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A B S T R A C T

In this paper, an approach to the semantic segmentation of 3D LiDAR point clouds obtained from natural scenes
is introduced. Using a state-of-the-art projection-based semantic segmentation model as the core segmentation
network, several recent advances in projection-based 3D semantic segmentation methods are aggregated into a
single model. These adaptions include: scan unfolding, soft-kNN post-processing, and multi-projection fusion.
A novel Naïve Bayesian approach to multi-projection fusion which weights class probabilities based on the
outputs of the base classifiers is proposed to further increase robustness.

Quantitative and qualitative evaluations on several datasets, including scenes from both urban and natural
environments; show that aggregating these adaptions into a single model can further improve the accuracy of
state-of-the-art projection-based approaches. Finally, it is demonstrated that the novel Naïve Bayesian approach
to multi-projection fusion addresses a number of the challenges inherent to natural data while also improving
results on urban data.
1. Introduction

Semantic analysis is a novel and fast-growing field of computer
vision which automates the extraction of image and scene descriptions
according to human perception. This is essential to broaden the uses
of computer vision to human-like tasks, providing more meaningful
descriptions than the traditional low-level properties and features of
the scene. Semantic segmentation is a crucial component of semantic
analysis as it predicts class labels for each individual sensory data point,
providing a rich analysis of scene semantics.

Researchers have made significant progress in solving the problem
of semantic segmentation in both two-dimensional (2D) images and
three-dimensional (3D) scenes. However, most of the work on semantic
segmentation of 3D scenes has been performed on artificial and urban
scenes [1], containing large amounts of man-made structures. Off-road
scenes with large amounts of natural scenery and vegetation have seen
far less usage in comparison. Urban scenery tends to contain distinct ob-
jects with structured features, clearly defined boundaries, and relatively
even distributions of different classes. While most datasets contain
some vegetation and natural scenery, these are often grouped into a
few broad categories such as terrain and vegetation, making them easy
to distinguish from the surrounding urban scenery.
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On the other hand, natural scenes typically exhibit a degree of
randomness and fluidity, marked by an irregular distribution of classes
where a few classes dominate the scene’s overall composition. An off-
road setting, such as a natural reserve or farm, often consists of diverse
and uneven terrain along with a wide variety of objects, typically in
limited quantities. This results in a markedly imbalanced distribution
of class labels. Coupled with the inherent variability and irregularity of
natural objects, achieving high intersection over-union scores becomes
notably more demanding. Consequently, the problem of 3D semantic
segmentation of natural scenes is yet to be solved with reasonable
accuracy [2,3].

Despite the inherent complexities, humans are able to easily per-
ceive natural environments. Expanding the work done in 3D semantic
segmentation specifically to natural scenes would provide for signif-
icantly more flexible and adaptable computer vision based systems.
This would largely have applications in robotics that requires some
interpretation of surroundings in natural environments. For instance,
autonomous vehicles such as self-driving cars operating in off-road
environments, autonomous tractors used in farming, and surveillance
drones operating in natural environments, could benefit from the abil-
ity to interpret and understand their surroundings more accurately [4,
5]. By enabling these systems to perceive and analyse natural scenes
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more effectively, a solution to semantic segmentation of natural data
would contribute to the development of more robust and reliable
computer vision-based technologies.

A number of remote sensing approaches to collecting 3D data
exist, some of the most popular approaches include light detection and
ranging (LiDAR), photogrammetry, and structured light scanning. It
should be noted that 3D semantic segmentation datasets in outdoor
environments are most commonly obtained through either LiDAR or
photogrammetry. 3D information obtained through LiDAR is generally
highly accurate and is not distorted by variance in illumination. LiDAR
also adds reflectance information which helps to distinguish object
surfaces. In contrast, cameras used in photogrammetry obtain dense
colour and texture information, providing fine-grained semantic details
which are highly useful in semantic segmentation. Photogrammetry-
based systems are also generally more accessible and less costly to
implement. This research limits the scope of 3D data representations
to LiDAR-based data due to the greater availability of LiDAR-based
outdoor datasets. The large amounts of vegetation in natural data
also create complex 3D structures with minimal variance in colour
and contrast, properties which would significantly impact the accuracy
of 3D information obtained through photogrammetry. Furthermore,
limiting the scope to a single remote sensing method allows for the
development of more advanced methods tailored to LiDAR’s unique
format.

Semantic segmentation of point clouds is particularly challenging
due to the unique properties of point clouds such as sparsity, ran-
domness and lack of structure. While deep learning has led to the
biggest developments in semantic segmentation of images, the general
irregularity of point clouds means these approaches must be adapted
significantly in order to be applied directly to point clouds. Several deep
learning approaches have been developed to solve this problem, these
can be divided into two broader categories: point-wise approaches
and projection-based approaches [1], otherwise known as direct and
indirect approaches. Point-wise approaches are applied directly to the
raw point cloud data with no prior transformation, while projection-
based approaches pre-process the raw 3D data using some method of
projection to obtain a discrete and regularised representation of the
original point cloud. Most commonly projection formats are some form
of 3D grid representation (voxel grids) or 2D images.

