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A B S T R A C T

In this work, we present a mechanobiochemical model for two-dimensional cell migration which couples
mechanical properties of the cell cytosol with biochemical processes taking place near or on the cell plasma
membrane. The modelling approach is based on a recently developed mathematical formalism of evolving bulk-
surface partial differential equations of reaction–diffusion type. We solve these equations using finite element
methods within a moving-mesh framework derived from the weak formulation of the evolving bulk-surface
PDEs. In the present work, the cell cytosol interior (bulk) dynamics are coupled to the cell membrane (surface)
dynamics through non-homogeneous Dirichlet boundary conditions. The modelling approach exhibits both
directed cell migration in response to chemical cues as well as spontaneous migration in the absence of such
cues. As a by-product, the approach shows fundamental characteristics associated with single cell migration
such as: (i) cytosolic and membrane polarisation, (ii) actin dependent protrusions, and (iii) continuous shape
deformation of the cell during migration.

Cell migration is an ubiquitous process in life that is mainly triggered by the dynamics of the actin
cytoskeleton and therefore is driven by both mechanical and biochemical processes. It is a multistep process
essential for mammalian organisms and is closely linked to a vast diversity of processes; from embryonic
development to cancer invasion. Experimental, theoretical and computational studies have been key to
elucidate the mechanisms underlying cell migration. On one hand, rapid advances in experimental techniques
allow for detailed experimental measurements of cell migration pathways, while, on the other, computational
approaches allow for the modelling, analysis and understanding of such observations. The bulk-surface
mechanobiochemical modelling approach presented in this work, set premises to study single cell migration
through complex non-isotropic environments in two- and three-space dimensions.
1. Introduction

Cell motility is a phenomenon that occurs in every stage of life.
It is a cyclic multi-step process in the development and maintenance
of multi-cellular organisms. It consists of actin-dependent protrusions
at the cell leading edge, integrin-mediated adhesions to the extracel-
lular matrix, and acto-myosin-driven contractions of the cell (Alberts
et al., 2015; Seetharaman and Etienne-Manneville, 2020; Hobson and
Stephens, 2020; Yamada and Sixt, 2019). Cells have a remarkable
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ability to sense both physical and chemical signals that guide them
to navigate through complex environments in a process known as cell
migration. This process plays a pivotal role in embryonic development
(Uriu et al., 2014), wound healing (Morales, 2007), immune response
(Othmer, 2019) and cancer metastasis (Warner et al., 2019). Cell migra-
tion is a product of the interplay between the cytoskeleton (specifically
the actin cytoskeleton) and several molecules and structures such as
myosin motors and focal adhesions (Othmer, 2019; Seetharaman and
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Etienne-Manneville, 2020). The actin cytoskeleton is composed of a
cross-linked array of actin filaments (F-actin), the polymeric form of
actin (G-actin), and associated proteins (proteins that interact with both
G-actin and F-actin) (Shah and Keren, 2013; Othmer, 2019; Alberts
et al., 2015; Ridley et al., 2003; Seetharaman and Etienne-Manneville,
2020).

In the last few decades research studies have explored mathemat-
cal models to help elucidate mechanisms underpinning intercellular
ynamics (Buttenschön and Edelstein-Keshet, 2020). Some of them

describe cell density in a continuum medium, e.g. Murray (2002, 2003),
Bartha and Eftimie (2022) and Koppenol et al. (2017), where diffusive
terms account for random migration, advective terms for directed
migration and reactive terms for proliferation, death and other phe-
nomena. Other models consider cells as particles that follow prescribed
rules based on biological observations, such as (Harris, 2017; Chen
et al., 2018b; Escribano et al., 2019; Chen et al., 2020b; González-

alverde et al., 2016; Gonçalves and Garcia-Aznar, 2021; Ahmed et al.,
2023; Farmer and Harris, 2023). However, these studies fail to take
into account important morphological (e.g. geometrical) properties
of cells and their environments which influence cell migration. For
instance, it has been demonstrated that cell shape impacts traction
stress (Rape et al., 2011), the speed of collective cell migration under
heat stress (Chen et al., 2020a), and cell development (McBeath et al.,
2004). Other models directly study the interactions and activities of
chemicals within the intra and extracellular domains as well as on the
membrane (Holmes et al., 2017; Gonçalves and Garcia-Aznar, 2021).
These models, that consider each cell as a separate geometric entity,
can take into account the morphological changes, see for example (Alt
and Tranquillo, 1995; Stéphanou and Tracqui, 2002; Fuhrmann et al.,
2007; Mori et al., 2008; Neilson et al., 2011; Elliott et al., 2012; Séguis
et al., 2012; Aubry et al., 2014; Cheng and Othmer, 2016; Camley et al.,
2017; Campbell et al., 2017; Harris, 2017; Moure and Gomez, 2017;
Zhao et al., 2017; Chen et al., 2018a; Cusseddu et al., 2019; Moure
nd Gomez, 2019; Peng et al., 2021, 2023; Link et al., 2024).

In addition, in recent years, important works have been carried
out on the description of the nature of the biochemical species
through compartmentalised models where different molecular species
reside in the cytosol as well as on the cell membrane. This family
of bio-molecular proteins is known as Rho GTPases, which exist
in two forms, active states residing on the cell membrane and
inactive states (also known as cytosolic proteins) residing in the
cytosol (Olayioye et al., 2019). The biomolecular spatiotemporal
interactions have been described by bulk-surface models where one
set of species follows a surface partial differential equation (PDE)
nd another set follows a bulk PDE. Both systems of PDEs posed

on different geometries are usually coupled through mixed Robin-
type boundary conditions (Cusseddu et al., 2019; Elliott et al., 2012;
Madzvamuse and Chung, 2016b,a). These new models known as
ulk-surface reaction–diffusion systems have been shown to produce
patiotemporal dynamics similar to those observed experimentally.
n Rätz and Röger (2014), Rätz (2015), Madzvamuse and Chung

(2016b) and Madzvamuse and Chung (2016a), necessary conditions for
he emergence of Turing patterns are derived for bulk-surface reaction–
iffusion systems on stationary and evolving domains. Interestingly,
he classical condition of long-range inhibition and short-range
ctivation as a classical paradigm for pattern formation is substantially
elaxed. In Giese et al. (2015), it is shown that stretched regions where
rotrusions occur act as negative feedbacks limiting the aggregation of

the species. For the interested reader, further work on bulk-surface cell
polarisation models can be found in Diegmiller et al. (2018), Miller
t al. (2022), Cusseddu et al. (2019) and Elliott et al. (2017).

Our approach is a substantial generalisation of the bulk-surface PDE
formalism whereby we consider each cell as a separate geometric entity
whose evolution law (modelling the actin cytoskeleton displacements)
for its migration is driven by both the mechanical properties and the
biochemical processes. This allows us to encode and therefore model,
 b

2 
naturally, some of key biophysical features of single as well as collective
cell migration such as (i) the biochemical interplay among different
molecules in the extracellular matrix, on the membrane and in the
cytosol and (ii) the mechanical response of the cytoskeleton and the
membrane as a consequence of the biochemical dynamics.

The biochemical system must be capable of generating stable
and polarised states, such as those emerging from excitable systems
(Bhattacharya and Iglesias, 2016; Allard and Mogilner, 2013). An
example of this is the wave-pinning model (Mori et al., 2008;
Camley et al., 2017; Cusseddu et al., 2019). Another option is to
consider Turing instabilities (Goehring and Grill, 2013), as in the
case of Meinhardt’s model of cell polarisation (Meinhardt, 1999;
Neilson et al., 2011; Elliott et al., 2012; Campbell et al., 2017). An
lternative approach, presented in Cheng and Othmer (2016), involves

a biologically motivated model where the variables directly correspond
o biochemical species, allowing for a more precise comparison
ith experimental data. The drawback of this approach is that it

is computationally more expensive than using mathematical models
that reproduce specific behaviours. This is a consequence of the large
number of variables necessary in biologically-motivated models. For
instance, the Cheng and Othmer (2016) model considers more than
wenty variables while Meinhardt’s model only considers three.

Regarding the mechanical system, the cytoskeleton plays a major
role in cell migration. The mechanical properties are highly depen-
dent on actin filaments, microtubules and intermediate filaments. The
rigidity of the cell is given by the amount and organisation of actin
ilaments (Han et al., 2022). In addition, changes on the rigidity of the

extracellular matrix lead to changes in cell rigidity (Espina et al., 2021).
icrotubules can resist compressive forces and work as anchorage

structures when attached to focal adhesions. Intermediate filaments
rovide structural integrity and viscoelastic properties (Espina et al.,

2021). Thus, we see that the mechanics within cells are highly dynamic
ince the elastic and viscoelastic properties depend on the density and

organisation of the cytoskeleton.
When modelling the mechanical behaviour, it is usually assumed

that inertial forces are negligible with respect to elastic and viscoelastic
forces (Lewis and Murray, 1991). Therefore, the system is considered
to be in equilibrium. Such equilibria are defined by the shear–stress
relation of the media (which could be elastic, viscous or viscoelastic),
growth and surface forces. Growth forces are derived from the bio-
chemical activities and can be applied both on the surface (Neilson
t al., 2011; Elliott et al., 2012; Campbell et al., 2017) and in the

bulk (Stéphanou and Tracqui, 2002; Murphy and Madzvamuse, 2020;
Madzvamuse and George, 2013). Surface forces comprise both external
stimuli and membrane forces as a function of the mean-curvature
vector (Neilson et al., 2011; Elliott et al., 2012; Campbell et al., 2017;
Stéphanou and Tracqui, 2002).

An interesting and alternative approach has been developed in Chen
et al. (2018b) where cell mechanics is modelled by means of springs.
It is considered that a predefined number of links defines the cell
cytoskeleton. The movement is governed by the balancing of spring and
chemotactic forces and random movements. This formalism has been
extended to consider cell–cell and cell-barrier interactions (Peng et al.,
2021) and focal adhesions (Peng et al., 2023).

In this paper, we implement a computational framework that mod-
els fundamental migration properties such as: (i) spontaneous and
chemotactic membrane polarisation, (ii) cytosolic polarisation, and (iii)
actin-dependent protrusion. The framework considers a bulk-surface
eaction–diffusion system to model the biochemical dynamics and the
echanical equilibrium of growing domains. For illustrative purposes,
e present a numerical example employing Meinhardt’s (1999) model

or cell orientation on the membrane and a linear diffusion-depletion
odel for cytosolic polarisation. Furthermore, we assume that cytosolic
iffusion occurs on significantly larger timescales than the membrane
iffusion. This can be justified by experimental measurements of mem-

rane and cytosolic diffusion coefficients. For instance, in Escherichia



D. Hernandez-Aristizabal et al.

e

p
o
l

o

t
m
w
m
m

s

s
t
e

f
t

i
m
o
p
l
a
G
P
t
a
e
c

l
t
I

b
c
b
i

c
i

f
c

Journal of Theoretical Biology 595 (2024) 111966 
coli, surface diffusion coefficients on the membrane have been found
to be around 30 times lower than those in the bulk cytosol (Elowitz
t al., 1999; Nenninger et al., 2010, 2014). In addition, we simplify the

mechanical model to the elastic case, and consider only the expansive
and contractile forces dependent on cytosolic dynamics and on mor-
hological properties. The proposed computational approach is based
n a novel bulk-surface moving-mesh finite element method for semi-
inear parabolic partial differential equations (Cusseddu et al., 2019;

Cusseddu and Madzvamuse, 2022; Madzvamuse and Chung, 2016b).
We note that our computational approach does not consider fitting
the model to experimental data; therefore, the parameters that we
use are defined to demonstrate the ability of the model to exhibit
experimentally observed cell migration pathways. Implementing model
fitting and parameter estimation for the mechanobiochemical model
as proposed is currently beyond this study due to the lack of de-
tailed experimental datasets both for the mechanical properties and
the biochemical processes as well as the complex nature of coupling
f different properties and processes on a moving domain.

Our paper is therefore organised as follows. In Section 2, we present
he bulk-surface mechanobiochemical model for two-dimensional cell
igration which is based on biological observations. Section 3 deals
ith the exposition of the bulk-surface moving-mesh finite element
ethod applied to the mechanobiochemical model. The proposed nu-
erical method is validated in Section 4. Cell migration pathways are

exhibited in Section 5. In Sections 6 and 7, we discuss the implica-
tions of the bulk-surface moving-mesh finite element method applied
to a mechanobiochemical model for cell migration and conclude our
tudy by describing open problems in computational modelling of cell

migration in multi-dimensions.

2. Formulating the mechanobiochemical model

In this section, we will present a biological description of cell
migration as a starting-point of the mechanobiochemical model. We
will describe fundamental biological features and some examples of
how these occur. We will then proceed to formulate the mechanobio-
chemical model based on the general biophysical principles which
govern single cell dynamics with appropriate mathematical modelling
assumptions.

