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Abstract 

Peatlands, covering approximately one-third of global wetlands, provide various ecological 
functions but are highly vulnerable to climate change, with their changes in space and time 
requiring monitoring. The sub-Antarctic Prince Edward Islands (PEIs) are a key conservation 
area for South Africa, as well as for the preservation of terrestrial ecosystems in the region. 
Peatlands (mires) found here are threatened by climate change, yet their distribution factors are 
poorly understood. This study attempted to predict mire distribution on the PEIs using species 
distribution models (SDMs) employing multiple regression-based and machine-learning 
models. The random forest model performed best. Key influencing factors were the 
Normalized Difference Water Index and slope, with low annual mean temperature, with low 
annual mean temperature, precipitation seasonality and distance from the coast being less 
influential. Despite moderate predictive ability, the model could only identify general areas of 
mires, not specific ones. Therefore, this study showed limited support for the use of SDMs in 
predicting mire distributions on the sub-Antarctic PEIs. It is recommended to refine the criteria 
used to select environmental factors and enhance the geospatial resolution of the data to 
improve the predictive accuracy of the models. 

Keywords: GIS, machine learning, peatland distribution, random forest, sub-Antarctic 

 

Introduction 

Wetlands are a critical global biome and include a variety of permanently or seasonally 
inundated freshwater habitats, such as lakes, rivers, marshes and coastal and marine areas like 
estuaries, lagoons, mangroves and reefs (Ramsar Convention on Wetlands 2018). They provide 
a wide range of ecosystem services, including freshwater purification and provision, food, 
energy resources, erosion control, habitats for wetland-dependent species and benefits for 
human well-being and the environment (Millennium Ecosystem Assessment 2005, Amler et 
al. 2015, Ramsar Convention on Wetlands 2018). Mires, a subset of peatlands, are wetlands 
where vegetation creates peat by depositing organic material at the surface without entirely 
decomposing, due to deposition occurring at or near the water table (Rydin et al. 1999, 2013, 
Joosten & Clarke 2002, Dartnall & Smith 2012). Accounting for approximately one-third of 
all wetlands globally (or ~3% of the Earth's surface), mires provide a variety of additional 
ecological services, such as carbon storage, biomass production, biodiversity conservation and 
climate regulation (Joosten 2012, Grundling et al. 2017, Minasny et al. 2019). However, mires 
are highly dependent on cool and humid climatic conditions, along with low evaporation rates 



2 
 

and high effective moisture, making them particularly vulnerable to climate change and other 
environmental stressors (Yu et al. 2009, Essl et al. 2012, Harenda et al. 2018). 

Wetland ecosystems, including mires, are dynamic and sensitive to natural climatic variations. 
However, anthropogenic activities and climate change have increased the rate of change in 
wetlands, leading to rapid degradation and biodiversity loss compared to other ecosystems 
(MEA 2005). Human-induced greenhouse gas emissions have exacerbated the natural 
greenhouse effect, causing unprecedented changes in the global climate system 
(Intergovernmental Panel on Climate Change 2021). In areas that are experiencing drying 
because of climate change, the high water table level required for peatlands is lowered, 
enabling oxygen to permeate the peatlands, increasing peat degradation and consequently 
rapidly releasing stored carbon into the atmosphere, contributing to greenhouse gas emissions 
(Joosten & Clarke 2002, Harenda et al. 2018, Minasny et al. 2019, Food and Agriculture 
Organization of the United Nations 2020). Such changes have a direct impact on the local and 
indigenous biota (Smith & Steenkamp 1990, Smith et al. 2001, Smith  2002). To better 
understand and address these ongoing changes, it is essential to track and assess the distribution 
and rates of loss of wetlands across landscapes. 