While point-wise approaches have achieved state-of-the-art accu-
racy [6], they lack a means to efficiently scale-up to large point
sets. Conversely, projection-based approaches are inherently more scal-
able and have been shown to achieve near state-of-the-art accuracy
while running significantly faster than other approaches [7]. Spher-
ical projection-based approaches in particular have shown the most
progress in solving their inherent problems, and have achieved better
results than direct approaches in urban and natural semantic seg-
mentation [2,8,9]. They are also particularly well suited to LiDAR-
based data, as this method of projection essentially aims to reproduce
the scan in the original LiDAR range image format. Furthermore,
researchers have made several adaptions to the pre-processing (projec-
tion) and post-processing pipelines which reduce unwanted artefacts
and increase robustness in projection-based approaches [10–12]. These
adaptions have yet to be aggregated into a single model, indicating
a clear gap in research. Multi-projection fusion is one such adap-
tion. Initially limited to a variant of weighted majority voting for
ensembling, it has shown promising results in enhancing accuracy and
robustness in LiDAR semantic segmentation [11,13]. While this adap-
tion led to improvements in accuracy and robustness; more complex
approaches to ensemble classification exist which provide for more
accurate results than weighted majority voting [14]. Notably, recent
advances like AMVNet’s late fusion [15] and GFNet’s geometric ap-
proach [16] in LiDAR semantic segmentation demonstrate the potential
2

of advanced fusion techniques, particularly beneficial for resource-
constrained robotics like autonomous vehicles due their underlying us-
age of resource efficient projection-based approaches. These projection-
fusion approaches underscore the potential for advanced fusion tech-
niques to significantly elevate the performance of projection-based
LiDAR semantic segmentation beyond traditional methods.

In this work a number of adaptions are made to the current state of
the art in projection-based 3D semantic segmentation with the aim of
creating a model optimised for robustness and segmentation of natural
scenery. Several of the latest advances in projection-based approaches
are aggregated into a single semantic segmentation model, including:
scan unfolding, soft-kNN post-processing, and multi-projection fusion.
Furthermore, a novel Naïve Bayesian approach to multi-projection
fusion is introduced. The implemented model uses SalsaNext [8] as
the core segmentation network, as it is one of the few semantic seg-
mentation approaches which has been evaluated on natural data [2] .
However, adaptions are designed to be applied to the pre-processing
and post-processing pipelines of any projection-based segmentation
model. Quantitative and qualitative experiments are conducted on
a number of datasets which cover both urban and natural scenery,
including SemanticKITTI [17], SemanticPOSS [18], and RELLIS-3D [2].

2. Related work

In this section, a brief survey of recent work developing projection-
based approaches to semantic segmentation of 3D point cloud data
will be provided. Since this research aims to enhance existing network
designs of projection-based approaches, emphasis is placed on prior
work which improves the pre-processing and post-processing pipelines
of projection-based approaches independent of network design.

2D projection-based approaches represent 3D data with 2D descrip-
tors to directly apply existing image-based approaches to the projected
point cloud. One of the simplest methods of 2D projection is multi-view,
where the 3D point cloud is projected from multiple different views
onto 2D images. Researchers have developed a variety of approaches
based on multi-view which have shown success in the problem of
3D semantic segmentation [19–21]. However, these approaches are
generally poorly suited to complex scenes with multiple objects due
to a loss of spatial information.

Many 3D projection-based approaches discretise the point cloud
through voxel-based approaches. Voxel-based approaches project the
unstructured point cloud into a more regular volumetric occupancy
grid consisting of a number of equally sized 3D cells (voxels). This
regularised 3D representation of the point cloud is similar in properties
to a 2D image, as it is essentially a 3D grid. Researchers have used
these properties to directly apply 3D CNN to the voxel-grid for seman-
tic analysis [22,23]. However, this approach leads to computational
inefficiencies due to the sparsity of point clouds. The large amounts
of empty space inherent to point clouds will lead to numerous empty
voxels which are still allocated resources. Researchers have attempted
to address this by dividing the voxel-grid with a computational graph
using the kd-tree (Kd-Net [24]) or octree (Oct-Net [25]) structures, and
applying the 3D convolutions level by level. This allows the model
to exploit the sparsity of 3D data, as resources may be dynamically
allocated based on the data density of different regions. However, these
methods significantly increase the complexity of data structures and are
thus difficult to implement efficiently.

The most popular method of projection to address sparsity in point
cloud data is to project the 3D point cloud to a 2D range image
either from a top-down bird’s eye view (BEV) perspective [26,27] or
a spherical (panoramic) perspective [8,9,28]. These projection meth-
ods provide for dense regularised representations that lead to more
efficient computations, thus addressing point cloud sparsity. This has
led to a number of projection-based approaches which have achieved
near state-of-the-art results [7,15,16]; as well as approaches designed
specifically for efficiency and real-time implementation [29–31]. One
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Fig. 1. An example of the BEV projection result on a ground-truth labelled RELLIS-3D
scan. Colours are assigned by label.

consequence of an image-based representation is point occlusions, both
from BEV and panoramic perspectives.

Post-processing in projection-based approaches generally aims to
correct the errors in the model’s predictions that the projection method
introduced, such as information loss and re-projection error. This was
initially performed in 2D with conditional random field (CRF) post-
processing [28] and later in 3D with KNN post-processing [8,9] as
well as nearest label assignment (NLA) [30]. Methods using 3D post-
processing however still exhibit significant re-projection error. Other
recent works have addressed this with adaptions such as systematic
scan unfolding [10,32]; multi-projection fusion [11,13,15,16]; and the
addition of 3D point-wise learnable components [12].

3. Method

In this section a detailed description of the method used to gen-
erate results is provided. The method is divided into a number of
steps, including: projection to 2D; the core segmentation model; post-
processing; and multi-projection fusion.

3.1. Projection methods

The 3D LiDAR data is represented in 2D through projection. Since
this work makes use of multi-projection fusion, multiple methods of
projections are utilised. These include Cartesian BEV projection, spher-
ical projection, and scan unfolding.