2.1. Biological motivation

A key feature of migration is the ability of cells to polarise the
activity of the cytoskeleton towards a biased direction. This polarised
tate is characterised by high concentrations of actin filaments at
he leading edge and high concentrations of myosin II at the rear
dge (Alberts et al., 2015). High concentrations of actin filaments push

the membrane, generating protrusions, while high concentrations of
myosin II pull the cytoskeleton, producing contractility. Moreover, new
ocal adhesions are constantly nucleated at the leading edge, while at
he same time, the ones at the rear are either broken or disassem-

bled (Ridley et al., 2003; Seetharaman and Etienne-Manneville, 2020).
Fig. 1 illustrates the organisation of the cell during migration.

Although this might sound simple, the machinery for cell polar-
sation and migration is highly complex. It comprises biochemistry,
echanics and their cross-communication. For instance, in the case

f directed cell migration of Dictyostelium, cell surface receptors cou-
led to G-proteins (GPCRs) trigger different signalling cascades that
ead to the formation of protrusions (Vorotnikov, 2011), after being
ctivated by extracellular binding molecules. For example, activated
PCRs switch on some membrane proteins of the Ras superfamily and
hosphoinositide 3-kinase (PI3K). After that, other proteins promote
he accumulation of Phosphatidylinositol (3,4,5)-trisiphosphate (PIP3)
t the leading edge. Then, PIP3 recruits downstream proteins that
nhance the activity of the actin network at the plasma-membrane

Artemenko et al., 2014). As a result, this
ortex of the leading edge (

3 
Fig. 1. Schematic representation of the cell during migration to the left. To the right,
domain simplification for the mathematical model.

activity may push the membrane (a mechanical response) extending
filopodia, lamellipodia or invadopodia (Othmer, 2019). On the other
hand, the mechanical properties of the environment can be trans-
duced into biochemical stimuli affecting the intracellular molecular
interplay—a process called mechanotransduction (Seetharaman and
Etienne-Manneville, 2020). In addition, there is no unique signalling
pathway controlling cell migration. Instead, cells have several redun-
dant and antagonist signalling pathways (Ridley et al., 2003; Krause
and Gautreau, 2014; Devreotes and Horwitz, 2015).

Given such complexity, modelling this phenomenon requires a
arge amount of data (regarding the interactions inside and outside
he cell) or an understanding of the possible underlying mechanisms.
n Onsum and Rao (2009), the authors indicated bottom-up and

top-down approaches. In the former, a set of proteins and their
interactions are defined based on experimental observations, and
mathematical models are hence established such that each variable
directly represents a specific molecule and each term describes real
biochemical reactions. The consistency of the models is tested by
comparing its evolution with experimental observations. In addition,
mathematical analysis (e.g. stability) might elucidate unknown features
of the underlying mechanism. In the top-down approach, a general
mechanism (e.g. Turing instability) able to respond in a similar manner
as what has been observed experimentally is assumed. These models
enable to hypothesise about the nature of the underlying molecules
that drive the biological phenomenon.

The computational framework that we propose here can deal with
oth type of approaches. Yet, for the sake of simplicity, we shall
onsider the top-down one. Therefore, we will aim to reproduce the
ehaviour of the biological system without directly modelling each
nteracting molecule.

Let us start with the membrane dynamics. As mentioned in Rappel
and Edelstein-Keshet (2017), Onsum and Rao (2009) and Meinhardt’s
(1999) model for cell orientation may be a suitable candidate to gener-
ate polarised states. It is one of the so called local excitation and global
inhibition (LEGI) models. A key feature of these models is the difference
between the diffusion rates of activators and inhibitors—those of the
former are much lower than those of the latter. Within the cell, it is
ommon that active membrane proteins diffuse more slowly than their
nactive counterparts which are generally cytosolic molecules (Rappel

and Edelstein-Keshet, 2017). This feature is what accounts for local
excitation and global inhibition. Meinhardt’s (1999) model has the
ollowing characteristics: (i) a space-dependent reaction rate that ac-
ounts for external cues; (ii) an autocatalytic activator that amplifies

the deviations from the mean; (iii) a global inhibitor that restricts the
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amplified activator to a few regions; and (iv) a local inhibitor that
destabilises steady patterns and allows the emergence of a spatially
inhomogeneous solution that results in the reorientation of the cell
leading edge. Thus, we will consider: (i) a set of proteins that transduce
external cues into internal ones; (ii) a set of proteins that activate sup-
portive and antagonist pathways allowing them to amplify the external
cues and accumulate at the leading edge; (iii) a set of homogeneously
distributed proteins that prevent the amplification of the external cues
at the rear; and (iv) a set of proteins mainly located at the leading
edge able to breakdown the amplification which permits the system to
reorient if necessary. For this exposition, we chose to consider all the
variables belonging to the signal amplification model as surface entities
or simplicity. This choice is reasonable since in Meinhardt’s model, the

fast diffusing species – which represents the bulk proteins – is homoge-
eous due to the timescale difference with the other species. A similar
ssumption has been done in Diegmiller et al. (2018) and Cusseddu

and Madzvamuse (2022), using the wave-pinning model. In both cases,
the authors considered the bulk proteins as homogeneously distributed
and showed that the proposed approximation was accurate when the
bulk diffusion coefficient was considered larger. This is also consistent
with experimental measurements; for instance, in Escherichia coli, the
bulk proteins diffuse 30 times faster than membrane proteins (Elowitz
t al., 1999; Nenninger et al., 2010, 2014).

The polarisation of the membrane then leads to the polarisation
of the cytoskeleton. This means that there is a flow of information
between these two domains. The first assumption of our model here

ill be to consider that this information goes only from the plasma-
membrane to the cytoskeleton—we assume that while the dynamics on
he membrane affect the dynamics in the cytoskeleton, the former are
ndependent of the latter. As a second assumption, we will simplify
he cytoskeleton dynamics to the assembling and disassembling of
ctin filaments. Although the cytoskeleton is composed of microtubules,
ntermediate filaments and actin filaments (Alberts et al., 2015), cell

migration is mainly associated with the dynamics of the actin net-
work (Schaks et al., 2019). In fact, computational models in the litera-
ure usually neglect the activity of microtubules and actin filaments (Alt

and Tranquillo, 1995; Stéphanou and Tracqui, 2002; Neilson et al.,
2011; Madzvamuse and George, 2013). A third assumption will be that
he concentration of the actin network near the plasma-membrane is

proportional to the one on the membrane. This is a hypothetical as-
umption to be verified or refuted experimentally. It is also mathemat-
cally important since it allows us to use Dirichlet boundary conditions
hich directly indicate the concentration of the bulk variables on the

urface. Lastly, we will consider a simple diffusion-depletion model for
he general actin-network activity. Although this model simplifies the

actomyosin system, it allows us to reproduce a polarised pattern in the
ulk as a downstream effect of the membrane polarisation.

Finally, with the polarised plasma-membrane and cytoskeleton, we
can consider the mechanical response. Here, the mechanics will be cou-
pled to the biochemistry by means of forces driven by the concentration
of the chemical species. The biochemistry will also be affected by the
displacements through the material velocity. First, let us simplify the
mechanics of the cytoskeleton by considering linear elastic deformation
and plane stress behaviour (Irgens, 2008). Furthermore, let us consider
that no elastic energy is accumulated and, thus, the cell does not
recover its shape after each step of deformation. This is following the
work in Zhao et al. (2017) where the authors acknowledged that cell
cytoskeleton and adhesive structures are rapidly reconstructed—this
bservation allows us to refer to the material model as elastic with-
ut energy accumulation instead of perfectly plastic. Second, let us
ouple the biochemical dynamics by considering a bulk concentration-
ependent isotropic expansion. As actin filaments grow, they apply
ressure to both the plasma membrane and focal adhesions (Othmer,

2019). We will consider that this growth translates into mechanical
tress along the filament by the linear form: 𝜎fil = 𝐸 𝜀fil, where 𝜀fil is

the strain or deformation along the filament induced by the activity of
4 
the actin network and 𝐸 is the modulus of elasticity that linearly relates
the stress and the strain (Irgens, 2008). Given that the actin network is
highly cross-linked, we take it as a homogeneous and isotropic material;
thus, following the plane-stress strain–stress relation (Ferreira, 2009)
and considering no induced shear strain, the mechanical stress now
reads: (𝜎𝑎)11 = (𝜎𝑎)22 = (𝐸∕(1 − 𝜈))𝜀𝑎 and (𝜎𝑎)12 = (𝜎𝑎)21 = 0, where
𝝈𝑎 and 𝜀𝑎 are respectively the stress tensor (with components (𝜎𝑎)𝑖𝑗 ,
𝑖, 𝑗 ∈ {1, 2}) and the deformation induced by the actin network. As
a third consideration, we will take the equation for the area control
presented in Neilson et al. (2011). It describes the evolution of a
Lagrange multiplier that monitors the growth of the area. We will
then consider isotropic contraction with the stress tensor: 𝝈𝒄 such that
(𝜎𝑐 )11 = (𝜎𝑐 )22 = (𝐸∕(1 − 𝜈))𝜀𝑐 and (𝜎𝑐 )12 = (𝜎𝑐 )21 = 0, where 𝜀𝑐 is the
eformation induced by the isotropic contraction, which depends on
he evolution of the area control equation in Neilson et al. (2011). We

will also include membrane tension as a traction on the boundary pro-
ortional to the mean curvature vector, as previously done in Neilson
t al. (2011) and Elliott et al. (2012). Finally, similarly to Zhao et al.

(2017) we will include the effect of focal adhesions as elastic supports.
Given the mentioned assumptions, we consider a two-dimensional

evolving domain 𝛺(𝑡) ⊂ R2 × [0, 𝑇𝑓 ] with a continuously deforming
curvilinear boundary 𝛤 (𝑡) ⊂ R2× [0, 𝑇𝑓 ], representing an evolving curve
in R2. For simplicity, we ignore the nucleus and its dynamics, 𝛺(𝑡)
only represents the cytoplasm in the absence of the nucleus, see Fig. 1.
𝛤 (𝑡) is assumed to be a sharp-interface approximation of the plasma
membrane. On 𝛤 (𝑡), we model the signal amplification using the model
of Meinhardt (1999). In 𝛺(𝑡), we model the actin-cytoskeleton dynamics
by considering a linear diffusion-depletion system. Finally, we include
elastic deformation as a response of the actin-cytoskeleton dynamics,
shape changes and membrane tension.

2.2. Formulating a surface reaction–diffusion system on the plasma mem-
brane 𝛤 (𝑡)

Let us start defining the surface operators necessary to yield the
reaction–diffusion equation on evolving curves. As in Dziuk and Elliott
(2007, 2013) and Barreira et al. (2011), consider an orientable curve
𝛤 (𝑡) ⊂ R2 × [0, 𝑇𝑓 ], which can be represented by a level set function
𝑑(𝒙, 𝑡) ∶ R2 × [0, 𝑇𝑓 ] → R. Here, 𝑑(𝒙, 𝑡) is the signed distance from 𝒙 to
𝛤 (𝑡) at time 𝑡, with 𝑇𝑓 the final time. Thus, 𝛤 (𝑡) = {

𝒙 ∈ R2 ∶ 𝑑(𝒙, 𝑡) = 0},
and the outward unit normal vector can be written as: 𝒏(𝒙, 𝑡) =
∇𝑑(𝒙, 𝑡)∕‖∇𝑑(𝒙, 𝑡)‖.

Let us now define a neighbourhood of 𝛤 (𝑡) of size 𝛿 as the open
ubset R2 ⊃  (𝑡) = {

𝒙 ∈ R2 ∶ 𝑑(𝒙, 𝑡) < 𝛿}. We now compute the surface
gradient of a function 𝑓 (𝒙, 𝑡) ∶ 𝛤 (𝑡) × [0, 𝑇𝑓 ] → R, by defining an
extension of this function to 𝑓 (𝒙, 𝑡) ∶  (𝑡) × [0, 𝑇𝑓 ] → R as for example:

𝑓 (𝒙, 𝑡) =
{

𝑓 (𝒙, 𝑡), if 𝑑(𝒙, 𝑡) = 0,
𝑓 (𝒙 − 𝑑(𝒙, 𝑡)𝒏(𝒙, 𝑡), 𝑡) , otherwise.

Then, the surface gradient of 𝑓 is given by: ∇𝛤 (𝑡)𝑓 (𝒙, 𝑡) = ∇𝑓 (𝒙, 𝑡)
−∇𝑓 (𝒙, 𝑡) ⋅ 𝒏(𝒙, 𝑡)𝒏(𝒙, 𝑡). Furthermore, the Laplace-Beltrami operator is:
𝛥𝛤 (𝑡)𝑓 (𝒙, 𝑡) = ∇𝛤 (𝑡) ⋅ ∇𝛤 (𝑡)𝑓 (𝒙, 𝑡) (Dziuk and Elliott, 2007, 2013).

