. In contrast, other studies found a strong correlation between vegetation indices
and wheat height and yields [108,109]. Additionally, the correlation increases as the winter
wheat grows [108]. Ordinary kriging is widely known for its ability to generate spatial
interpolation maps in precision agriculture applications [110–112]. This study confirmed
that ordinary kriging is a robust method to produce soil property maps for both farms
based on the low cross-validation RSME of semi-variogram models.

Four predictive machine learning models were evaluated. Results show that the GPR
model outperformed ER, DT, and SVM models when predicting crop height at the wheat
farms. The GPR model prediction accuracy results ranged between 65% and 75% for wheat
height in the entire season. These results are better than findings from previous studies
that obtained a 13% to 84% prediction accuracy for monitoring winter wheat growth using
the PLSR model during the entire growing season [113]. Other studies have found 68%,
88%, and 90% prediction accuracy of field-scale wheat biophysical variables, wheat yield,
and wheat plant nitrogen density using the GPR model [44,45,114]. These findings are
similar to previous studies that showed the higher capabilities of GPR modelling per-
formance compared to algorithms such as LR, RF, PLSR, LSLR, BagT, KNN, DT, NNs,
ANN, and RegT when estimating different crop biophysical parameters [34,44,46,114].
Furthermore, the result showed that the GPR model has a lower prediction accuracy
with soil and UAV imagery derived from data fusion compared with the UAV vegeta-
tion indices scenario. In contrast, previous research showed that hyperspectral UAV and
soil data fusion improve GPR modelling precision while providing more accurate results
with vegetation indices for estimating wheat above-ground biomass [42,115]. The im-
proved performance of GPR can be linked to its use of kernel functions when dealing with
input [46,47,82]. Furthermore, GPR is flexible and reduces the potential of overfitting with
highly dimensional observations in crop parameter estimation [42,50,116,117]. In contrast,
other studies show that PLSR and SVM achieved the highest prediction modelling accuracy
compared to GPR for wheat crop height, above-ground biomass, and wheat yield [35,44].
Additionally, ANN and RF have outperformed the GPR model for plant height and biomass
estimation in previous studies [118,119]. However, the robustness of the MLA model de-
pends on the amount of input data and its features to calibrate nonlinear and complex
data structures [42,45,46]. Despite the advantages of the GPR model such as the kernel
function when dealing with the input training data, it cannot be generalised that GPR
always performs better than other machine learning models.

The GPR model variable importance analysis indicates that RENDVI is vital for pre-
dicting wheat crop height. A similar study revealed that vegetation indices such as the
enhanced vegetation index (EVI) performed better than soil properties in modelling crop
height [44,113]. These findings showed that the vegetation indices, especially those using
the red-edge band, are superior for forecasting crop growth. Several studies have concluded
that red-edge bands are anticipated to have a higher-ranking variable of importance in
predicting crop growth because of their higher sensitivity in crop changes [31,120]. More-
over, the wheat crop height changes throughout the season could have influenced the top
ranking of RENDVI computed with red-edge bands in the current study. Meanwhile, this
study showed that soil properties play a lesser role when estimating wheat crop height.
pH had a lower ranking in all soil properties used to estimate crop growth. All other soil
properties such as sand, clay, Na, Mg, Ca, K, and P showed no contribution to the GPR
variable importance. However, previous studies highlighted contrasting findings that pH
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and K are top-ranking soil properties [7,14]. In addition, random forest variable importance
has revealed that the Ca_Mg ratio ranked highly compared to other soil properties and
vegetation indices in soil organic carbon content [121]. It is worth noting that clay plays
a very important role in growing crops, whereas sand is not an ideal environment for
growing crops [104]. The changes within findings of variable importance are attributed
to differences in the model input predictor variables. Understanding the different growth
stages helps farmers plan and implement appropriate agricultural practices, such as timing
irrigation, fertilization, and harvesting. The techniques developed in this study can be
used in other semi-arid regions facing challenges related to optimising crop yield, resource
management, and sustainable agriculture practices [52].

This study highlights the importance of vegetation indices and soil properties to
predict crop height, which provides valuable information about basic crop management.
However, the limitation of this research includes high fieldwork costs that resulted in one
visit per month for data collection at different crop development stages. This study focused
on time-series modelling but may not fully capture the temporal dynamics of wheat growth.
The effects of short-term environmental fluctuations and seasonal variations on crop growth
may not be adequately addressed. This study acknowledges that vegetation indices’
reflectance can be affected by various factors such as surface temperature, atmospheric
distortions, ambient light, water content, and vegetation type. These factors could introduce
uncertainties in the accuracy of the models. We recommend incorporating climate data,
soil indices, and environmental variables for a holistic understanding of crop growth
while optimising model estimation accuracy. Furthermore, we recommend to investigate
the benefits of fusing data from multiple sensors, such as thermal imaging, LiDAR, and
hyperspectral sensors. This can provide a more comprehensive characterisation of crop
health and growth status.

5. Conclusions

This study evaluates UAV-derived vegetation indices and soil properties to predict
winter wheat growth at two identical farms. Vegetation indices and soil properties’ pre-
dictor variables were related to crop height. The red-edge and NIR bands were highly
sensitive to the surface reflectance of wheat growth. Clay, Ca, Mg, and K soil properties
were related to wheat crop height with a positive correlation between 0.18 and 0.7. All the
evaluated machine learning models including GPR, ER, DT, and SVM produced reasonable
accuracies for crop height prediction. Additionally, model performance findings show that
GPR (R2 = 0.69 to 0.74, RMSE = 15.95 to 17.91 cm) has a high predictive capacity for crop
height in both wheat farms. Variable importance highlighted RENDVI as the most influen-
tial predictor variable in the GPR model. The methodology developed in this study can
help farmers improve farm management practices such as timing irrigation, fertilization,
and harvesting. Extension services can also benefit from recommending site-specific crop
management decisions to increase expected yields while improving food security. The
research prospects may include seasonal datasets to understand variations and identify
appropriate windows for early production assessment. Additionally, they can examine
wheat physiological stresses and yield data to predict crop productivity.
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