3.1.1. BEV projection
BEV was implemented similarly to [26], where the point cloud is

first collapsed along the 𝑧 axis so that a flattened 2D version of the
point cloud is produced. It is then discretised using a fixed rectangular
grid to produce the resultant 2D image. This results in a multi-channel
2D image of the point cloud as seen from above. The main drawback of
this is top-down point occlusions. Some approaches attempt to address
this with additional channels such as average intensity and elevation of
stacked points [27]. These additional channels were found to provide
little to no benefit for this problem, thus no additional channels were
included. Fig. 1 shows an example of BEV projection on the RELLIS-3D
dataset.
3

3.1.2. Spherical projection
Spherical projection was implemented as in [28]. The 3D LiDAR

point cloud is projected onto a spherical surface to generate a range
image similar to the LiDAR’s native range image. The similarity of this
approach to LiDAR’s native format makes this approach particularly
well suited to projecting 3D LiDAR scans. Each raw 3D LiDAR point
(𝑥, 𝑦, 𝑧) is projected a 2D image coordinate (𝑢, 𝑣) as
(

𝑢
𝑣

)

=

(

1
2

[

1 − arctan(𝑦, 𝑥)𝜋−1]𝑤
[

1 − (arcsin(𝑧, 𝑟−1) + 𝑓𝑑𝑜𝑤𝑛) 𝑓−1]ℎ

)

where ℎ and 𝑤 of the desired height and width of the projected image, 𝑟
is the range to each point 𝑟 =

√

𝑥2 + 𝑦2 + 𝑧2, and 𝑓 is the LiDAR sensor’s
vertical field of view 𝑓 = |𝑓𝑑𝑜𝑤𝑛| + |𝑓𝑢𝑝|.

3.1.3. Scan unfolding
Traditional spherical projection back-projects the motion corrected

LiDAR data to a spherical surface. This has the drawback of mutual
point occlusions due to motion correction. Scan unfolding is a sim-
ilar approach which can transform the raw LiDAR data (no motion
correction) to its original range image format with minimal point
occlusions [10]. Fig. 2 shows a comparison of the two approaches
on the same scan. This is only possible by exploiting the distinct
data representations in certain datasets, in this work it is used with
both SemanticKITTI and SemanticPOSS. The 3D scan is unfolded as in
Algorithm 1.
Algorithm 1: Scan Unfolding
Data: 𝑁 × 3 array of 𝑝𝑜𝑖𝑛𝑡𝑠, thresh = 0.3
Result: 2D projected points with shape 𝐻 ×𝑊
𝑑𝑒𝑝𝑡ℎ ←

√

𝑝𝑜𝑖𝑛𝑡𝑠2𝑥 + 𝑝𝑜𝑖𝑛𝑡𝑠2𝑦 + 𝑝𝑜𝑖𝑛𝑡𝑠2𝑧
𝑟𝑜𝑤𝑠, 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 ← 𝑢𝑛𝑓𝑜𝑙𝑑(𝑝𝑜𝑖𝑛𝑡𝑠)
sort 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 and 𝑟𝑜𝑤𝑠 by decreasing 𝑑𝑒𝑝𝑡ℎ
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 ← array of zeros with shape 𝐻 ×𝑊
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛[𝑐𝑜𝑙𝑢𝑚𝑛𝑠, 𝑟𝑜𝑤𝑠] = 𝑑𝑒𝑝𝑡ℎ
Function Unfold (points):

𝜙 ← atan2(𝑝𝑜𝑖𝑛𝑡𝑠𝑥, 𝑝𝑜𝑖𝑛𝑡𝑠𝑦)
𝑗𝑢𝑚𝑝 ← 𝜙[1 ∶] − 𝜙[∶ −1] > 𝑡ℎ𝑟𝑒𝑠ℎ
𝑟𝑜𝑤𝑠 ← cumulative sum over 𝑗𝑢𝑚𝑝
𝑐𝑜𝑙𝑢𝑚𝑛𝑠 ← 𝑊 (𝜋 − 𝜙)∕2𝜋

While this algorithm is effective in reverse engineering the original
sensor range image, interestingly, certain sensors provide direct access
to the sensor image. This means that no projection is necessary in these
cases, providing for more efficient implementations.

3.2. Segmentation model

This research makes use of SalsaNext [8] as the core segmen-
tation model, a state-of-the-art projection-based approach based on
SalsaNet [27]. SalsaNext is based on an encoder–decoder architecture
where the encoder consists of a residual dilated convolution stack
with gradually increasing receptive fields, followed by a decoder which
upsamples and fuses the features extracted by the encoder.

3.3. Post-processing

Post-processing in this context refers to processing performed di-
rectly on the output of the segmentation network. It is necessary to
make this distinction as this work includes multi-projection fusion,
which is performed after this post-processing step. Consequently, it
is necessary to use post-processing which estimates label probabilities
rather than a single label. Alnaggar et al. address this with non-sparse
nearest neighbour post-processing using soft-voting [11]. However,
their approach only detects nearest neighbours using the 2D pro-
jected coordinates, so that points that are nearby in 2D but distant in
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Fig. 2. Comparison of spherical-projected range image and scan unfolded range image for an example SemanticKITTI scan. The results show occlusion lines in the spherical
projected image (a) but not in the scan unfolded image (b).
3D have equal weighting. The current state of the art in projection-
based approaches generally makes use of k-nearest neighbours (KNN)
post-processing with hard-voting [8,9]. This method of KNN takes
an efficient approach to detecting nearest neighbours in 3D by first
detecting the nearest-neighbours in 2D and then filtering them using
the depth channel. Thus, a soft-voting variant of this method of KNN
post-processing was used in this work.