Having defined the surface gradient and the Laplace-Beltrami op-
erator, let us continue with the derivation of the reaction–diffusion
ystem on evolving surfaces. Let 𝑎𝑘(𝒙(𝑡), 𝑡), with 𝒙(𝑡) ∈ 𝛤 (𝑡) and 𝑘 ∈ N,
enote the 𝑘th molecular species resident on 𝛤 (𝑡) whose dynamics
ollow a reaction–diffusion behaviour on 𝛤 (𝑡); the 𝑘th equation is given
y (Barreira et al., 2011; Frittelli et al., 2018; Dziuk and Elliott, 2007,

2013):

𝜕∙𝑎𝑘 + 𝑎𝑘∇𝛤 (𝑡) ⋅ 𝐯 − 𝑑𝑘𝛥𝛤 (𝑡)𝑎𝑘 = 𝑓𝑘(𝒂), (1)

where 𝒂 denotes the vector of the molecular species; 𝑑𝑘 is the constant
diffusion coefficient of the 𝑘th species; and 𝐯 is the material velocity

defined as: 𝐯 = 𝑑𝒖∕𝑑 𝑡, where 𝒖 represents the actin cytoskeleton
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displacements which satisfy the momentum equation described be-
low (Murphy and Madzvamuse, 2020; George et al., 2013), Eq. (13).
In the above, we have assumed that the flux of each species follows
Fick’s law (Murray, 2002; Turing, 1952). The reaction kinetics are
defined by 𝑓𝑘 which can take the form of excitable systems, Turing
instability models or experimentally driven models (Juma, 2019). In
addition, the material derivative is defined by: 𝜕∙𝑎𝑘 = 𝜕 𝑎𝑘

𝜕 𝑡 + 𝐯 ⋅ ∇𝑎𝑘,
where the material velocity 𝐯 describes the changes in the actin cy-
toskeleton displacements, denoted by 𝒖 above. The first term at the
left-hand side of Eq. (1) is the material derivative of 𝑎𝑘; the second
term corresponds to the dilation due to the growth of the domain;
and the third corresponds to the diffusion. The term at the right-hand
side represents nonlinear reaction kinetics, and this is the only term in
which interactions between the 𝑘-species take place.

In the present work, we will consider as an example the reaction
kinetics of Meinhardt (1999) for cell orientation. These have been used
in previous studies to demonstrate the ability of the model to reproduce
dynamics similar to those of cell migration (Neilson et al., 2011; Elliott
et al., 2012; Campbell et al., 2017). Thus, for 𝑘 = 1, 2, 3, the system of
equations is postulated as follows:

𝜕∙𝑎1 + 𝑎1∇𝛤 (𝑡) ⋅ 𝐯 − 𝑑1𝛥𝛤 (𝑡)𝑎1 =𝛾 𝑓1(𝑎1, 𝑎2, 𝑎3) on 𝛤 (𝑡), (2)

𝜕∙𝑎2 + 𝑎2∇𝛤 (𝑡) ⋅ 𝐯 − 𝑑2𝛥𝛤 (𝑡)𝑎2 =𝛾
(

𝑘2�̂�1 − 𝑟2𝑎2
)

on 𝛤 (𝑡), (3)

𝜕∙𝑎3 + 𝑎3∇𝛤 (𝑡) ⋅ 𝐯 − 𝑑3𝛥𝛤 (𝑡)𝑎3 =𝛾
(

𝑘3𝑎1 − 𝑟3𝑎3
)

on 𝛤 (𝑡), (4)

with:

𝑓1(𝑎1, 𝑎2, 𝑎3) =
𝑠𝑒
( 𝑎21
𝑎2

+ 𝑘1
)

(𝑠3 + 𝑎3)(1 + 𝑠1𝑎21)
− 𝑟1𝑎1, (5)

for 𝑡 ∈ [0, 𝑇𝑓 ], with initial conditions: 𝑎𝑘(𝒙(0), 0). It must be noted
that since 𝛤 (𝑡) is a closed curve, its boundary is empty; and hence,
no boundary conditions are required. In Eqs. (2) and (4)–(6), 𝑎1 is the
autocatalytic activator, and 𝑎2 and 𝑎3 are respectively the global and
local inhibitors; �̂�1 is the average value of 𝑎1; 𝑑1, 𝑑2 and 𝑑3 are diffusion
coefficients; 𝛾 is the strength of the reaction; 𝑘1, 𝑘2 and 𝑘3 are the
production rates of the activator and the global and the local inhibitor,
respectively; 𝑠1 is the saturation rate of the local catalysis, and 𝑠3
is the Michaelis–Menten constant; 𝑟1, 𝑟2 and 𝑟3 are respectively the
consumption rates of the activator and the global and local inhibitors;
and 𝑠𝑒 is the signalling parameter which captures chemotactic gradients
and noise, therefore, it is space-dependent (Meinhardt, 1999)—this
term can be viewed as the activity of membrane receptors.

Notice that when 𝑎2(𝒙(𝑡), 𝑡) is spatially constant, the diffusive term
in Eq. (3) vanishes. Additionally, since �̂�1 is constant in space, the
reaction term also becomes space-independent when 𝑎2(𝒙(𝑡), 𝑡) is space-
independent. Therefore, if 𝑎2(𝒙(0), 0) is constant in space, Eq. (3) can
be rewritten without the diffusive term as (Elliott et al., 2012):

𝜕∙𝑎2 + 𝑎2∇𝛤 (𝑡) ⋅ 𝐯 = 𝛾
(

𝑘2�̂�1 − 𝑟2𝑎2
)

on 𝛤 (𝑡). (6)

Meinhardt (1999) proposed 𝑠𝑒 as:

𝑠𝑒(𝒙(𝑡)) = 𝑟1

(

1 + 𝜂𝑠 cos
(

2𝜋
arc(𝒙(𝑡) − 𝒙𝒄 (𝑡))

|𝛤 (𝑡)|

))

(

1 + 𝜂𝑛𝑅𝑁 𝐷)

, (7)

where arc(𝒙(𝑡) − 𝒙𝒄 (𝑡)) is the distance from 𝒙(𝑡) ∈ 𝛤 (𝑡) to 𝒙𝒄 (𝑡). Here,
𝒙𝒄 (𝑡) is the closest point on 𝛤 (𝑡) to an external source indicating the
directional asymmetry; 𝜂𝑠 and 𝜂𝑛 are respectively the strength of a
signal coming from a specific point outside the cell and the random
noise; |𝛤 (𝑡)| is the size (the perimeter) of the membrane at time 𝑡; and
𝑅𝑁 𝐷 refers to a random number.

This function has two main drawbacks: it does not model the
switchable behaviour of membrane receptors and the strength of the
signal does not depend on the distance to the source. As a response,
Neilson et al. (2011) proposed a kinetic system that models the activity
of the membrane considering receptor occupancy. However, Wang
and Irvine (2013) indicated that receptor occupancy gradients are a
consequence of the concentration gradient along the membrane of
5 
Fig. 2. External signal 𝑠𝑒 around a circular cell with (a) 𝜂𝑛 = 0 and (b) 𝜂𝑠 ≠ 0. The
blue and red colours respectively indicate low and high concentration.

a chemoattractant. This observation allows us to avoid the need of
modelling the membrane-receptor kinetics. Instead, we modify Eq. (7)
only to depend on the distance to the source. This leads to the following
function:

𝑠𝑒(𝒙(𝑡)) = 𝑟1

(

1 + 𝜂𝑠
|𝛤 (𝑡)|

|𝛤 (𝑡)| + 𝑑(𝒙(𝑡), 𝑡)2
)

(

1 + 𝜂𝑛𝑅𝑁 𝐷)

, (8)

where 𝑑(𝒙(𝑡), 𝑡) is the distance from 𝒙(𝑡) ∈ 𝛤 (𝑡) to the signalling point,
which can be outside 𝛤 (𝑡). Fig. 2 illustrates the 𝑠𝑒 in space and shows
how the receptor occupancy on the membrane would behave.

2.3. Formulating a bulk reaction–diffusion equation in the cytoplasm 𝛺(𝑡)
for actin cytoskeleton activity

The polarisation on the membrane leads to the activation of
downstream signalling pathways that trigger the reorganisation of
the cytoskeleton. In a general case, the dynamics of the bulk can
be modelled as follows. Let 𝑎𝑗 denote the 𝑗th cytoplasmic variable;
the reaction–diffusion system coupled to the surface dynamics is given
by (Madzvamuse et al., 2005):
𝜕 𝑎𝑗
𝜕 𝑡 + ∇ ⋅ (𝐯𝑎𝑗 ) = 𝑑𝑗𝛥𝑎𝑗 + 𝑔𝑗 (𝒂) in 𝛺(𝑡), (9)

𝜇 𝑑𝑗
𝜕 𝑎𝑗
𝜕𝒏

= 𝑔𝛤𝑗 (𝒂) on 𝛤 (𝑡), (10)

where 𝜇 is a positive parameter; 𝑔𝑗 represents the nonlinear reaction
kinetics in the bulk; and 𝑔𝛤𝑗 the coupling dynamics from the surface to
the bulk.

For the present work, we shall use a simplified version of Eqs. (9)
and (10). We can first reduce the actin-network to one variable rep-
resenting the actin concentration which is the growth driving force.
We can also consider that polarisation beneath the membrane is pro-
portional to that on the membrane itself. Although these assumptions
neglect the intermediate interactions between the membrane and the
bulk variables, they reproduce the polarising effect from the external
signal to the cell membrane to the cell cytoskeleton. Hence, only
one bulk variable is considered representing the actin-network in the
cytoplasm, say 𝑎𝑏. For the actin-network dynamics, we can consider
a linear diffusion-depletion system with Dirichlet boundary conditions
dependent on the activity on the membrane for polarisation. This is
equivalent to say that 𝑔𝑏 = 𝐺𝑏 − 𝐶𝑏𝑎𝑏, where 𝐺𝑏 and 𝐶𝑏 are respec-
tively the rates of decay and production of actin network. In addition,
in Eq. (10), 𝜇 = 0 and 𝑔𝛤𝑏 = 𝑎𝑏 − 𝑎3, where 𝑎3 comes from the
surface model. With this boundary condition, we directly reproduce the
polarisation of the actin cytoskeleton as a result of the polarisation of
upstream regulators. We continue the model simplification by further
considering that 𝑎𝑏 rapidly reaches a steady state after any perturbation
on the boundary. This yields:

0 = 𝑑 𝛥𝑎 − 𝐶 𝑎 + 𝐺 in 𝛺(𝑡), (11)
𝑏 𝑏 𝑏 𝑏 𝑏
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𝑎𝑏 = 𝑎3 on 𝛤 (𝑡), (12)

where 𝑑𝑏 and 𝐶𝑏 are respectively the diffusion coefficient and the decay
rate of 𝑎𝑏, and 𝐺𝑏 is constant production rate of 𝑎𝑏. As can be seen, the
left-hand-side of Eq. (9) is neglected.

2.4. Formulating the mechanical model for the cytoskeleton dynamics in the
cytoplasm

As mentioned above, we will consider an elastic model with
sotropic expansion and contraction due to the actin network and
he area change, respectively; adhesion to the substratum as homo-
eneously distributed elastic supports (Zhao et al., 2017); and surface

forces due to membrane tension (Neilson et al., 2011; Campbell et al.,
2017; Elliott et al., 2012). Hence, the momentum equation (Stéphanou
t al., 2004; George et al., 2013; Madzvamuse and George, 2013;

Murphy and Madzvamuse, 2020) reads: find the displacement field
𝒖(𝒙, 𝑡) ∈ 2(𝛺 , [0, 𝑇𝑓 ]) such that:

∇ ⋅ (𝝈(∇𝒖) − 𝝈𝒂(𝑎𝑏) + 𝝈𝒄 (𝜆)) = 𝛹𝒖, in 𝛺(𝑡), (13)

(𝝈(∇𝒖) − 𝝈𝒂(𝑎𝑏) + 𝝈𝒄 (𝜆)) ⋅ 𝒏 = 𝑻 (𝜿, 𝜆) on 𝛤 (𝑡), (14)

where 𝝈, 𝝈𝒂 and 𝝈𝒄 are respectively the stress, the protrusive and the
contractile tensors; 𝛹 is an elastic constant proportional to the strength
of the adhesion (Zhao et al., 2017); 𝑻 is the tension traction on the
membrane; 𝒏 is the outward-pointing unit normal to the surface; 𝜆 is a
Lagrange multiplier which increases if the domain grows and decreases
if it shrinks (Elliott et al., 2012); and 𝜿 is the mean curvature vector.
Eq. (13) and (14) are the general mechanical equations coupled to the
iochemical reaction–diffusion system. In fact, the stress tensor can
ake into account elastic, viscous and plastic phenomena. Thus, the
eneral mechanobiological model is composed of Eqs. (1), (9), (10),

(13) and (14).
Let us continue with the terms in Eqs. (13) and (14). The sim-

lest stress tensor follows the Hooke’s elasticity law, which is given
y (Irgens, 2008): 𝝈 = 𝐸

1+𝜈

(

𝜺 + 𝜈
1−2𝜈∇ ⋅ 𝒖

)

, where 𝜺 is the linear strain
ensor, and 𝐸 and 𝜈 refer to the modulus of elasticity and the Poisson’s
atio, respectively (Irgens, 2008). Assuming plane-stress conditions and
dopting Voigt notation, Hooke’s law can be written in the form

⎡

⎢

⎢

⎣

𝜎11
𝜎22
𝜎12

⎤

⎥

⎥

⎦

= 𝐸
1 − 𝜈2

⎡

⎢

⎢

⎢

⎣

1 𝜈 0
𝜈 1 0

0 0 1 − 𝜈
2

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜀11
𝜀22
2𝜀12

⎤

⎥

⎥

⎦

. (15)

For the active internal forces, expansion and contraction, we choose:
(i) an expansion proportional to 𝑎𝑏 and a contraction proportional
to 𝜆. The former is a common assumption in computational models
where the protrusive force results form the concentration of actin
filaments (Alt and Tranquillo, 1995; Stéphanou and Tracqui, 2002;
Neilson et al., 2011; Madzvamuse and George, 2013). The latter has
been proposed in Neilson et al. (2011) to indirectly model myosin
ontraction as well as membrane tension, leading to movement of the

rear end. The expansion and contraction terms can be written as: 𝝈𝑎 =
(𝐸∕(1 − 𝜈))𝑎𝑏𝜀0𝑰 and 𝝈𝑐 = (𝐸∕(1 − 𝜈))𝜆𝜀0𝑰 .