The Prince Edward Islands (PEIs) are remote sub-Antarctic islands that have a stable climate 
with regular rainfall, high humidity and strong winds (Smith 2002, Pakhomov & Chown  2003, 
Smith & Mucina 2006, le Roux & McGeoch 2007), which promote the presence of water 
bodies and peat formation, resulting in the occurrence of mires in the terrestrial vegetation 
(Gremmen 1981, Dartnall & Smith 2012; Essl et al. 2012). However, similarly to other sub-
Antarctic islands, the PEIs have experienced significant climate changes (Pendlebury & 
Barnes-Keoghan 2007, le Roux 2008). Since the 1960s steady increases in the mean diurnal 
and annual temperatures and a decrease in precipitation have been observed in the PEIs, 
resulting in a drier and warmer climate (le Roux 2008). The mean annual temperature increased 
from 5.4°C in the 1950s to 6.4°C in the 1990s, with average increases of 0.28°C and 0.24°C to 
daily maximum and minimum daily temperatures per decade, respectively, resulting in an 
increase from a maximum daily temperature of 7.6°C in the 1950s to 8.6°C in the 1990s and 
an increase from a minimum daily temperature of 2.8°C in the 1950s to 3.7°C in the 2000s (le 
Roux & McGeoch 2007). The islands have also experienced declining annual rainfall and 
increasing numbers of days without rainfall, along with rising wind speeds and potential 
evapotranspiration (le Roux & McGeoch 2007). Additionally, there is anecdotal evidence that 
water bodies on Marion Island are shrinking, resulting in drier conditions, including in mires, 
where peat moisture content is decreasing (Hedding & Greve 2018). This latter observation 
aligns with the consistent decrease in mire peat moisture content since 1966 (Chown & Smith 
1993). Selkirk (2007) reported similar trends in mires on sub-Antarctic islands due to decreased 
precipitation and increasing wind speed in some parts of the region. 

Since peatland areas have distinct hydrologic regimes, climates, chemistries, landforms, 
substrates and flora (Bourgeau-Chavez et al. 2018, Minasny et al. 2019), it may be possible to 
characterize and predict their occurrence using species distribution models (SDMs), which 
were developed to evaluate the relationship between known species occurrences and 
environmental factors thought to affect their occurrence. SDMs are often used in research into 
the distribution of species, ecological repercussions of climate change, as well as attempts to 
conserve species or biodiversity as a whole (Guisan & Zimmermann 2000, McPherson et al. 
2004, Franklin 2009), and these predictive models have also been used successfully at both 
local and regional levels to map and detect wetlands (Hunter et al. 2012, Hiestermann & 
Rivers-Moore 2015, Rebelo et al. 2017). They have also been used in the sub-Antarctic context 
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to determine the distributions of plant communities in sub-Antarctic vegetation (Fitzgerald et 
al. 2022) and to map sub-Antarctic cushion plants using satellite imagery and terrain attributes 
(Bricher et al. 2013). Könönen et al. (2023) recently used predictive models to model the 
suitable environments for palsa mires and peat plateaus across the Northern Hemisphere 
permafrost region. 

The goal of this research is to investigate how well SDMs can predict the distribution of mires 
on the PEIs and the underlying drivers of their occurrence. However, preparing the data 
necessary to train these models in Geographic Information Systems (GISs) can be time-
consuming (as noted by Brown 2014). To overcome this challenge, the data used in this study 
were pre-processed and visualized in QGIS and ArcGIS Pro, with remote sensing techniques 
utilized to create and prepare additional data as required. Therefore, this study employs a 
combination of SDMs, GIS and remote sensing to simulate the distribution of mires across the 
landscapes of the PEIs. 

Materials and methods 

Study area 

The study area consists of the PEIs, which comprise two islands: Marion Island (46°54′ S, 
37°45′ E) and Prince Edward Island (46°38′ S, 37°57′ E), located in the sub-Antarctic Ocean. 
Marion Island is larger and has a low, approximately oval shape, covering an area of 290 km2 
and rising to ~1230 m above sea level (a.s.l.; Smith & Mucina 2006). Prince Edward Island is 
smaller, covering an area of 46 km2 and rising to ~672 m a.s.l. It has a distinctive asymmetric 
form and extensive vertical relief, with cliffs up to 400 m high on the western side and up to 
500 m high to the north and south of the central block (see Fig. 1; Gremmen 1981, Rudolph et 
al. 2020).  

The PEIs have an oceanic climate that is characterized by low temperatures with small seasonal 
variations, heavy rain, snow, strong prevailing westerly winds (50 km per hour or greater), high 
humidity and frequent cloud cover (Smith 2002, Pakhomov & Chown  2003, Smith & Mucina 
2006, le Roux & McGeoch 2007, le Roux 2008). The climate on Marion Island varies across 
the landscape due to variations in aspect, altitude and recording height (le Roux 2008). The 
permanent meteorological station on Marion Island has recorded mostly uninterrupted weather 
observations since 1948 (le Roux 2008). Although Prince Edward Island has no meteorological 
records, its climate is assumed to be similar to that of Marion Island due to its proximity, with 
a slightly lower diurnal temperature variation (le Roux 2008). Peat formation is common on 
the PEIs (Gremmen 1981), where the water table is close to the surface for most of the year 
due to the wet and cool oceanic climate (Rydin et al. 1999, Raeymaekers et al. 2000). This 
results in the formation of waterlogged mires, mostly in lowland areas, which can range from 
a depth of a few centimetres to more than 4 m where drainage is impeded (Gremmen 1981). 
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Figure 1. The Prince Edward Islands (PEIs) in relation to South Africa. a.s.l. = above sea level. 