3.4. Multi-projection fusion

In this work each projection method is assigned to a separate base
classifier, so that the fusion problem is to combine the post-processed
probabilities of a BEV classifier with a spherical or scan unfolded clas-
sifier to obtain a single set of predicted labels. The standard approach
is a form of majority voting, where the outputs of both models are
simply added together and the most probable label selected [13]. This
approach is inherently limited as it assumes equal performance of the
base classifiers. Weighted majority voting addresses this to some extent
by weighting model predictions according to measured performance,
however more advanced probabilistic approaches generally perform
better for this purpose [14]. As with many classification problems,
making the Naïve Bayes (NB) assumption of conditional independence
of the features given the class can greatly reduce the complexity of the
problem while providing a reasonably accurate estimate of the relevant
posteriors. This work uses a NB-ensembling approach for fusion similar
to that described in [14], with the main difference being the calculation
of the likelihood term with the full set of probabilities for each label
rather than only using the most probable label. This section begins with
formulating the standard approach to NB ensembling, after which the
probability based variant is formulated. The problem in the standard
NB approach is to estimate the posterior 𝑃 (𝜔𝑘|𝐬) where 𝐬 is the vector
of class predictions by each classifier 𝐬 = 𝑠1,… , 𝑠𝐿. Using Bayes
theorem and removing the denominator as a normalising factor (𝑃 (𝐬)
is independent of the class label) the posterior may be rewritten as

𝑃 (𝜔𝑘|𝐬) ∝ 𝑃 (𝐬|𝜔𝑘)𝑃 (𝜔𝑘) (1)

where 𝑃 (𝐬|𝜔𝑘) is the likelihood describing the probability of the model
predicting a label given the true class label, and 𝑃 (𝜔𝑘) is the prior
describing the probability of a class with no evidence. The prior can
be estimated as the number of observations of a class 𝑁𝑘 over the
total number of observations 𝑁 . However, estimating the priors in this
manner can reduce segmentation accuracy due to the differences in
class distributions between training and test sets, a problem inherent
to most outdoor segmentation datasets. Since there is no other relevant
evidence for estimating the priors, equal priors can be assumed using
the principle of indifference. Making this assumption, the likelihood
𝑃 (𝐬|𝜔𝑘) can be expanded as

𝑃 (𝐬|𝜔𝑘) =
𝐿
∏

𝑖=1
𝑃 (𝑠𝑖|𝜔𝑘) (2)

by making the Naïve Bayes assumption of conditional independence of
the model predictions on the true class label. A 𝑐 × 𝑐 confusion matrix
𝐶𝑀 is computed for each model 𝐷 by applying it to the training
4

𝑖 𝑖
set. The notation 𝑐𝑚𝑖
𝑘,𝑠 then denotes the (𝑘, 𝑠)th entry of the confusion

matrix, which is the number of elements with true class label 𝜔𝑖 that
were assigned the predicted label 𝜔𝑠 by classifier 𝐷𝑖. Using this notation
𝑃 (𝑠𝑖|𝜔𝑘) can be estimated as

𝑃 (𝑠𝑖|𝜔𝑘) =
𝑐𝑚𝑖

𝑘,𝑠

𝑁𝑘
(3)

However, this means that a single estimate of 𝑃 (𝑠𝑖|𝜔𝑘) as 0 will
result in the entire 𝑃 (𝜔𝑘|𝐬) evaluating to 0. To avoid this, it is instead
calculated as

𝑃 (𝑠𝑖|𝜔𝑘) =
𝑐𝑚𝑖

𝑘,𝑠𝑖
+ 1

𝑐

𝑁𝑘 + 1
(4)

so that there are zeros when estimating 𝑃 (𝑠𝑖|𝜔𝑘). Once training has
been complete, a bespoke confusion matrix 𝐶𝑖 is obtained for each
classifier 𝐷𝑖 where the (𝑘, 𝑠)th entry is instead calculated as

𝐶𝑖(𝑘, 𝑠) =
𝑐𝑚𝑖

𝑘,𝑠 +
1
𝑐

𝑁𝑘 + 1
(5)

It should however be noted that this approach estimates the like-
lihood of only the single most probable label of each base classifier.
This leads to significant information loss, since each model outputs a
meaningful set of probabilities which is being discarded for the most
probable label. This is addressed with a novel approach to NB fusion
where the likelihood of the full output layer of each base classifier is
instead estimated. The predicted labels of each model 𝐬 in the previous
posterior 𝑃 (𝐬|𝜔𝑘) are replaced with the post-processed output layers of
each model 𝐎 so that the new posterior is 𝑃 (𝐎|𝜔𝑘). The likelihood term
for a base classifier 𝐷𝑖 predicting its output layer 𝑂𝑖 is then calculated
as the sum of the likelihoods for each neuron in the output layer
weighted by their activations

𝑃 (𝑂𝑖|𝜔𝑘) =
𝑐
∑

𝑗=1
𝐶𝑖(𝑘, 𝑠𝑗 )𝑂𝑖(𝑗) (6)

where 𝑠𝑗 is the class label and 𝑂𝑖(𝑗) is the post-processed output layer
of classifier 𝐷𝑖 for class 𝑠𝑗 . The final likelihood term is then calculated
in the same manner as 𝑃 (𝐬|𝜔𝑘) (2):

𝑃 (𝐎|𝜔𝑘) =
𝐿
∏

𝑖=1
𝑃 (𝑂𝑖|𝜔𝑘) (7)