The area-control variable is determined by the Lagrange multi-
lier 𝜆(𝑡) which solves the ordinary differential equation for the area

constraint (Neilson et al., 2011):

𝑑 𝜆
𝑑 𝑡 =

𝛽1𝜆(𝐴 − 𝐴0 + 𝑑 𝐴∕𝑑 𝑡)
𝐴0(𝜆 + 𝛽1)

− 𝛽2𝜆, wit h 𝜆(0) = 𝜆0. (16)

Here, 𝐴, 𝐴0 and 𝑑 𝐴∕𝑑 𝑡 are respectively the area, the initial area, and
he rate of change of the area; and 𝛽1 and 𝛽2 are positive parameters.

Finally, the mean curvature vector is given by (Heine, 2004; Barrett
t al., 2020):

𝜿 = −𝛥𝛤𝒙, where 𝒙 ∈ 𝛤 (𝑡), (17)
6 
and the membrane tension is (Neilson et al., 2011):

𝑻 = 𝜆𝛿𝜿, (18)

where 𝛿 is a factor of proportionality of the rigidity of the membrane.
As can be seen in Eq. (13), inertia has been ignored. This can

be done since inertial forces are negligible with respect to internal
forces, such as elastic and viscous ones (Lewis and Murray, 1991).

his means that motion is stopped after unloading (Lewis and Murray,
1991). In this case, we may consider that after each computation of
the biochemical model the system undergoes an elastic deformation.
We may also consider that after each deformation the cell rapidly
relaxes and no elastic energy is accumulated. This is equivalent to
solving Eq. (13) without taking into account the pre-strain given by the
revious deformation step. This approach is similar to the work in Zhao

et al. (2017).
Thus, for the present example, our model is composed of the follow-

ing partial differential equations: Eqs. (2), (4), (6), (11) to (14), (16)
and (17), that describe the evolution of 𝑎1, 𝑎2, 𝑎3, 𝑎𝑏, 𝒖, 𝜿 and 𝜆. The
full model is summarised in Table 1.

3. A bulk-surface moving-mesh finite element approach to the
mechanobiochemical model in 2-space dimensions

Since we have a system of bulk-surface partial differential equa-
tions (BS-PDEs) posed on an evolving domain, we need a robust,
accurate and consistent numerical method that can compute approx-
imate solutions of the full model. Several numerical methods have
been developed and implemented to solve partial differential equations
(PDEs) on evolving domains and surfaces. For example, in Novak et al.
(2007), finite volumes were applied in a framework with diffusion
in the bulk and on the boundary; in Rätz and Röger (2014), Rätz
(2015), a phase-field finite-element approach was implemented to deal
with a bulk-surface reaction–diffusion system; in Elliott et al. (2017),
 model for the dynamics between membrane receptors and ligands
as approximated by the piecewise linear coupled bulk-surface finite
lement method developed in Elliott and Ranner (2013); in Alhazmi

(2019), the finite element approach was also implemented to solve a
reaction–diffusion system able to form patterns; and in Frittelli et al.
(2021), by combining the virtual element method (Brezzi et al., 2014)
and the surface finite element method (Dziuk and Elliott, 2013), the
authors delivered a new method to solve BS-PDEs.

In this work, we employ a bulk-surface moving-mesh finite element
method (BS-MFEM) to solve bulk and surface PDEs on time-dependent
domains and surfaces. We assume that the mesh velocity is different
from the material velocity, as presented for the arbitrary Lagrangian–
Eulerian formulation in Mackenzie et al. (2021), Dziuk and Elliott
(2013) and Elliott and Styles (2012). In the bulk, we will further assume
that Eq. (11) is a time-independent system. Given that the coupling is
through Dirichlet boundary conditions, we will use the standard bulk fi-
nite element formulation. The remaining time-dependent terms will be
solved using the Euler finite difference time-stepping scheme. To ensure
the regularity of the finite element mesh and the convergence of the
BS-MFEM on evolving domains and surfaces, we apply smoothing and
re-meshing algorithms as appropriately determined by the regularity of
the numerical solutions.

3.1. The weak formulation of the mechanobiochemical model

3.1.1. The weak form of the surface reaction–diffusion system
Let us first multiply Eq. (1) by a test function 𝜑 and integrate over

(𝑡); thus, the problem reads: find 𝑎𝑘 ∈ 𝐻1(𝛤 (𝑡)) such that:

∫𝛤 (𝑡)
𝜑
(

𝜕∙𝑎𝑘 + 𝑎𝑘∇𝛤 (𝑡) ⋅ 𝐯 − 𝑑𝑘𝛥𝛤 (𝑡)𝑎𝑘 − 𝑓𝑘(𝒂)
)

= 0, (19)
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Table 1
Mathematical model.
Name Equation Domain

Membrane polarisation

𝜕∙𝑎1 + 𝑎1∇𝛤 (𝑡) ⋅ 𝐯 − 𝑑1𝛥𝛤 (𝑡)𝑎1 = 𝛾

⎛

⎜

⎜

⎜

⎜

⎝

𝑠𝑒
( 𝑎21
𝑎2

+ 𝑘1
)

(𝑠3 + 𝑎3)(1 + 𝑠1𝑎21)
− 𝑟1𝑎1

⎞

⎟

⎟

⎟

⎟

⎠

𝒙(𝑡) ∈ 𝛤 (𝑡)

𝜕∙𝑎2 + 𝑎2∇𝛤 (𝑡) ⋅ 𝐯 = 𝛾
(

𝑘2 �̂�1 − 𝑟2𝑎2
)

𝒙(𝑡) ∈ 𝛤 (𝑡)
𝜕∙𝑎3 + 𝑎3∇𝛤 (𝑡) ⋅ 𝐯 − 𝑑3𝛥𝛤 (𝑡)𝑎3 = 𝛾

(

𝑘3𝑎1 − 𝑟3𝑎3
)

𝒙(𝑡) ∈ 𝛤 (𝑡)
𝑎1 = 𝑎10, 𝑎2 = 𝑎20, 𝑎3 = 𝑎30 𝒙(𝑡) ∈ 𝛤 (0)

Kinematic model 𝐯 = 𝑑𝐮
𝑑 𝑡 𝒙(𝑡) ∈ 𝛺(𝑡)

Cytoplasmic polarisation 0 = 𝑑𝑏𝛥𝑎𝑏 − 𝐶𝑏𝑎𝑏 + 𝐺𝑏 𝒙(𝑡) ∈ 𝛺(𝑡)
𝑎𝑏 = 𝑎3 𝒙(𝑡) ∈ 𝛤 (𝑡)

Mechanical model

∇ ⋅ (𝝈(∇𝒖) − 𝝈𝒂(𝑎𝑏) + 𝝈𝒄 (𝜆)) = 𝛹𝒖 𝒙(𝑡) ∈ 𝛺(𝑡)

(𝝈(∇𝒖) − 𝝈𝒂(𝑎𝑏) + 𝝈𝒄 (𝜆)) ⋅ 𝒏 = 𝜆𝛿𝜿 𝒙(𝑡) ∈ 𝛤 (𝑡)

𝜿 = −𝛥𝛤 𝒙 𝒙(𝑡) ∈ 𝛤 (𝑡)
𝑑 𝜆
𝑑 𝑡 =

𝛽1𝜆(𝐴 − 𝐴0 + 𝑑 𝐴∕𝑑 𝑡)
𝐴0(𝜆 + 𝛽1)

− 𝛽2𝜆 𝑡 ∈ [0, 𝑇𝑓 ]
t



b

t
t

∑

for all 𝜑 ∈ 𝐻1(𝛤 (𝑡)). The divergence theorem for closed surfaces is
given by Dziuk and Elliott (2007):

∫𝛤
∇𝛤 𝜉 ⋅ ∇𝛤 𝜂 = −∫𝛤

𝜉 𝛥𝛤 𝜂 , (20)

where 𝜉(𝒙), 𝜂(𝒙) ∶ 𝛤 → R. Notice that due to the absence of boundary,
here is no flux term. Eq. (19) can be therefore rewritten as:

∫𝛤 (𝑡)
𝜑
(

𝜕∙𝑎𝑘 + 𝑎𝑘∇𝛤 (𝑡) ⋅ 𝐯 − 𝑓𝑘(𝒂)
)

+∫𝛤 (𝑡)
∇𝛤 (𝑡)𝜑 ⋅ 𝑑𝑘∇𝛤 (𝑡)𝑎𝑘 = 0 ∀𝜑 ∈ 𝐻1(𝛤 (𝑡)). (21)

We can rewrite the first two terms of the left-hand side in the following
ay:

∫𝛤 (𝑡)
𝜑
(

𝜕∙𝑎𝑘 +𝑎𝑘∇𝛤 (𝑡) ⋅ 𝐯
)

=

∫𝛤 (𝑡)

(

𝜕∙(𝜑𝑎𝑘) − 𝑎𝑘𝜕
∙𝜑 + 𝜑𝑎𝑘∇𝛤 (𝑡) ⋅ 𝐯

)

∀𝜑 ∈ 𝐻1(𝛤 (𝑡)).

Then, applying the Reynolds transport theorem (Acheson, 1990;
Marsden and Chorin, 1993; Madzvamuse, 2000; Dziuk and Elliott,
2007, 2013), the weak form reads: find 𝑎𝑘 ∈ 𝐻1(𝛤 (𝑡)) such that:

𝑑
𝑑 𝑡 ∫𝛤 (𝑡)

𝜑𝑎𝑘 − ∫𝛤 (𝑡)
𝑎𝑘𝜕

∙𝜑

+∫𝛤 (𝑡)
∇𝛤 (𝑡)𝜑𝑑𝑘 ⋅ ∇𝛤 (𝑡)𝑎𝑘 = ∫𝛤 (𝑡)

𝜑𝑓𝑘(𝒂), (22)

for all 𝜑 ∈ 𝐻1(𝛤 (𝑡)). Since 𝜑 ∈ 𝐻1(𝛤 (𝑡)), its material derivative is also
given by: 𝜕∙𝜑 = 𝜕 𝜑

𝜕 𝑡 + 𝐯 ⋅ ∇𝜑.

3.1.2. The weak form of the curvature equation
Let us first define the scalar product of two second order tensors of

imension 𝑛 as: 𝛼 = 𝑨 ∶ 𝑩 ∶=
∑𝑖=𝑛

𝑖=1
∑𝑗=𝑛

𝑗=1 𝐴𝑖𝑗𝐵𝑖𝑗 . Multiplying Eq. (17)
y a test function 𝝋 and integrating over 𝛤 (𝑡) yields:

∫𝛤 (𝑡)
𝝋 ⋅ 𝜿 = −∫𝛤 (𝑡)

𝝋𝛥𝛤 (𝑡)𝒙. (23)

Then, following Eq. (20), the weak problem reads: find 𝜿 ∈ 𝐻1(𝛤 (𝑡)) ×
1(𝛤 (𝑡)) such that:

∫𝛤 (𝑡)
𝝋 ⋅ 𝜿 = ∫𝛤 (𝑡)

∇𝛤 (𝑡)𝝋 ∶ ∇𝛤 (𝑡)𝒙,

∀𝝋 ∈ 𝐻1(𝛤 (𝑡)) ×𝐻1(𝛤 (𝑡)). (24)

3.1.3. The weak form of the bulk reaction–diffusion system
Multiplying Eq. (11) by a test function 𝜑, integrating it over 𝛤 (𝑡) and

pplying Green’s theorem yields the weak problem: find 𝑎𝑏 ∈ 𝐻1(𝛺(𝑡))
uch that:
 (
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∫𝛤 (𝑡)
𝜑𝑑𝑏∇𝑎𝑏 ⋅ 𝒏 + ∫𝛺(𝑡)

(

−∇𝜑 ⋅ 𝑑𝑏∇𝑎𝑏 − 𝜑𝐶𝑏𝑎𝑏 + 𝜑𝐺𝑏
)

= 0, (25)

for all 𝜑 ∈ 𝐻1(𝛺(𝑡)). Further, since from Eq. (10) 𝑎𝑏 is known at
the boundary, 𝜑 ∈ 𝐻1

0 (𝛺(𝑡)) = {

𝜑 ∈ 𝐻1(𝛺(𝑡)) ∶ 𝜑|𝛤 (𝑡) = 0}. Hence, the
weak problem reads: find 𝑎𝑏 ∈ 𝐻1(𝛺(𝑡)) such that:

∫𝛺(𝑡)

(

−∇𝜑 ⋅ 𝑑𝑏∇𝑎𝑏 − 𝜑𝐶𝑏𝑎𝑏 + 𝜑𝐺𝑏
)

= 0, (26)

for all 𝜑 ∈ 𝐻1
0 (𝛺(𝑡)).