Occurrence data 

The occurrence data used in this study were obtained from a vegetation field survey conducted 
on Marion Island from 2018 to 2020, which covered all of the main vegetation complexes 
proposed by Gremmen & Smith (2008). Two methods were used to collect data: 1) plots were 
laid out in a stratified random design based on geology and 2) rapid transects were walked, 
with vegetation scored at random points along the transects. The vegetation complex at each 
plot and point on the transects was visually estimated according to Gremmen & Smith (2008) 
using plant species abundances and topographical characteristics. One of the vegetation 
complexes recorded was mires, which are areas that are waterlogged. A total of 1415 points 
were recorded, of which 255 indicated the presence of mires and 1160 indicated other 
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vegetation complexes (Fig. 2). For this study, points that supported the mire complex were 
used to indicate the presence of mires, while the other vegetation complexes were classified as 
mire absences.  

 

Figure 2. Survey points on Marion Island showing mire presence and absence. The locations of the 
largest wetlands, as identified by Smith & Mucina (2006), are circled in dashed green lines. 

Environmental variables 

To model the distribution of mires on the PEIs, the authors selected SDM predictor variables 
that are believed to influence peatland distribution. Peatlands develop in areas with distinct 
hydrologic regimes, climates, chemistries, landforms, substrates and flora (Bourgeau-Chavez 
et al. 2018, Minasny et al. 2019). Three climate variables were chosen for this study, including 
annual precipitation (Bio12), which was extracted from WorldClim at a spatial resolution of 
30 arc-seconds (~1 km; Fick & Hijmans 2017). Despite known high prediction errors in remote 
Southern Ocean islands, such as the PEIs, due to the scarcity of ground observations, the annual 
precipitation data from WorldClim2 were used because of its high spatial resolution (~1 km). 
This resolution was significantly finer than other available sources, especially given the small 
size of the islands, helping to avoid having only a few pixels of precipitation data (Fick & 
Hijmans 2017, Leihy et al. 2018). Additionally, two temperature variables - daytime mean 
monthly temperature and night-time mean monthly temperature - were obtained at a spatial 
resolution of 1 km (Leihy et al. 2018). Leihy et al. (2018) provided high-resolution (1 km) 
Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature 
observations using a modified spatiotemporal gap-filling method, covering a monthly time 
series from 2001 to 2015. Unlike WorldClim2, this dataset was validated using fine-scale 
microclimate data and demonstrated a better ability to describe the thermal heterogeneity of 
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the region, particularly for sub-Antarctic islands with steep elevational gradients and strong 
prevailing winds. 

A digital elevation model (DEM) with a spatial resolution of 1 m was obtained from South 
Africa's National Geo-Spatial Information (NGI). To prepare the DEM for hydrologic 
modelling, a depressionless DEM was generated using the default parameters of the ‘Fill Sinks’ 
tool in SAGA GIS (Wang & Liu 2006). DEMs often contain artefact depressions that interrupt 
flow paths and alter drainage directions; therefore, removing artefact depressions from DEMs 
is essential for accurate flow routing, ensuring realistic surface water flow representation and 
reliable geomorphic and hydrologic modelling outcomes (Lindsay & Creed 2005). The 
Topographic Wetness Index (TWI) was extracted from the DEM using the ‘ArcPy’ script 
developed by Wolf & Fricker (2013), which is based on the TWI algorithm of Beven & Kirkby 
(1979). Distinct landform classes were extracted from the DEM using a Topographic Position 
Index (TPI) approach, which involved using two neighbourhood sizes to create an annulus 
neighbourhood (Radius 1 = 50 m, Radius 2 = 200 m; Weiss 2001). Slope (in degrees) and 
distance from the coast were also derived from the DEM. The geology and soil layers were 
created by Rudolph et al. (2020) and Lubbe (2010), respectively. 