While the additional summation in (6) significantly increases the
number of computations required, the posterior can be efficiently com-
puted through matrix multiplications. The NB combiner algorithm with
soft voting can then be described as

1. For each base classifier 𝐷𝑖, 𝑖 = 1,… , 𝐿 obtain the output layer
of Softmax probabilities 𝑂𝑖.

2. For each class 𝜔𝑘, 𝑘 = 1,… , 𝑐:

(a) Set the prior 𝑃 (𝜔𝑘) to 𝑁𝑘
𝑁 , or 1

𝑐 in the case of equal priors.
(b) For 𝑖 = 1,… , 𝐿, compute 𝑃 (𝜔𝑘) as

𝑃 (𝜔𝑘) ← 𝑃 (𝜔𝑘) ×
𝑐
∑

𝐶𝑖(𝑘, 𝑠𝑗 )𝑂𝑖(𝑗)

𝑗=1
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Table 1
Quantitative comparison on Semantic-KITTI test set (sequences 11 to 21). All scores are given as percentages.
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RangeNet++ [9] 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9 52.2
KPRNet [12] 95.5 54.1 47.9 23.6 42.6 65.9 65.0 16.5 93.2 73.9 80.6 30.2 91.7 68.4 85.7 69.8 71.2 58.7 64.1 63.1
FIDNet [30] 93.9 54.7 48.9 27.6 23.9 62.3 59.8 23.7 90.6 59.1 75.8 26.7 88.9 60.5 84.5 64.4 69.0 53.3 62.8 59.5
CENet [29] 91.9 58.6 50.3 40.6 42.3 68.9 65.9 43.5 90.3 60.9 75.1 31.5 91.0 66.2 84.5 69.7 70.0 61.5 67.6 64.7
RangeVIT [33] 95.4 55.8 43.5 29.8 42.1 63.9 58.2 38.1 93.1 70.2 80.0 32.5 92.0 69.0 85.3 70.6 71.2 60.8 64.7 64.0
RangeFormer [7] 96.7 69.4 73.7 59.9 66.2 78.1 75.9 58.1 92.4 73.0 78.8 42.4 92.3 70.1 86.6 73.3 72.8 66.4 66.6 73.3
AMVNet [15] 96.2 59.9 54.2 48.8 45.7 71.0 65.7 11.0 90.1 71.0 75.8 32.4 92.4 69.1 85.6 71.7 69.6 62.7 67.2 65.3
GFNet [16] 94.2 49.7 63.2 74.9 32.1 69.3 83.2 0.0 95.7 53.8 83.8 0.2 91.2 62.9 88.5 66.1 76.2 64.1 48.3 63.0

SalsaNext [8] 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1 59.5
SalsaSU 93.1 54.6 47.6 33.2 36.6 63.4 58.9 8.7 92.1 65.3 77.3 31.2 89.2 61.9 82.4 61.0 67.9 48.4 60.2 59.6 90.1
SalsaBEV 82.3 12.4 11.5 12.9 25.7 19.8 41.6 11.4 88.5 41.3 67.2 6.1 87.8 52.0 74.1 45.6 53.4 33.9 39.0 42.5 85.2
SalsaFusedNB 92.7 51.2 44.6 30.9 38.6 63.5 59.2 8.1 92.3 65.9 76.9 30.5 91.2 65.7 83.0 66.0 66.5 53.5 62.9 60.2 90.5
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3. Assign the object label 𝑘∗, where

𝑘∗ = arg
𝑐

max
𝑘=1

𝑃 (𝜔𝑘)

Given a segmentation problem with 𝑐 classes and 𝑁 points in a
ata item, the more efficient method of calculating the 𝑐 ×𝑁 matrix of
ikelihoods 𝐏 for a single model 𝐷𝑖 using matrix computations is then

= 𝐂𝑖 ×𝐎𝑖 (8)

here 𝐂𝑖 is the 𝑐 × 𝑐 bespoke confusion matrix of base classifier 𝐷𝑖 and
𝑖 is its 𝑐 × 𝑁 output layer. Assuming equal priors so that priors can
e removed as a normalising factor, step 2 can be replaced with:

(𝜔|𝐎) =
𝐿
∏

𝑖=1
𝐂𝑖 ×𝐎𝑖 (9)

here 𝐏(𝜔|𝐎) is the 𝑐 × 𝑁 matrix of posterior probabilities for each
oint. Using matrix computations rather than iterative computations
llows for more efficient implementations due to the high degree of
arallelism in matrix computations. This is particularly advantageous
hen utilising GPU-based processing.

. Experiments

In this work both quantitative and qualitative experiments are con-
ucted to evaluate the implemented approach. All training, validation
nd test splits were kept identical to those originally published by the
uthors of each dataset.

.1. Evaluation metrics

The overall accuracy (OA) is the simplest metric used to measure
ccuracy in semantic segmentation, and is obtained by calculating the
ercentage of correctly classified points. This can be calculated as

𝐴 = 𝑇𝑃 + 𝑇𝑁
𝑁

(10)

here 𝑁 is the total number of points in a scene, 𝑇𝑃 is the total number
f true positives, and 𝑇𝑁 is the total number of true negatives. How-
ver, OA can provide misleading results when the class representation
s small in a single scene. For this reason, the popular mean intersection
ver union (mIoU) metric is used. The intersection over union (IoU) of
n individual class is calculated as

𝑜𝑈 = 𝑇 ∩ 𝑃
𝑇 ∪ 𝑃

(11)

here 𝑇 ∩ 𝑃 is the intersection of the ground truth positive and
redicted positive sets and 𝑇 ∪ 𝑃 is the union of the ground truth
ositive and predicted positive sets. The mIoU is then calculated as

𝐼𝑜𝑈 =
∑𝑁

𝑐=1 𝐼𝑜𝑈𝑐 (12)
5

𝑁 t
here 𝑐 is the class index, 𝐼𝑜𝑈𝑐 is the IoU of class 𝑐 and 𝑁 is the number
f classes.