3.1.4. The weak form of the mechanical model
The weak form for Eq. (14) reads: find 𝒖 ∈ 𝐻1(𝛺(𝑡)) ×𝐻1(𝛺(𝑡)) such

hat:

∫𝛤 (𝑡)
𝝋 ⋅ 𝑻 + ∫𝛺(𝑡)

(

−∇𝝋 ∶
(

𝝈 − 𝝈𝒂 + 𝝈𝒄
)

− 𝝋 ⋅ 𝛹𝒖
)

= 0, (27)

for all 𝝋 ∈ 𝐻1(𝛺(𝑡)) ×𝐻1(𝛺(𝑡)).

3.2. Space-discretisation

3.2.1. The finite element approximation of the surface reaction–diffusion
system

Let us first approximate 𝛤 (𝑡) by a polygonal curve 𝛤 ℎ(𝑡) ⊂  (𝑡)
with a set of vertices  ℎ(𝑡) = {

𝑿𝑗 (𝑡)
}𝑁
𝑗=1 ∈ 𝛤 (𝑡) and a set of segments

ℎ(𝑡) = {

 ℎ
𝑒 (𝑡)

}𝑁
𝑒=1. Note that since the curve is closed, the number of

vertices is equal to the number of segments. We now define a finite
element space for each 𝛤 ℎ(𝑡) as (Dziuk and Elliott, 2007): 𝑆ℎ(𝛤 ℎ(𝑡)) =
{

𝜑ℎ ∈ 𝐶0(𝛤 ℎ(𝑡)) ∶ 𝜑ℎ
| ℎ

𝑒
is linear affine for each  ℎ

𝑒 (𝑡) ∈  ℎ(𝑡)
}

, with
asis functions

{

𝜒𝑗
}𝑁
𝑗=1.

We now write the finite element problem as: find 𝑎ℎ𝑘(𝑡) ∈ 𝑆ℎ(𝛤 ℎ(𝑡))
such that
𝑑
𝑑 𝑡 ∫𝛤 (𝑡)

𝜑𝑎ℎ𝑘 − ∫𝛤 ℎ(𝑡)
𝑎ℎ𝑘𝜕

∙𝜑ℎ

+∫𝛤 ℎ(𝑡)
∇𝛤 ℎ(𝑡)𝜑

ℎ𝑑𝑘 ⋅ ∇𝛤 ℎ(𝑡)𝑎
ℎ
𝑘 = ∫𝛤 ℎ(𝑡)

𝜑ℎ𝑓𝑘(𝒂ℎ), (28)

for all 𝜑ℎ ∈ 𝑆ℎ(𝛤 ℎ(𝑡)).
As shown in Elliott and Styles (2012) and Dziuk and Elliott (2013),

he discrete basis functions have the following transport property when
he mesh velocity is different from the material velocity:

𝜕∙𝜒𝑗 = (𝐯ℎ − 𝐯ℎ𝑀 ) ⋅ ∇𝛤 ℎ(𝑡)𝜒𝑗 , (29)

where 𝐯ℎ is the interpolated material velocity on 𝛤 ℎ(𝑡) ∋ 𝒙, 𝐯ℎ(𝒙, 𝑡) =
𝑁
𝑗=1 𝐯(𝑿𝑗 (𝑡), 𝑡)𝜒𝑗 (𝒙, 𝑡), and 𝐯ℎ𝑀 is the mesh velocity: 𝐯ℎ𝑀 (𝒙, 𝑡) = ∑𝑁

𝑗=1 �̇�𝑗
𝑡)𝜒 (𝒙, 𝑡).
𝑗
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Let us write 𝑎ℎ𝑘(𝒙, 𝑡) ∈ 𝑆ℎ(𝛤 ℎ(𝑡)) as 𝑎ℎ𝑘(𝒙, 𝑡) =
∑𝑁

𝑗=1 𝜒𝑗 (𝒙)(𝐴𝑘(𝑡))𝑗 ,
where 𝐴𝑘(𝑡) ∈ R𝑁 is the vector of approximated nodal values of 𝑎ℎ𝑘 at
time 𝑡, and (𝐴𝑘(𝑡))𝑗 are the nodal values. Applying the transport prop-
erty, Eq. (29), we have the following system of ordinary differential
quations:
𝑑
𝑑 𝑡 ∫𝛤 ℎ(𝑡)

𝜒𝑖𝜒𝑗 (𝐴𝑘)𝑗 + ∫𝛤 ℎ(𝑡)
∇𝛤 ℎ(𝑡)𝜒𝑖𝑑𝑘 ⋅ ∇𝛤 ℎ(𝑡)𝜒𝑗 (𝐴𝑘)𝑗

= ∫𝛤 ℎ(𝑡)
𝜒𝑖𝑓𝑘(𝒂ℎ) + ∫𝛤 ℎ(𝑡)

(𝐯ℎ − 𝐯ℎ𝑀 ) ⋅ ∇𝛤 ℎ(𝑡)𝜒𝑖𝜒𝑗 (𝐴𝑘)𝑗 . (30)

This is an extended version of the evolving surface finite element
ethod (ESFEM) where the mesh velocity differs from the material ve-

locity which has been referred to as the Arbitrary Lagrangian–Eulerian
SFEM (ALE-ESFEM) (Elliott and Styles, 2012; Dziuk and Elliott, 2013;

Mackenzie et al., 2021). In the case that the mesh and material veloci-
ies are identical, the discrete material velocity vanishes; hence, so does
he second term at the right-hand-side of Eq. (30). It seems convenient

to let the mesh velocity be equal to the material velocity; yet, this can
rapidly lead to poor mesh quality as the domain deforms (Elliott and
tyles, 2012). Therefore, we will consider a different mesh velocity to
educe mesh distortion along simulations. As will be shown below, such

a velocity 𝐯ℎ𝑀 will be given by mesh smoothing.

3.2.2. The finite element approximation of the curvature equation
We employ the same set of vertices  ℎ(𝑡) = {

𝑿𝑗 (𝑡)
}𝑁
𝑗=1 as outlined

in the previous section. However, the regularity of the solutions re-
quires us to employ at least a quadratic finite element space (Heine,
2004). Therefore, we will approximate 𝛤 (𝑡) by a piecewise quadratic
curve 𝛤 𝑞(𝑡) – here, we used the superscripts (⋅)𝑞 to differentiate this
approximation from 𝛤 ℎ – described by  ℎ(𝑡) and a set of quadratic
segments  𝑞(𝑡) = {

 𝑞
𝑒
}𝑁∕2
𝑒=1 . The finite element space is then: 𝑄𝑞(𝛤 𝑞(𝑡)) =

{

𝜑𝑞 ∈ 𝐶0(𝛤 𝑞(𝑡)) ∶ 𝜑𝑞
| 𝑞

𝑒
is quadratic for each  𝑞

𝑒 (𝑡) ∈  𝑞(𝑡)
}

, and the

finite element problem reads: find 𝜿𝑞 ∈ 𝑄𝑞(𝛤 𝑞(𝑡)) ×𝑄𝑞(𝛤 𝑞(𝑡)) such that:

∫𝛤 𝑞 (𝑡)
𝝋𝑞 ⋅ 𝜿𝑞 = ∫𝛤 𝑞 (𝑡)

∇𝛤 𝑞 (𝑡)𝝋𝑞 ∶ ∇𝛤 𝑞 (𝑡)𝒙𝑞 , (31)

∀𝝋𝑞 ∈ 𝑄𝑞(𝛤 𝑞(𝑡)) ×𝑄𝑞(𝛤 𝑞(𝑡)).

3.2.3. The finite element approximation of the bulk reaction–diffusion sys-
tem

Let us now generate the bulk triangulation 𝛺ℎ(𝑡) of 𝛺(𝑡) and its
orresponding finite element space. We will consider a set of nodes
 ℎ(𝑡) = {

𝑿𝑗 (𝑡)
}𝑁𝑏
𝑗=1 ∈ 𝛺(𝑡) and a set of triangles  ℎ(𝑡) = {

 ℎ
𝑒 (𝑡)

}𝑁𝑇
𝑒=1

such that 𝜕 𝛺ℎ(𝑡) = 𝛤 ℎ(𝑡). The finite element space will be defined as:
𝑉 ℎ(𝛺ℎ(𝑡)) =

{

𝜑ℎ ∈ 𝐶0(𝛺ℎ(𝑡)) ∶ 𝜑ℎ
| ℎ

𝑒
is linear affine for each  ℎ

𝑒 (𝑡) ∈
 ℎ(𝑡)

}

. Thus, the finite element problem reads: find 𝑎ℎ𝑏 ∈ 𝑉 ℎ(𝛺ℎ(𝑡))
such that:

∫𝛺ℎ(𝑡)

(

∇𝜑ℎ ⋅ 𝑑𝑏∇𝑎ℎ𝑏 + 𝜑𝐶𝑏𝑎
ℎ
𝑏 − 𝜑𝐺𝑏

)

= 0, (32)

for all 𝜑ℎ ∈ 𝑉 ℎ
0 (𝛺ℎ(𝑡)), where 𝑉 ℎ

0 (𝛺ℎ(𝑡)) = {

𝜑ℎ ∈ 𝑉 ℎ(𝛺ℎ(𝑡)) ∶ 𝜑ℎ
|𝛤 ℎ(𝑡) =

0
}

.

3.2.4. The finite element approximation of the mechanical model
We use the same triangulation and the same finite element space as

in the previous section to formulate the finite element method for the
mechanical model. Hence, the problem reads: find 𝒖ℎ ∈ 𝑉 ℎ(𝛺ℎ(𝑡)) ×
𝑉 ℎ(𝛺ℎ(𝑡)) such that:

∫𝛤 ℎ(𝑡)
𝝋ℎ ⋅ 𝑻 ℎ

+∫𝛺ℎ(𝑡)

(

−∇𝝋ℎ ∶
(

𝝈ℎ − 𝝈ℎ
𝒂 + 𝝈ℎ

𝒄
)

− 𝝋ℎ ⋅ 𝛹𝒖ℎ
)

= 0, (33)

for all 𝝋ℎ ∈ 𝑉 ℎ(𝛺ℎ(𝑡)) × 𝑉 ℎ(𝛺ℎ(𝑡)).
 s
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3.3. Time-discretisation of the mechanobiochemical model

3.3.1. The time-discretisation of the spatially discretised surface reaction–
diffusion system

To solve the system of surface reaction–diffusion equations on an
evolving surface, we still need to discretise the time-domain of Eq. (30).

hus, we will look for approximations of 𝐴𝑘(𝑡) that can be defined
s 𝐴𝑘(𝜏 𝑚) ≈ 𝐴𝑚

𝑘 , where 𝜏 is the time-step and 𝑚 ∈ N. Applying a
ackward-Euler time-integration scheme, we have: find 𝐴𝑚+1

𝑘 ∈ R𝑁

uch that:
1
𝜏

(

∫𝛤𝑚+1
𝜒𝑚+1
𝑖 𝜒𝑚+1

𝑗 (𝐴𝑚+1
𝑘 )𝑗 − ∫𝛤𝑚

𝜒𝑚
𝑖 𝜒

𝑚
𝑗 (𝐴

𝑚
𝑘 )𝑗

)

+∫𝛤𝑚+1
∇𝛤𝑚+1𝜒𝑚+1

𝑖 ⋅ 𝑑𝑘∇𝛤𝑚+1𝜒𝑚+1
𝑗 (𝐴𝑚+1

𝑘 )𝑗

= ∫𝛤𝑚+1
𝜒𝑚+1
𝑖 𝑓𝑘((𝒂ℎ)𝑚+1)

+∫𝛤𝑚+1
(𝐯ℎ − 𝐯ℎ𝑀 )𝑚+1 ⋅ ∇𝛤𝑚+1𝜒𝑚+1

𝑖 𝜒𝑚+1
𝑗 (𝐴𝑚+1

𝑘 )𝑗 . (34)

Eq. (34) in matrix–vector form is postulated as:
1
𝜏
(

𝑚+1𝐴𝑘
𝑚+1 −𝑚𝐴𝑘

𝑚) + 𝑑𝑘𝑚+1𝐴𝑚+1
𝑘

= 𝑘
𝑚+1 +  𝑚+1𝐴𝑚+1

𝑘 , (35)

where

𝑚 = ∫𝛤𝑚
𝜒𝑚
𝑖 𝜒

𝑚
𝑗 , 𝑚 = ∫𝛤𝑚

∇𝛤𝑚𝜒𝑚
𝑖 ⋅ ∇𝛤𝑚𝜒𝑚+1

𝑗 ,

𝑚
𝑘 = ∫𝛤𝑚

𝜒𝑚
𝑖 𝑓𝑘((𝒂

ℎ)𝑚),  𝑚 = ∫𝛤𝑚
(𝐯ℎ − 𝐯ℎ𝑀 )𝑚 ⋅ ∇𝛤𝑚𝜒𝑚

𝑖 𝜒
𝑚
𝑗 .