The study utilized remote sensing data in the form of Sentinel-2 imagery to extract two indices: 
Normalized Difference Vegetation Index (NDVI) and Normalized Difference Wetness Index 
(NDWI) as proxies for local vegetation productivity and surface wetness, respectively. These 
indices were extracted from geometrically and radiometrically corrected images. Due to 
persistent cloud cover, a mosaic of three images from 5 October 2020 and one from 10 October 
2020 was created for Marion Island, while a cloud-free image from 10 November 2017 was 
used for Prince Edward Island. The NDVI was used to assess vegetation productivity using 
near-infrared and red bands, while the NDWI was used as an indicator of surface wetness or 
the presence of surface water using near-infrared and green bands. The Semi-Automatic 
Classification Plugin (QGIS) (Congedo 2021) was used to download Sentinel data, mask the 
clouds and create the mosaic. Seasonality was not a significant consideration in the study, as 
the mean monthly total rainfall and mean temperature on Marion Island vary only slightly 
throughout the year, with Marion Island experiencing a difference of 4.1°C between the coldest 
and warmest months, while the diurnal temperature varies by only 1.9°C, and the difference in 
precipitation between the wettest and driest months is 600 mm (ranging from 150 to 2100 mm; 
Smith 2002, Smith & Mucina 2006, Sadiki 2019). 

All of the variables used in the study were resampled to a uniform spatial resolution of 10 m 
using the WGS 84 UTM Zone 37S projection and the same extent (Table I). The DEM was 
resampled to a 10 m spatial resolution to match the resolution of the Sentinel-2 imagery using 
a bilinear resampling method.  
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Table I. Predictor variables (n = 12) used in the study; variables are grouped into four variables 
scenarios. 

 

Species distribution modelling 

The distribution of mires on the PEIs was modelled using six commonly used presence-absence 
SDM algorithms (Table II) with default settings available within the ‘sdm’ package in R (Naimi 
& Araújo 2016, R Core Team 2024). Validation of the models utilized the 10-fold cross-
validation with five replications (Naimi & Araújo 2016).  

Table II. Regression-based and machine learning species distribution modelling used in the study. 

 

Models were created using six variable scenarios, namely:  

1) Climate variables 

2) Topographic, geology, soil and satellite imagery variables 

3) Wetland classification proxy variables, including:  

a) The Ramsar Convention classification system 

b) The Hydrogeomorphic (HGM) classification system 
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c) The International Union for Conservation of Nature (IUCN) Global Ecosystem 
Typology 2.0 

4) All predictor variables 

For each variable scenario, collinearity between predictor variables was assessed using the 
variance inflation factor (VIF) stepwise technique analysis (Naimi & Araújo 2016). If VIF 
values were larger than 10, one of the collinear variables was removed prior to modelling. The 
VIF values were recalculated as a stepwise process until all values were below the threshold. 
A summary of all predictor variables, after accounting for multicollinearity, is presented for 
each scenario in Table III.  

Table III. Predictor variables for each scenario with collinearity accounted for by removing highly 
collinear variables (variance inflation factor > 10). Final variable selection is shown. (See main text for 
details regarding the variable scenarios.) 

 

Scenario 1: Climate variables 

This variable scenario only includes the climatic variables (Table III). None of the three 
variables were removed based on VIF. 

Scenario 2: Topographic, geology, soil and satellite imagery variables 

This scenario includes all of the predictor variables with the exclusion of climatic variables 
(Table III). Due to a strong correlation between NDVI and NDWI, the former was removed, 
leaving eight variables under this variable scenario (Table III). This variable scenario is 
hereafter referred to as ‘topo-geo-sat variables'. 

Scenario 3: Wetland classification proxy variables 

Scenario 3 consisted of three sub-versions, each based on a common wetland classification 
method, namely: 1) the Ramsar Convention classification (Finlayson 2018), 2) the HGM 
classification system (Brinson 1993) and 3) IUCN's typology for wetland ecosystem types 
(Keith et al. 2020b). 
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The Ramsar Convention classification system 

The Ramsar Convention classification system (Scenario 3a) categorizes wetlands into marine 
and coastal, inland and human-made, with subcategories based on location, water permanence, 
soils, substrates and flora (Finlayson 2018). As such, TWI was selected as a proxy for water 
permanence and NDVI for vegetation. Additionally, we included soil variables in this scenario. 
None of the variables were removed due to collinearity. This variable scenario is hereafter 
referred to as ‘Ramsar proxy variables'. 