.2. Quantitative results

Tables 1–3 show a comparison of the obtained quantitative re-
ults for various projection methods including projection-fusion on the
emanticKITTI, RELLIS-3D, and SemanticPOSS datasets respectively.
or the benchmark datasets (SemanticKITTI and SemanticPOSS), a
horough comparison to the current state of the art in projection and
rojection-fusion approaches is included. The scores for individual
abels are the IoU scores, and the highest scoring approach for each
abel and overall metric is bolded for convenience. The baselines and
orresponding projection-fusion approaches developed in this research
those based on SalsaNext) are provided separately. In cases where
he SalsaNext variants do not have the highest scoring approach over-
ll, the highest scoring SalsaNext variant is highlighted to provide a
omparison between the implemented variants.

It should be noted that the SemanticKITTI test-set results can only be
btained through the SemanticKITTI competition site, which provides
mean accuracy (mA) instead of overall accuracy (OA). Thus, mA is

rovided for the SemanticKITTI dataset instead of the OA provided
or RELLIS-3D and SemanticPOSS. Furthermore, the included papers
hich make up the current state of the art do not report on this
etric. Thus, OA and mA were only included for the variants developed

nd tested in this research — since it was still found to be of value
articularly when assessing the strengths and weaknesses of the BEV
odel. In the approaches, SalsaSU refers to SalsaNext adapted to use

can unfolding and SalsaBEV to SalsaNext adapted to use Cartesian
EV projection. SalsaFusedMV is the fused scan-unfolding approach
if available) with the BEV approach using traditional majority-voting
MV) based fusion, while SalsaFusedNB fuses the same base approaches
sing the proposed novel Naïve Bayesian ensembling approach. Only
B-based fusion is evaluated on the SemanticKITTI test-set as a limited
umber of submissions are available.

The discussion begins with an examination of the various devel-
ped SalsaNext variants in comparison to each other, followed by a
roader comparison to the current state of the art in projection and
rojection-fusion approaches. Surprising observations emerged from
ur experiments. Scan unfolding, despite visibly reducing occlusions,
nly marginally outperforms spherical projection in the SemanticKITTI
ataset, challenging the notion that occlusion is a significant source of
rror in spherical projection-based semantic segmentation approaches.
otably, SalsaBEV applied to the RELLIS-3D dataset achieves the high-
st overall accuracy (OA) score, primarily due to its excellent perfor-
ance on the high-representation classes like bush, grass, and puddle.
his observation suggests that BEV projection may be better suited
o natural data, where broader and flatter features, such as grass and
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Table 2
Quantitative comparison on SemanticPOSS test set. All scores are given as percentages.
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SqueezeSeg [28] 14.2 1.0 13.2 31.0 10.4 28.0 5.1 5.7 2.3 43.6 0.2 15.6 75.0 18.9
SqueezeSeg + CRF [28] 6.8 0.6 6.7 18.5 4.0 2.5 9.1 1.3 0.4 37.1 0.2 8.4 72.1 12.9
SqueezeSegV2 [34] 48.0 9.4 48.5 36.1 11.3 50.1 6.7 6.2 14.8 60.4 5.2 22.1 71.3 30.0
SqueezeSegV2 + CRF [34] 43.9 7.1 47.9 35.3 18.4 40.9 4.8 2.8 7.4 57.5 0.6 12.0 71.3 26.9
RangeNet53 [9] 55.7 4.5 34.4 28.3 13.7 57.5 3.7 6.6 23.3 64.9 6.1 22.2 72.9 30.3
RangeNet53 + KNN [9] 57.3 4.6 35.0 28.6 14.1 58.3 3.9 6.9 24.1 66.1 6.6 23.4 73.5 30.9
MINet [31] 61.8 12.0 63.3 44.5 22.2 68.1 16.3 29.3 28.5 74.6 25.9 31.7 76.4 42.7
MINet + KNN [31] 62.4 12.1 63.8 44.9 22.3 68.6 16.7 30.1 28.9 75.1 28.6 32.2 76.3 43.2
FIDNet-Point [30] 71.6 22.7 71.7 50.3 22.9 67.7 21.8 27.5 15.8 72.7 31.3 40.4 79.5 45.8
FIDNet-Point + KNN [30] 72.2 23.1 72.7 50.3 23.0 68.0 22.2 28.6 16.3 73.1 34.0 40.9 79.1 46.4
CENet [29] 74.9 21.8 77.0 51.7 25.3 72.0 18.0 30.9 46.9 75.9 26.1 47.5 80.7 49.9
CENet + KNN [29] 75.5 22.0 77.6 51.4 25.3 72.2 18.2 31.5 48.1 76.3 27.7 47.7 80.3 50.3