Notice that 𝑘 is nonlinear due to 𝑓𝑘.
In addition, in Eq. (6), 𝑎2 is homogeneous along 𝛤 (𝑡) for all 𝑡 ∈

[0, 𝑇𝑓 ]. Therefore, the diffusion term of Eq. (34) is zero and the equation
for 𝑎2 simplifies as: find 𝐴𝑚+1

2 ∈ R𝑁 such that
1
𝜏
(

𝑚+1𝐴2
𝑚+1 −𝑚𝐴2

𝑚) = 2
𝑚+1 +  𝑚+1𝐴𝑚+1

2 . (36)

To numerically deal with the nonlinearities in Eq. (34), which are due
to the 𝑓𝑘, we employ the Newton–Raphson scheme. Since, we are using
the user-defined element subroutine (UEL) of ABAQUS, we need to
define the residual (Eq. (38)) and the tangent (Eq. (39)) equations.
Thus, the numerical algorithm reads: find 𝐴𝑚+1

𝑘 =
(

𝐴𝑚+1
𝑘

)

𝑟+1 such that
(

𝐴𝑚+1
𝑘

)

𝑟+1 −
(

𝐴𝑚+1
𝑘

)

𝑟 ≤ 10−6 with:
𝜕 𝑅𝑚+1

𝑘

𝜕 𝐴𝑚+1
𝑙

(

(

𝐴𝑚+1
𝑘

)

𝑟+1 −
(

𝐴𝑚+1
𝑘

)

𝑟

)

= −𝑅𝑚+1
𝑘 , (37)

where (𝐴𝑚+1
𝑘 )0 = 𝐴𝑚

𝑘 . The residual equation is stated as follows:

𝑅𝑚+1
𝑘 = 1

𝜏
(

𝑚+1𝐴𝑘
𝑚+1 −𝑚𝐴𝑘

𝑚) + 𝑑𝑘𝑚+1𝐴𝑚+1
𝑘

−𝑘
𝑚+1 −  𝑚+1𝐴𝑚+1

𝑘 , (38)

while the tangent equation states:

𝜕 𝑅𝑚+1
𝑘

𝜕 𝐴𝑚+1
𝑙

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝜏
𝑚+1 + 𝑑𝑘𝑚+1 −  𝑚+1 −

𝜕𝑚+1
𝑘

𝜕 𝐴𝑙
𝑚+1

for 𝑘 = 𝑙,

−
𝜕𝑚+1

𝑘

𝜕 𝐴𝑙
𝑚+1

for 𝑘 ≠ 𝑙,
(39)

where:
𝜕𝑚+1

𝑘

𝜕 𝐴𝑙
𝑚+1

= ∫𝛤𝑚+1
𝜑𝑚+1𝜑𝑚+1 𝜕 𝑓𝑘

𝜕 𝑎𝑙
(𝒂𝑚+1).

3.3.2. The approximation of the Lagrange multiplier or area constraint 𝜆(𝑡)

To proceed, we now need to solve Eq. 16 for the Lagrange multiplier
or area constraint 𝜆(𝑡). Here, we employ the simple forward Euler
cheme, thus:
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𝑑 𝜆
𝑑 𝑡 ≈ 𝜆𝑚+1 − 𝜆𝑚

𝜏
=

𝛽1𝜆(𝐴𝑚 − 𝐴0 + (𝛥𝐴∕𝜏)𝑚)
𝐴0(𝜆𝑚 + 𝛽1)

− 𝛽 𝜆𝑚. (40)

The terms (𝛥𝐴∕𝜏)𝑚 and 𝐴𝑚 are, respectively, the change of area and the
area at time 𝜏 𝑚. Therefore, (𝛥𝐴)𝑚 = 𝐴𝑚 − 𝐴𝑚−1.

3.4. Mesh smoothing and adaptive re-meshing algorithms

Two mesh smoothing algorithms are used to improve the quality
f the finite element triangulation throughout the simulation. First,
 surface mesh equidistribution scheme is implemented by means of
he De Boor’s algorithm (de Boor, 1973) and the parametric quadratic
esh. Second, the Durand et al.’s (2019) algorithm is implemented

o smooth the bulk mesh. Notice that the surface mesh is made up
of nodes present in the bulk mesh. Additionally, as the cell deforms
continuously in space and time, a re-meshing scheme is also utilised
in cases where the mesh quality drops bellow a specific threshold,
monitoring, a posteriori, the mesh regularity during evolution. This
e-meshing scheme is based on the Mesh2D toolbox (Engwirda, 2005,

2014).
First, let us describe the mesh smoothing algorithm used on the

surface. Since we defined a quadratic finite element mesh for the
surface, we use the quadratic parameterisation to equidistribute the
mesh. To do this, we need to define a transformation from 𝒙 ∈ 𝛤 𝑞 ⊂ R2

to 𝑥 ∈ [0, 𝐿] ⊂ R, with 𝐿 the perimeter of 𝛤 𝑞 , such that the size
of each element on 𝛤 𝑞 is equal to the size of the image element in
[0, 𝐿]. We might use a local transformation for 𝜉 ∈ [−1, 1] for each
element for easy computations of the arc length. Then, we use the
De Boor’s algorithm to reorganise the nodes, such that the distance
etween each pair of adjacent nodes is equal. After that, we use the
nverse transformation to reconstruct the curve. We might use several
terations to improve the equidistribution.

Let us start by defining the local transformation and the element arc
length. Let 𝒙𝑒1, 𝒙

𝑒
2 and 𝒙𝑒3 be, respectively, the start-, the end- and the

middle-nodes of an element  𝑞
𝑒 . The transformation is then:

𝒙𝑒(𝜉) = [𝑥𝑒, 𝑦𝑒]⊤ = 𝜃𝑒1(𝜉)𝒙
𝑒
1 + 𝜃𝑒2(𝜉)𝒙

𝑒
2 + 𝜃𝑒3(𝜉)𝒙

𝑒
3, (41)

where 𝜃𝑒𝑖 are defined as: 𝜃𝑒1 = 0.5𝜉(𝜉 − 1), 𝜃𝑒2 = 0.5𝜉(𝜉 + 1), 𝜃𝑒3 = 1 − 𝜉2.
The arc length of each element A𝑒

𝑙 can be computed as the arc length
of the parametric curve defined in Eq. (41):

A𝑒
𝑙 = ∫

1

−1

√

√

√

√

(

(

𝑑 𝑥𝑒
𝑑 𝜉

)2
+
(

𝑑 𝑦𝑒
𝑑 𝜉

)2
)

= ∫

1

−1

√

√

√

√

√

( 3
∑

𝑖=1

𝑑 𝜃𝑒𝑖
𝑑 𝜉 𝑥𝑒𝑖

)2

+

( 3
∑

𝑖=1

𝑑 𝜃𝑒𝑖
𝑑 𝜉 𝑦𝑒𝑖

)2

𝑑 𝜉 , (42)

which can be approximated by Gaussian quadrature. Next, the total arc
ength is computed by A𝐿 =

∑(𝑁∕2)
𝑒=1 A𝑒

𝑙 . Since we want to equidistribute
he surface mesh, each element must have A𝐿∕(𝑁∕2) arc length and
sing the De Boor’s algorithm we find the appropriate node locations.

Let A𝑧𝑒
𝐿 be the arc length from the first node until the end of element

𝑒, e.g. if 𝑒 = 3, A𝑧3
𝐿 = A1

𝑙 + A2
𝑙 + A3

𝑙 . Since each element must have arc
ength A𝐿∕(𝑁∕2), we need to find a new 𝒙𝑒2, say �̂�𝑒2, such that the new

arc length is �̂�𝑧𝑒
𝐿 = 𝑒A𝐿∕(𝑁∕2). Thus, by De Boor’s algorithm we need

to find an element 𝑟 such that: A𝑧𝑟−1
𝐿 ≤ (𝑒A𝐿∕(𝑁∕2)) ≤ A

𝑧𝑟
𝐿 . This means

that �̂�𝑒2 belongs to element 𝑟. Then, we find: �̂�𝑒2 such that:

𝑒A𝐿
𝑁∕2

− A
𝑧𝑟−1
𝐿 = ∫

𝜉(�̂�𝑒2)

−1

√

√

√

√

√

( 3
∑

𝑖=1

𝑑 𝜃𝑟𝑖
𝑑 𝜉 𝑥𝑟𝑖

)2

+

( 3
∑

𝑖=1

𝑑 𝜃𝑟𝑖
𝑑 𝜉 𝑦𝑟𝑖

)2

𝑑 𝜉 . (43)

Again, we use Gaussian quadrature to approximate 𝜉(�̂�𝑒2), although we
need to iterate several times. Once we have 𝜉(�̂�𝑒2), we use Eq. (41) on
element 𝑟 to find �̂�𝑒2.

Using this procedure, we set an equidistant mesh. However, since
we are working on a closed curve, there are infinite possible meshes.
or the purpose of uniqueness, we add an additional constraint such
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Fig. 3. Surface smoothing scheme. The De Boor’s algorithm is used to equidistribute
curved meshes. The illustration indicates how the nodes are relocated along the length
of the discrete contour.

that the distance between the initial mesh and the final mesh is mini-
mal. Let us first recall the initial mesh on [0, 𝐿] with the set of points
𝑥𝑗
}𝑁
𝑗=1 and the target set of points

{

𝑦𝑗
}𝑁
𝑗=1. We then establish the

optimisation problem as: find
{

𝑦𝑗
}𝑁
𝑗=1 such that:

𝑦𝑗 − 𝑦𝑗−1 = 𝛥𝑦 is constant (44)

and
( 𝑁
∑

𝑗=0

(

𝑥𝑗 − 𝑦𝑗
)2
)1∕2

is minimal. (45)

By De Boor’s algorithm we satisfy Eq. (44) and, acknowledging that
efining 𝑦0 we only find one equidistant mesh, we set the target

function as:

𝐹 (𝑦0) =
( 𝑁
∑

𝑗=0

(

𝑥𝑗 − (𝑦0 + 𝑗 𝛥𝑦))2
)1∕2

. (46)

This attains its minimum value when

𝑦0 =

(

∑𝑁
𝑗=0 𝑥𝑗

)

−
(

𝛥𝑦𝑁(𝑁 + 1)
2

)

𝑁
, (47)

which can be negative since 𝛤 𝑞 is a closed curve. Thus, the algorithm
for equidistribution on the curve with minimal mesh displacement is
as follows: (i) set a mapping from 𝛤 𝑞 to [0, 𝐿], (ii) define 𝛥𝑦 = 𝐿∕𝑁 ,
(iii) establish 𝑦0 with Eq. (47), (iv) use De Boor’s algorithm to compute
he other nodes, and (v) apply the inverse mapping with the Gaussian

quadrature to solve Eq. (43). A schematic representation is shown in
Fig. 3.

Now, for the bulk mesh smoothing we use the method introduced
n Durand et al. (2019). We also adopt their mesh quality metric, which
or a triangle element is given by Durand et al. (2019):

Q𝑇 =

⎛

⎜

⎜

⎜

⎜

⎝

6
√

𝐴𝑇
√

3

𝑝𝑇

⎞

⎟

⎟

⎟

⎟

⎠

2

. (48)

In the case that this method fails in improving the minimum
quality, Qmin, above some threshold, say Q∗

min, we use the Mesh2D
toolbox (Engwirda, 2005, 2014) to re-mesh the domain. Since the
bulk variables are not time-dependent, it is not necessary to map the
variables after the re-meshing scheme. Additionally, the equidistant
surface mesh is provided as an input to Mesh2D and remains
unmodified. Therefore, the surface variables do not need to be mapped
either.

The full algorithm can be summarised as follows:

1. Set the initial mesh

(a) Generate an initial piecewise linear mesh on the surface
with a even number of nodes.
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(b) Use the Engwirda’s (2005, 2014) toolbox Mesh 2D to
create a piecewise linear triangular mesh.

(c) Create a quadratic set of surface elements using the same
nodes of Item 1a.

(d) Use the Durand et al.’s (2019) algorithm to smooth the
mesh.

2. Solution of field variables at time 𝑛𝜏.

(a) Approximate 𝑎1 and 𝑎3 through Eq. (38).
(b) Approximate 𝑎2 through Eq. (36).
(c) Approximate 𝜿, 𝑎𝑏 and 𝒖 through Eqs. (31)–(33).
(d) Update the nodal positions as 𝒙𝑛+1 = 𝒙𝑛 + 𝒖𝑛.
(e) Approximate 𝜆 through Eq. (40).
(f) If 𝑛𝜏 = 𝑇𝑓 go to Item 4.

3. Improve mesh quality

(a) Use the de Boor’s (1973) algorithm to equidistribute the
surface mesh.

(b) Use the Durand et al.’s (2019) to smooth the solid mesh
until the mesh change by 𝐿2-norm is less than 𝐼 𝑡𝑒tol or
the maximum number of iterations 𝐼 𝑡𝑒max is reached. If
Qmin > Q∗

min go to Item 2 if not go to Item 1.