The HGM classification system 

The HGM classification system (Scenario 3b) is based on the premise that water flows from 
higher to lower places and water collects in areas of gentler slopes, hence hydrology and 
landforms are the most evident factors that can be used to characterize wetlands (Semeniuk & 
Semeniuk 1995, Ollis et al. 2013). The system categorizes wetlands into classes based on 
geomorphic, water supply and hydrodynamic properties (Ollis et al. 2013). Therefore, 
landforms (modelled using the TPI), surface wetness (modelled using the NDWI) and TWI 
were selected as proxy predictor variables for the occurrence of mires. None of the three 
variables were removed based on VIF. This variable scenario is hereafter referred to as ‘HGM 
proxy variables'. 

The IUCN Global Ecosystem Typology 2.0 

The IUCN Global Ecosystem Typology 2.0 (Scenario 3c) describes the profiles of biomes and 
ecosystem functional groups (EFGs), providing key ecological traits of functionally different 
ecosystems and their drivers (Keith et al. 2020a). Marion Island is structurally and functionally 
characteristic of the most climatically harsh variety of tundra, with some evidence of high 
Arctic polar deserts (Smith 2008). Smith & Mucina (2006) identified sub-Antarctic tundra in 
the lowland areas and sub-Antarctic polar desert limited to higher elevations as the two major 
biomes on the PEIs. Thus, the PEIs can be classified within the polar-alpine biome of the IUCN 
Global Ecosystem Typology 2.0, which encompasses the extensive Arctic and Antarctic 
regions (Keith et al. 2020a). Within this functional biome, the polar tundra and deserts EFG is 
the most applicable to the PEIs, considering the two major biomes identified by Smith & 
Mucina (2006). This functional group is characterized by extreme cold temperatures and short 
growing seasons that exclude trees and a continuous to sparse cover of cold-tolerant mosses, 
liverworts, lichens, grasses, low shrubs and other flowering plants, while permafrost substrates 
accumulate peat due to slow decomposition rates. However, despite its global recognition and 
wide application, the IUCN Global Ecosystem Typology 2.0 has faced criticism for its 
inconsistencies and potential unreliability, particularly regarding the classification of biomes 
and EFGs (Mucina 2023). Mucina (2023) offers an alternative perspective by categorizing all 
sub-Antarctic islands, including the PEIs, under two global biomes: Antarctic Tundra and 
Southern Polar Desert, both part of the Antarctic Zone zonobiome. Despite these critiques, the 
IUCN Global Ecosystem Typology 2.0 remains a widely acknowledged classification system, 
which justifies its use in this context. Given the ecological drivers of polar tundra and desert 
regions in the IUCN Global Ecosystem Typology 2.0, the vegetation density proxy (NDVI), 
temperature and precipitation were chosen as proxies for peatland occurrence. NDVI 
effectively captures the health and distribution of vegetation, which are crucial where plant 
cover directly reflects wetland conditions. Temperature data are vital for understanding 
permafrost dynamics (these are absent from the PEIs; Boelhouwers et al. 2008) and seasonal 
thawing, which influence peat accumulation and stability. Precipitation data are critical for 
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assessing water availability and the overall hydrological balance, which affect both soil 
moisture and the development of peatlands. None of the variables were removed based on VIF. 
This variable scenario is hereafter referred to as ‘IUCN proxy variables'. 

Scenario 4: All predictor variables 

All 12 predictor variables (Table I) were considered under this variable scenario. The VIF 
revealed a correlation between NDVI and NDWI, as well as between Annual Precipitation and 
Elevation. Therefore, NDVI and Elevation were removed due to multicollinearity issues, 
resulting in total of 10 variables under this variable scenario. This variable scenario is hereafter 
referred to as ‘all variables'. 

Model comparison 

The area under the curve (AUC) of a receiver operating characteristic plot and the true skill 
statistic (TSS) are commonly used to assess SDM predictive performance (Fielding & Bell 
1997, Allouche et al. 2006), allowing for comparison across models, and thus they were used 
in this study. AUC values vary from 0 to 1, with an AUC score between 0.9 and 1.0 indicating 
an excellent model, between 0.8 and 0.9 indicating a good model, between 0.7 and 0.8 
indicating a fair model, between 0.6 and 0.7 indicating a poor model and between 0.5 and 0.6 
indicating a failed model (Swets 1988, González-Ferreras et al. 2016). As such, an AUC of at 
least 0.7 is required for a model to be considered sufficient for modelling species distributions 
(Swets 1988). Although it is widely accepted as the standard technique for assessing SDM 
correctness, others (see Mainali et al. 2015, Leroy et al. 2018, Shambani et al. 2018) do not 
advocate using this metric as a comparison measure of model accuracy (Termansen 2006, 
Austin 2007, Lobo 2008, Peterson 2008, Jiménez-Valverde 2012). As a result, the AUC is 
frequently employed in combination with another metric when utilized as a measure of 
accuracy (Mainali et al. 2015, Leroy et al. 2018). 