SalsaSU 54.13 38.16 46.63 52.72 42.79 76.91 38.03 37.75 21.45 75.04 18.43 49.54 80.07 48.59 83.87
SalsaBEV 35.61 27.52 46.00 42.79 6.83 72.76 19.74 18.11 0.09 75.07 29.45 35.39 75.81 37.32 79.82
SalsaFusedMV 54.76 38.91 47.87 55.29 31.06 77.65 34.52 30.96 1.53 77.31 10.53 52.42 80.74 45.66 84.43
SalsaFusedNB 54.42 40.51 57.02 58.24 38.92 80.12 40.11 39.92 15.65 82.76 27.28 57.99 80.49 51.8 86.47
Table 3
Quantitative comparison on RELLIS-3D test set. All scores are given as percentages.
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SalsaNext [8] 65.65 78.91 55.93 0.00 23.26 19.83 83.85 16.04 74.06 75.27 76.18 22.70 11.17 5.44 43.45 83.06
SalsaBEV 71.14 68.52 10.52 0.00 55.34 0.81 73.46 15.60 78.42 82.89 23.92 55.90 7.77 0.46 38.91 85.32
SalsaFusedMV 67.13 78.57 52.55 0.00 25.01 14.53 83.74 17.91 75.43 76.75 73.34 24.13 12.09 6.80 43.43 83.95
SalsaFusedNB 68.40 77.33 66.36 0.00 64.13 7.14 83.91 18.28 75.58 83.04 81.13 37.83 13.73 16.51 49.53 84.69
Fig. 3. A qualitative comparison of the fusion method with individual projection methods on natural data.
puddles, benefit from the BEV perspective. However, SalsaBEV’s perfor-
mance on flat urban classes, like road and sidewalk, is less impressive,
possibly due to the denser urban scenes requiring higher resolution.

Our novel SalsaFusedNB approach clearly outperforms traditional
MV-based fusion (SalsaFusedMV) and other non-fused baseline ap-
proaches in both mean IoU (mIoU) and mean accuracy/overall accu-
racy (mA/OA). It achieves the highest mIoU on RELLIS-3D and the
highest mIoU and mA/OA on both SemanticKITTI and SemanticPOSS
amongst our SalsaNext variants. Notably, SalsaFusedMV experiences a
performance decrease when fusing SalsaSU with SalsaBEV, falling short
of SalsaSU’s performance alone. This highlights the robustness of the
NB projection-fusion approach used in SalsaFusedNB, as it optimally
combines individual models, favouring more accurate predictions when
one model underperforms. This, coupled with SalsaBEV’s strong perfor-
mance in natural scenes, underscores the suitability of our approach for
6

3D semantic segmentation of natural data. Furthermore, we observed
a substantial mIoU increase compared to the baseline SalsaNext model
(6.08%) when evaluating it on an entirely natural dataset.

In comparing our results to the current state of the art, particularly
on the SemanticKITTI dataset, it is evident that our primary aim was to
enhance performance on natural data while maintaining competitive-
ness on urban datasets. The current state of the art outperforms our
approaches on SemanticKITTI, primarily dominated by urban scenes.
Nevertheless, it is worth noting that our projection fusion-based ap-
proach still shows promise by mitigating degradation on natural data
while maintaining an improvement over our baseline methods.

Conversely, on SemanticPOSS, our fused variant exhibits superior
performance compared to the existing state of the art in most cases.
Due the campus setting of SemanticPOSS, it contains significantly more
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Fig. 4. A qualitative comparison of final 3D predictions on natural data.
Fig. 5. A qualitative comparison of the fusion method with individual projection methods on urban data.
natural scenery than SemanticKITTI. This underscores the adaptabil-
ity of our approach to environments with a more natural element,
demonstrating its potential to excel in scenarios beyond urban settings.

It is important to highlight that while our approach relies on effi-
cient projection-based methods for base classifiers, its inherent nature
of fusing multiple base classifiers leads to a trade-off in speed compared
to other state-of-the-art projection-based approaches. The usage of A
Naïve Bayesian approach does make the fusion approach itself rela-
tively simple and resource-efficient, however it still necessitates inde-
pendent inferences from multiple base classifiers, resulting in increased
computational overhead.

4.3. Qualitative results

The qualitative evaluation is utilised to provide deeper insights to
the measured quantitative results for the base classifiers and fused
predictions. This evaluation makes use of samples selected to showcase
scenarios where each base classifier produces different predictions
while remaining consistent with other scans in the test set. Since the ap-
proach was developed for both natural and urban data, a natural scene
was selected from RELLIS-3D and an urban scene from SemanticKITTI.
To provide a direct comparison of the individual base classifier with the
final NB-fused predictions, spherical-projected or scan unfolded (in the
case of SemanticKITTI) results are shown at each step along with the
projected ground truth labels. Finally, a view of the fused 3D results in
point cloud format are also shown, as some artefacts may not be visible
7

from a projected view. Since the 3D point cloud is relatively large and
the predictions are highly similar to the ground truth, it can be difficult
to see differences between the predictions and the ground truth. Thus,
a binary label comparison was used instead of the ground truth which
shows correctly predicted points in blue and incorrect points in red.

The evaluation begins on natural data from RELLIS-3D, Figs. 3 and
4 show the spherical-projected and 3D results respectively on a sample
scan from RELLIS-3D. Label noise is clearly evident in the RELLIS-3D
dataset sample, and was observed throughout the dataset, particularly
with the ‘person’ labels (pink). In the provided sample, regions that
clearly form a person are unlabelled. Additionally, the lower parts of
some individuals are mislabelled as ‘grass’ (green). This noise, com-
monly encountered in natural data, emphasises the need for classifiers
that are robust against such inconsistencies. It is worth noting that the
tested classifiers offer a more accurate segmentation than the ground
truth in this respect, particularly concerning the consistent labelling of
people. This inconsistency in the ground truth impacts the reliability
of the quantitative results, especially given the sparse representation of
the ‘person’ class.