4. Finish.

4. Validation of the bulk-surface finite element method

4.1. Numerical validation of the bulk-surface moving-mesh finite element
pproach

Next, we will test the convergence of the bulk-surface moving-
esh finite element approach. For that, we will run a simulation

f a cell undergoing chemotaxis, where the domain centroid moves
from (0, 0) to (0, 0.5) with several time-steps and different numbers of
oundary nodes. We will compute the 𝐿2-norm of the displacement
rror considering the simulation with the smallest time step and the
argest number of boundary nodes as the gold standard. For the 𝐿2-
orm, we will map the displacement field of each simulation onto the
nitial mesh of the gold standard. This will allow us to compute the
isplacement error as:

√

∫𝛺0
(𝒖𝑟 − 𝒖) ⋅ (𝒖𝑟 − 𝒖)𝑑 𝛺0.

We then proceed to investigate the response of Meinhardt’s model
n a stationary two-dimensional closed hypersurface. The idea here is
o test the response with several combinations of parameters in terms
f signal amplification and adaptation to new signals.

We exhibit results of the whole computational algorithm under two
ifferent combinations of parameters. One of them corresponding to
hemotactic migration and the other to spontaneous movement. These
umerical tests are computed using the numerical methods presented in
he previous section in a desktop computer with a quad-core processor
ith 2.40 GHz of base frequency and 32 Gb of RAM.

Table 2 shows the displacement errors for a simulation time of
𝑇𝑓 = 4.0, which was the common time at which no simulation required
remeshing. As can be seen, the displacement error reduces as the time-
step becomes smaller and the number of nodes larger. From these
results, we will take 𝜏 = 0.001 and 2000 nodes to define the initial
contour.

4.2. Meinhardt’s model for cell polarisation

Let us fix 𝑎10, 𝑎20, 𝑎30 𝛾, 𝑘1, 𝑘2, 𝑠3, 𝑟1, 𝑟2, 𝑟3, 𝜂𝑠 and 𝜂𝑛 (see Table 3)
sing the values from Meinhardt (1999), Neilson et al. (2011) and

Elliott et al. (2012). We shall vary 𝑘3 and 𝑠1 – as their values differ
lightly among (Meinhardt, 1999; Neilson et al., 2011; Elliott et al.,

2012) – as well as 𝑑1 and 𝑑3 to identify appropriate parameters for
chemotactic and spontaneous migration.
 1
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Table 2
Convergence of the displacement field varying 𝑁 , the number of boundary nodes and
𝜏, the time step. The 𝐿2-norm of the displacement error is computed assuming as
reference displacement the result of the simulation with 𝑁 = 4000 and 𝜏 = 0.0001.
𝑁 𝜏 = 0.002 𝜏 = 0.0005 𝜏 = 0.0002 𝜏 = 0.0001
1000 1.334e−02 1.305e−02 1.303e−02 1.299e−02
2000 1.274e−02 1.053e−02 1.012e−02 9.945e−03
4000 3.653e−03 1.279e−03 6.734e−04 0.000e+00

Table 3
Fixed parameters for Meinhardt’s model for cell polarisation. 𝛾 was taken from (Elliott
et al., 2012), and the ⋆ indicates the values taken from (Meinhardt, 1999).
𝛾⋆⋆ 𝑘⋆1 𝑘⋆2 𝑠⋆3 𝑟⋆1 𝑟⋆2 𝑟⋆3 𝜂⋆𝑠 𝜂⋆𝑛 𝑎10 𝑎20 𝑎30
2500 0.1 0.03 0.2 0.02 0.03 0.013 0.02 0.01 1.0 1.0 1.0

Table 4
Meinhardt’s model response. Summary of the response of Meinhardt’s model for cell
olarisation with different parameters.
Experiment 𝑘3 𝑠1 𝑑1 𝑑3 𝑁𝑝 𝑤 𝑎max

1 Adaptation

1 0.005 0.005 10 100 1 2.127 7.72 Yes
2 0.005 0.005 10 60 1 2.218 6.91 Yes
3 0.005 0.005 10 50 1 2.259 6.6 Yes
4 0.005 0.01 10 30 1 2.717 4.78 Yes
5 0.005 0.005 10 30 1 2.441 5.69 Yes
6 0.005 0.0025 10 30 1 2.262 6.48 Yes
7 0.0025 0.005 10 30 1 2.975 8.1 Yes
8 0.005 0.01 10 20 1 3.135 4.15 Yes
9 0.005 0.005 10 20 1 2.677 4.94 Yes
10 0.005 0.0025 10 20 1 2.466 5.58 Yes
11 0.0025 0.005 10 20 1 3.299 7.18 Yes
12 0.005 0.01 10 15 1 3.415 3.68 Yes
13 0.005 0.005 10 15 1 2.934 4.4 Yes
14 0.005 0.0025 10 15 1 2.680 4.96 Yes
15 0.0025 0.005 10 15 1 3.654 6.49 Yes
16 0.005 0.005 1 2.5 2 1.949 6.46 No
17 0.005 0.005 1 2 2 2.079 5.94 No

For this experiment, the domain is a circle of radius 1 centred at
(0, 0), the finite element discretisation is composed of 2000 nodes and
elements and the time-step is 0.001. The signal is set at (5, 5) from
time 0 to 15 and at (−5,−5) from 15 to the end of the simulation. We
then consider the following measures: the number of peaks 𝑁𝑝 which
are associated to the leading edges, the highest value of the activator
𝑎max
1 , the width 𝑤 of the peaks above 𝑎max

1 ∕2 and whether the model
is able to adapt to a new signal. 𝑁𝑝 allows us to determine the ability
of the model to yield a polarised state, 𝑎max

1 indicates the strength of
the polarisation and 𝑤 defines how localised it is. In addition, 𝑁𝑝 > 1
indicates the presence of competing leading edges.

4.3. Chemotactic-driven directed cell migration

For the solution of the complete model, let us set the parameters of
the mechanical model as presented in Table 5. These parameters were
elected in order to validate the general ability of the computational

framework to reproduce key features and properties observed during
single cell migration and are not experimentally determined. A more
igorous selection would require: (i) the selection of a specific type
f cell, (ii) the substratum attachment strength to define 𝛹 , (iii) its
lastic properties 𝜈 and 𝐸, the calibration of 𝛽1 and 𝛽2 to set the

response speed of the area control mechanism through the Lagrange
multiplier 𝜆, (iv) the membrane tension to properly define 𝛿, and (v)
he relation between the formation of actin filaments and the mechan-

ical stress induced to set 𝜀0. We defer such an experiment for future
studies where we will also try and recover some of these parameters
through inverse approaches for parameter estimation, using Bayesian

ethods (Campillo-Funollet et al., 2019).
For chemotactic cell migration, we choose the parameters for Exp.

1 (in Table 4) as explained in the next section. The initial cell domain
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Table 5
Parameters of the mechanical model. The last three parameters, namely Q∗

min, 𝐼 𝑡𝑒max
and 𝐼 𝑡𝑒tol, are parameters of the mesh smoothing algorithm presented.
𝛹 𝜈 𝐸 𝛿 𝛽1 𝛽2 𝜆0 𝜀0 Q∗

min 𝐼 𝑡𝑒max 𝐼 𝑡𝑒t ol
0.1 0.45 1 0.001 0.2 0.001 2.0 2.5e−5 0.55 10 0.001

is bounded by a circle of radius 1 centred at (0, 0). Furthermore, the
system is tested under an initial signalling point at (5, 5) that is then
changed at 𝑡 = 75 to (0, 10). For this simulation, the time-step 𝜏 = 0.001,
the surface was discretised with 2000 equidistant nodes and the size of
the bulk mesh was constraint to 0.25.

4.4. Spontaneous cell migration

In this case, the mechanical model is implemented with the same
parameters as presented in Table 5. The initial cell domain is also
bounded by a circle of radius 1 centred at (0, 0) and for Meinhardt
model we use the parameters corresponding to the Exp. 17—again,
this choice is explained in the next section. We expect to see unsteady
and completely spontaneous cell migration using these parameters and
letting 𝜂𝑠 = 0 and 𝜂𝑛 = 0. The initial mesh and the time-step are the
same as in the chemotactic-driven directed cell migration case.

5. Exhibiting single cell migration pathways using the bulk-
surface moving-mesh finite element method

5.1. Meinhardt’s model for cell polarisation

Table 4 shows the results of our experiments. We see that Exp. 16
and Exp. 17, where 𝑑1 = 1 and 𝑑3 = 2 and 2.5 respectively, had a
very different response compared to the others. The system developed
two coexisting and competing peaks and was unable to adapt to the
signal direction. Additionally, the two coexisting peaks spontaneously
changed position. In contrast, in Exp. 1 to Exp. 15, the system devel-
oped a single stable peak aligned with the signalling direction that was
able to reorient once the signalling direction changed.

Further, in Exp. 1 to Exp. 15, where 𝑑1 = 10 and 𝑑3 varied from 15
to 100, it was observed that increasing 𝑑3 made 𝑎max

1 larger. However,
𝑤 decreased, and the system was slower to move from one polarised
state to another. This can be explained by the fact that more rapid
diffusion of 𝑎3 leads to a non-concentrated distribution, causing its
inhibition to have a more global effect. As a result, 𝑎1 can grow more
rapidly at regions of maximum values, while is more rapidly inhibited
at regions of lower values. Furthermore, decreasing the value of 𝑠1, also
increased 𝑎max

1 and decreased 𝑤. This can also be explained by the fact
that reducing 𝑠1 increases the production of 𝑎1 which by definition is
enhanced at regions of high values—it is proportional to the square of
𝑎1.

A reduction in 𝑘3 from 0.005 to 0.0025 resulted in higher values of
𝑎max
1 and 𝑤, and decreased the time required to transition between po-

larised states. Yet, a further reduction, to for example 0.00125, almost
homogenised the response. This may be explained by the fact that since
𝑘3 is the production rate of 𝑎3, which locally inhibits 𝑎3, reducing 𝑘3
leaves the reaction–diffusion system with only one inhibitor, 𝑎2, which
might not increase fast enough to trigger pattern formation.

From these results, the parameter values of Exp. 11 will be used for
chemotactic-driven directed cell migration. In this case, the system is
able to adapt to a new signalling source and the strength and width of
the peak (𝑎max

1 and 𝑤) were among the largest. This shows the ability
of the system to amplify the external signal. Fig. 4 shows the results of
the simulation with such parameters. As can be seen, the system took
around 𝑡 = 1.1 to reach a stable polarised state. After that, at time 15
the signal was changed to the opposite direction and the system needed
about 𝑡 = 150 to develop the new polarised state. The transition from
11 
Fig. 4. Response of Meinhardt’s model with parameters from Exp. 11. A stationary
circle of radius 1 centred at (0, 0). The graph shows 𝑎1 along the arc length at
simulation times 0.3, 1.1, 90 and 150. The contour plot refers to 𝑠𝑒 which started
with a chemotactic signal at (5, 5) and changed to (−5,−5) at time 15. As can be seen,
the system went from a polarised state around 𝐿 = 1 to another polarised state around
𝐿 = 4 due to the change of the signalling-source point.

Fig. 5. Response of Meinhardt’s model with parameters from Exp. 17. A stationary
circle of radius 1 centred at (0, 0). The graph shows 𝑎1 along the arc length at simulation
times 1, 30, 60 and 90.

𝑡 = 1.1 to 𝑡 = 150 occurred as a travelling wave as indicated by the
results at time 90.

Similarly, the parameters of Exp. 17 will be used for spontaneous
cell migration. As can be seen in Fig. 5, the competing peaks spon-
taneously change of orientation and are not affected by the external
signal. This may represent a system of exploration of the environment.

5.2. Chemotactic-driven directed cell migration

Next, we analyse the impact of chemotactic cell migration as shown
in Fig. 6. The simulation ran until 𝑡 = 205 and the cell migrated
towards the signalling-source points. We see the ability of the model
to mimic migration pathways to specific locations and to adapt to the
repositioning of the signalling sources. Fig. 6(a) shows the changes in
shape of the cell and the position of its centroid as well as the 𝑎𝑏 field.
In this case, the domain conserved a round-like shape throughout the
whole simulation. It must be noticed that the cell membrane—as well as
the cytosol—rapidly polarised towards the first signalling-source point
(5, 5). After the change in position of the signalling-source point, the
cell polarised towards (10, 0) as expected. When the cell reached the
source point, it continued to move and eventually passed over it. In
consequence, the chemotactic signal became stronger at the cell rear,
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Fig. 6. Results of chemotactic cell migration. (a) Results of the chemotactic-driven cell migration at 𝑡 = 1, 25, 50, 75, 100, 125, 150, 166, 198 and the migration locus of the centroid.
The colour map indicates the 𝑎𝑏 field, the blue dots are the signalling-source points and the continuous and solid black line is the trajectory made by the cell centroid. The inner
box indicates the curvature of the rear of the cell membrane at 𝑡 = 94. The colour map refers to the signed curvature. (b) Evolution of cell area oscillating between 2.7 and 3.53.
Fig. 7. Report of mesh statistics and smoothing iterations at each step during chemotactic-driven cell migration. (a) Number of smoothing iterations. The vertical lines indicate
re-meshing steps. (b) Mesh quality statistics. From top to bottom the curves indicate respectively the maximum, the average and the minimum qualities.
causing the membrane dynamics to reorient backwards. Therefore, as
see in Fig. 6(a), after reaching the second point, the cell began to move
around the source point due to this reorientation phenomenon.