Both primary classifiers seem to produce accurate segmentation
maps, though with minor artefacts. The Naïve Bayesian Fusion method,
as demonstrated in the spherical-projected results, is beneficial. In
this scan, the spherical classifier misses a vehicle on the right, and
the BEV classifier slightly misclassifies the dimensions of certain ob-
jects. However, fusion manages to rectify most of these discrepancies.
Still, some anomalies remain, like a foreground obstruction mistaken
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Fig. 6. A qualitative comparison of final 3D predictions on urban data.
for a person. This particular error, inherent to both base classifiers,
highlights a limitation of fusion-based methodologies, which is that
they cannot account for errors that occur in all base classifiers. An
interesting classification challenge arises with a large tree identified as
a bush. Despite a clear height differential for this object, suggesting the
presence of a tree, the BEV model still misclassifies the tree, suggesting
that the BEV model might not prioritise its depth image adequately.
While this is an issue with the BEV model, fusion still appears to
optimise the available predictions.

Continuing with an evaluation of the approaches on urban data,
Figs. 5 and 6 show the scan-unfolded and 3D results respectively on
a sample scan from SemanticKITTI. The predicted label images closely
resemble the ground truth images, supporting the conclusion that the
approach taken does not degrade segmentation accuracy on urban data.
Understandably, the scan-unfolded model predicts the head of a cyclist
as a person instead of cyclist. The scan unfolded model also incorrectly
labels the grass (labelled light green) around the cyclists as vegetation
(labelled dark green). In contrast, the BEV model correctly predicts
these regions as grass, supporting the earlier observation that a BEV
perspective is better suited to broader and flatter features. An exception
to this is the sidewalks, which are flat, this is likely due to sidewalks
being narrow and more likely to be obstructed from a top-down view by
surrounding objects. The BEV models limitations become more evident
when identifying tall, thin objects such as poles, tree trunks, and signs,
for which only a small cross-section would be visible from a top-down
view. The fusion method often corrects these anomalies, highlighting its
strength in merging the most accurate predictions from both models.

Regarding the final 3D point cloud results, the projected labels are
largely congruent with the ground truth, but some anomalies are still
present, like regions of grass misclassified as trees, a reflection of the
BEV model’s tendency to neglect the elevation image, as these should
be easily identified using elevation. Furthermore, the surroundings
of a misclassified vehicle reveal other classification errors, hinting at
the model’s challenges with unusual contexts, such as cars parked on
sidewalks. The fusion method likely could not correct these discrepan-
cies due to both models misidentifying the subject. While these errors
might seem trivial, they substantially affect mIoU values. Future en-
hancements to the fusion approach, possibly integrating neighbourhood
context, could potentially rectify such issues.

5. Future work

One inherent gap in any problem addressing 3D semantic segmen-
tation of natural scenes is the lack of data. While the experiments
in this work include a significant number of off-road scenes, there is
comparatively far more urban data simply due its availability. The
class imbalances and lack of structure inherent to natural environments
means any real-world application in natural domains would likely
8

require far more natural data than was used in this work. Aside from the
development of more natural datasets, this could be addressed through
domain adaption techniques to make use of urban data for training
the natural segmentation model; or through more advanced data aug-
mentation techniques to expand the effective size of the available
datasets.

Despite a lack of natural data, this work clearly demonstrates that
more advanced probabilistic ensembling methods to fusion can increase
robustness and accuracy. While the novel Naïve Bayesian approach to
fusion was effective in this case, there exists a number of alternative
approaches to ensembling that could provide further value. Ensemble
learning in general is a well-researched field that has seen numerous
advancements, and many of these advancements have yet to be applied
to semantic segmentation in a meaningful way. Conveniently, ensemble
learning is highly synonymous with multi-projection fusion, indicating
a clear avenue for future progress.

Another notable gap in the conducted research was the lack of
contextual neighbourhood information in fusion. While this research
already expanded existing fusion methods to make intelligent usage of
the full probabilities from each base classifier, neighbourhood context
has been shown to be a crucial feature of any segmentation approach.
Thus, future research efforts to incorporate neighbourhood information
into the Naïve Bayesian fusion approach could significantly enhance its
utility.

Finally, it was noted that our approach, which relies on two separate
base classifiers for independent inferences before projection-fusion,
inherently results in higher computational costs compared to the gen-
erally efficient nature of other projection-based methods. In contrast,
projection-fusion models like AMVNet [15] and GFNet [16] adopt more
resource-efficient late fusion techniques and frequency-domain opera-
tions, respectively, while maintaining competitive performance. Thus,
another avenue for future research could include exploring methods
to adapt the NB-fusion approach to avoid making independent sets of
inferences before fusion could improve computational efficiency.

6. Conclusion

In this research it has been demonstrated that state-of-the-art
projection-based approaches can be improved through the aggrega-
tion of a number of recent developments to projection-based seman-
tic segmentation into a single model, these include: scan unfolding,
soft-kNN post-processing and multi-projection fusion. It was further
demonstrated that multi-projection fusion can significantly increase
robustness through the introduction of multiple perspectives, thus ad-
dressing a number of the challenges inherent to natural data. This was
shown to be the case when more advanced probabilistic ensembling
methods such as Naïve Bayesian ensembling are used for fusion instead

of the traditional voting-based approaches. This approach improves the
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mIoU scores of the core model the approach is based on (SalsaNext [8])
for the SemanticKITTI [17] and SemanticPOSS [18] datasets; and
achieves state-of-the-art results on RELLIS-3D [2], a dataset specifically
developed for semantic segmentation of natural data.
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