Additionally, the simulation shows the appearance of a small protru-
sion at the rear, see the distribution of the signed curvature in Fig. 6(a).
Fig. 6(b) shows the evolution of the cell area during the simulation. As
can be seen, it varied strongly at the beginning, before 𝑡 = 20, and then
began to oscillate between time 3.15 and 3.22.

Finally, Fig. 7 shows the mesh quality (see Eq. (48)) and the positive
impact of the mesh smoothing and re-meshing schemes. Fig. 7(b)
shows, from top to bottom, the maximum, the average and the min-
imum element qualities, respectively, throughout the simulation. The
maximum was 1 at every step which is in fact the maximum possible
value. The average remained around 0.93—this is a high quality value
and indicates that the mesh throughout the simulation was almost
optimal. In contrast, the minimum quality fluctuated somewhat slightly
with the lowest value at about 0.58 and the highest at about 0.68.
In terms of the smoothing scheme, Fig. 7(a), in those cases where the
algorithm was sufficient to deliver an acceptable mesh, 3 or 4 iterations
were needed. Furthermore, it was not necessary to use the re-meshing
scheme since the mesh was at optimal regularity (for example, for
18,000 time steps). Hence, the re-meshing algorithm was employed
when it was absolutely necessary, thereby saving significantly on the
computational costs and efficiency of the algorithm.
12 
5.3. Spontaneous cell movement

Figs. 8 and 9 show the results for the case of spontaneous cell
migration. In this case, the simulation was run until 𝑡 = 124 and
the cell migrated without any external signal or space dependent
parameter. Fig. 8(b) shows the trajectory of the cell centroid that
indicates zigzag migration and some directional persistence—rather
than moving around (0, 0) the cell moved towards (0.6,−1.6). In Fig. 9,
the shape and the 𝑎𝑏 field is illustrated at 𝑡 = 1, 25, 50, 75, 100, 124.
Although the deformation of the domain is higher than in the previous
case, it is noticeable how the round-like shape is still dominant. In
addition, the commonly reported behaviour of Meinhardt’s model can
be seen, i.e., the appearance of two competing pseudopods (Meinhardt,
1999; Neilson et al., 2011; Elliott et al., 2012; Campbell et al.,
2017)—nonetheless, in this simulation there is no external stimuli at
all. Further, Fig. 8(a) shows that the area of the cell fluctuated much
more, between 2.7 and 3.53 after 𝑡 = 20.

Lastly, Fig. 10(b) describes the quality of the mesh throughout the
simulation. Although the maximum quality was again 1, the average
and the minimum qualities fluctuated more and reached lower values
compared to the chemotactic case. Furthermore, Fig. 10(a) shows two
stages. At the beginning, until about 𝑡 = 20, the smoothing scheme was
enough to deal with the mesh deformation. However, after 𝑡 = 20, it
was not enough and many more runs of the re-meshing scheme were
needed.
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Fig. 8. Results of spontaneous cell migration. In (a), the cell area evolution during the simulation is presented which oscillates between 2.7 and 3.53. (b) illustrates the trajectory
of the cell centroid.

Fig. 9. Results of spontaneous cell migration. At 𝑡 = 1, 25, 50, 75, 100, 124. The colour map indicates the 𝑎𝑏 field.
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Fig. 10. Report of mesh statistics and smoothing iterations at each step in spontaneous migration. (a) Number of smoothing iterations. The vertical lines indicate a re-meshing
step. (b) Statistics on the mesh regularity. From top to bottom the curves indicate respectively the maximum, the average and the minimum qualities.
6. Discussion

In this study, we have formulated a bulk-surface mechanobiochem-
ical model for single cell migration during directed and spontaneous
migration. The model couples mechanical properties describing the me-
chanical structure of the cytoskeleton with biochemical processes de-
scribing the spatiotemporal dynamics of the actomyosin molecules dur-
ing the process of single cell migration. We then employed a novel bulk-
surface moving-mesh finite element method to discretise the model
in space. Standard finite differences in time allowed us to solve the
resulting semi-discrete weak variational forms. By employing in a novel
way, smoothing and re-meshing algorithms, we are able to exhibit
computationally large cell deformations during migration. The compu-
tational framework allows us to access easily geometric, mechanical
and biochemical properties which play a crucial role during the process
of single cell migration. Not only are we able to exhibit cell migration
pathways as observed experimentally, we are also able to compute and
quantify geometric quantities such as the curvature, material and mesh
velocities, area, speed, cell stiffness and the spatiotemporal distribution
of the actomyosin molecules. This study significantly contributes to an
emerging area of investigating the role of mechanics and biomolecular
spatiotemporal dynamics during the process of single cell migration.

We briefly summarise here the computational modelling approach
and its implementation. First, we saw that Meinhardt’s model exhibits
travelling-wave, chemotactic, and (ii) competing-peak, spontaneous
behaviours, along the cell membrane. Although the dynamics of the
leading edge varied from cell to cell, most cells have travelling actin
waves (Allard and Mogilner, 2013; Kamps et al., 2020). These waves
can appear locally or globally, depending on the cell and the ex-
tracellular environment on which it is migrating. For the case of
chemotactically-driven migrating cells, the waves appear locally and
help cells to avoid obstacles or reorientation or re-polarisation (Allard
and Mogilner, 2013; Kamps et al., 2020). Fig. 11 illustrates this phe-
nomenon in human breast cancer (MDA-MB-231 line). By following the
arrows, which indicate the position of the leading edge, we appreciate
the travelling wave from the top left to the bottom right of Fig. 11.
This phenomenon, where the leading edge travels from one location to
another, is successfully mimicked in the mechanobiochemical model in
the presence of chemoattractant as illustrated in Fig. 6(a).

On the other hand, when cells move unsteadily the actin dynamics
can include global travelling waves and the appearance of leading
edges at different locations (Allard and Mogilner, 2013; Kamps et al.,
2020). In Fig. 9, the spontaneous-migration case reproduces this type of
kinetic dynamics, as also reported in Neilson et al. (2011), Elliott et al.
(2012) and Campbell et al. (2017). Although the response is similar,
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in the case presented here, the parameters are all homogeneous, and
thus, the kinetics is completely spontaneous—in Neilson et al. (2011),
Elliott et al. (2012) and Campbell et al. (2017) the authors included a
space-dependent chemotactic-signalling term. The dissimilarity in our
chemotactic response therefore is due to the difference in parameters
and the signalling term. Nonetheless, even though the model can
reproduce chemotactic and spontaneous migration, it utilises different
mechanisms depending on the different parameters in each scenario;
thus, a further analysis of the model is required. It would be very inter-
esting to find a set of parameters able to provide a local travelling wave
in chemotactic migration as well as competing peaks in spontaneous
migration.

In addition, our results show a marked round-like shape. This is
common in amoeboid movement which is characterised by small or
highly homogeneously distributed adhesion points and strong acto-
myosin-mediated contractility (Friedl and Alexander, 2011). In our
mechanobiochemical model, the adhesion points are represented by
the right-hand-side term of Eq. (13) which is space-independent. The
contraction, dominated by 𝜆(𝑡), is also homogeneous and therefore does
not precisely model actomyosin-mediated contractility because 𝜆 is not
polarised. Yet, it does contribute to maintain the round shape of the
domain. Additionally, at time 𝑡 = 94 for the chemotactic case, we see
that the rear has a small protrusion (Fig. 6(a)) that can be also appreci-
ated in Fig. 11. Although the protrusion in the simulation is not as large
as the one observed in experiments (Gau and Roy, 2020), it indicates
qualitative agreements with experiments. Lastly, while in chemotactic
migration, the cell area achieved an almost steady state with a variation
up to 2.5%, in spontaneous migration, this variation was larger, up to
14%. Therefore, our model predicts that in chemotactic migration, the
cell adopts a protrusion-contraction regime in phase, in spontaneous
migration, this regime is out of phase.

In the case of spontaneous migration, the trajectory (Fig. 8) exhibits
zigzag turning and some directional persistence. Da Yang et al. (2011)
describes this phenomenon for microglia cells from rats (PMG) and
mice (MG5). In their experiments, cells were able to move freely,
without external guidance and at a very low density, showing a ten-
dency to advance in an almost linear straight direction followed by a
sudden change in direction. Moreover, they determined a statistically
significant zigzag pattern. In short, they showed that it is more likely
that a microglia cell turn in the opposite direction of the previous turn
than in the same direction. In other words, after turning with a positive
angle it is more likely that the cell will turn with a negative angle
and vice versa. In addition, they also reported a short-term directional
persistence. This response of Meinhardt’s model has been previously
reported in Neilson et al. (2011) and Elliott et al. (2012).
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Fig. 11. Picture shots from a cell migration assay. Experiment using human breast cancer (MDA-MB-231 line) presented in Gau and Roy (2020) (permission given by Dr. Gau).
The arrows point to the leading edge and show how it travels along the membrane.
7. Conclusions

In this work a computational modelling framework for the simu-
lation of cell migration was introduced. The proposed framework is
able to mimic both spontaneous and chemotactic or directed single
cell migration with an appropriate selection of parameters. In addition,
this computational framework deals with highly deforming domains by
means of three algorithms: the de Boor’s (1973) algorithm to equidis-
tribute the boundary mesh, the Durand et al.’s (2019) algorithm to
smooth the bulk mesh, and the Engwirda’s (Engwirda, 2005, 2014)
toolbox to remesh the domain when necessary. Furthermore, it is able
to model and simulate bulk-surface processes that drive single cell
migration on evolving two-dimensional domains.

In the current work, we presented a bulk-surface moving-mesh finite
element method that allows the computation of a deforming domain
for long periods of time and a simplified model for cell migration. In
addition, we also improved the Durand et al.’s (2019) algorithm by
combining it with the de Boor’s (1973) algorithm. Durand et al. (2019)
indicated that non-straight surface meshes, for example a circle, could
not be smoothed with their method. Nevertheless, the de Boor’s (1973)
algorithm presented here, easily deals with such a drawback.

In short, our model considers a simplified biological system where
the information goes from the membrane kinetics to the cytosolic
kinetics that then leads to a mechanical response. Furthermore, as the
mechanical response deforms the geometry—which at the same time
affects the dynamics on the membrane and in the bulk—it indirectly
affects the biochemical system. The membrane-protein dynamics are
modelled with the Meinhardt’s (1999) system for cell orientation,
which can evolve in spontaneous competing peaks or in a forced and
directed peak. This last response appears as an amplification of a space-
dependent reaction rate that we compare to the activity of membrane
receptors. The downstream effect from the plasma membrane to the
cytoskeleton is given by a diffusion-depletion system that assumes that
the actin-filament density close to the membrane is proportional to
the activity of the membrane proteins. Thus, we considered that while
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the membrane activity affects the cytosolic activity, the latter does not
affect the former. Finally, the model includes a mechanical response
from the cytoskeleton activity. Mathematically, the mechanical model
can be regarded as the product of: a local isotropic expansion due to
the growth of actin filaments, a global contraction due to the area
change, a homogeneous attachment to the substratum and curvature-
dependent forces on the contour. Under the biological perspective,
expansion and contraction occur as a consequence of the dynamics of
the actin cytoskeleton and myosin proteins. In addition, focal adhe-
sions and membrane tension are represented by elastic supports and
curvature-dependent forces, respectively.

This study is a first step towards the formulation of a comprehensive
predictive mechanobiochemical model for single cell migration where
we couple mechanical and biochemical processes using the bulk (cy-
tosol) and surface ( cortex) spatiotemporal dynamics approach. Several
improvements to the model are necessary if it is to be useful for
experimental purposes. For example, the use of dummy parameters,
the type of material behaviour, the lack of direct interpretation of the
kinetic species, the required computational time, among others, need
further studies.

Our modelling philosophy is that due to the complexity of the bio-
logical problem of single cell migration, the best way to build a robust
cell migration simulator is to do adopt a modular approach. In other
words, it is to develop each stage of the information flow separately
and consistently with the biological theory. After that, combining the
modules with proper cross-communication. Thus, future work could be
focused on different modular aspects such as:

• more complex mechanical models, for example, the implemen-
tation of viscoelasticity or hyper-elasticity theories, to better de-
scribe the dynamics of the cytoskeleton,

• the development of biologically-inspired cytosolic and membrane
kinetics and communication, for example, the formulation of
bulk-surface PDEs where the variables directly represent specific
molecules,
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• different ways to model focal adhesions, for instance, since they
do not appear everywhere and are constantly degraded, a stochas-
tic equation could describe their location and a reaction equation
for their strength, 𝛹 ,

• a more discrete modelling of the cytosolic and membrane kinetics,
for example, active and inactive GPCR’s could be regarded as
discrete entities able to modify the actin cytoskeleton at specific
locations,

• the inclusion of the bending forces on the membrane,
• the use of experimental data to fit the model parameters, and
• introducing the extracellular matrix to study how single cells

migrate through complex non-isotropic environments.
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