As an alternative, Allouche et al. (2006) suggest using the TSS as a measure of SDM success. 
The metric compares the proportion of correct predictions to the proportion of hypothetical 
predictions, disregarding any predictions that may be due to random guesses (Allouche et al. 
2006). The TSS is not affected by species prevalence and the size of the validation dataset 
(Allouche et al. 2006). Unlike the AUC, the TSS requires that the resulting continuous model 
predictions be transformed into binary predictions based on a threshold (Fielding & Bell 1997). 
The threshold was selected as the value that maximized the sum of sensitivity and specificity, 
which is one of the better threshold selection methods for presence-absence data (Liu et al. 
2005). TSS values less than 0.2 are considered failed or null models, values between 0.2 and 
0.4 are considered poor, values between 0.4 and 0.6 are considered fair and values greater than 
0.6 are considered good to excellent models (González-Ferreras et al. 2016). 

Results 

Model comparison 

The AUC and TSS for all 36 models in this study indicated poor to fair model performance 
(AUC mean = 0.68, TSS mean = 0.34; Table IV). The best models were developed on variables 
from Scenarios 2 (topographic, geology, soil, and satellite imaging variables) and 4 (all 
variables; Fig. 3), while the modelling techniques with the highest AUC and TSS scores were 
boosted regression trees and random forest (RF) models (Fig. 4). The RF model based on 
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Scenario 4 variables performed the best overall, outperforming all other models for both 
measures, with an AUC value of 0.74 and a TSS of 0.42 (Table IV). Therefore, the model was 
selected as the best model to predict the distribution of mires on the PEIs.  

Table IV. The mean area under the Curve (AUC) and true skill statistic (TSS) values and their standard 
deviations (SDs), associated with 10-fold cross-validation (five replications) of models (see Table II for 
model definitions) run using six variable scenarios (see Table III for variable scenarios and main text 
for details regarding the variable scenarios). Fair-performing models according to the AUC and TSS 
values are indicated in bold alone and bold and italics, respectively. 

 
 

 

Figure 3. Box plots showing the distribution of area under the curve (AUC) and true skill statistic (TSS) 
values for each variable scenario for all species distribution models. 
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Figure 4. Box plots showing the distribution of area under the curve (AUC) and true skill statistic (TSS) 
values for each model type across all variable scenarios (see Table II for model definitions). 

A variable importance analysis was performed to determine the extent to which each predictor 
contributed to the prediction of mire occurrence (Fig. 5). The most important variables were 
NDWI with a 36% contribution to the model, followed by slope with a 29% contribution to the 
model and night-time mean monthly temperature with a 13% contribution to the model. Annual 
precipitation, distance from the coast, TPI and daytime mean monthly temperature also made 
considerable contributions to the model, with contributions ranging from 9% to 5%. Geology 
and soils had minimal importance, contributing only 2% and 3% to the model, respectively. As 
such, they were removed from the predictor variables used to train the RF model to predict the 
distribution of mires on the PEIs. This decision was also supported by the unavailability of a 
soil dataset for Prince Edward Island; such a dataset was only available for Marion Island. The 
removal of the two variables, as expected due to their low relative importance to the model, 
did not change model performance, with the performance measurement metrics remaining the 
same (AUC = 0.74, TSS = 0.42). Overall, the analysis indicated that environmental variables 
related to topography, hydrology and climate were the most important predictors of mire 
occurrence on the island.  
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Figure 5. Relative variable importance of the variables used in the prediction of the distribution of 
mires on Marion Island of the best model (random forest model with all predictor variables). 
NDWI = Normalized Difference Water Index; TPI = Topographic Position Index; TWI = Topographic 
Wetness Index. 

The response curve for NDWI (Fig. 6a) indicates a steep decline in the probability of mire 
occurrence as NDWI values increase. NDWI values represent the proportion of surface water, 
and as mires are known to occur where there is high soil moisture, this suggests that mires are 
unlikely to occur in areas where water is visible at the surface, such as open surface water. 
Based on the response curve for the slope (Fig. 6b), there is an increase in the probability of 
mire occurrence with increasing slope from ~30° to 62°. This suggests that mires are more 
likely to occur on steeper slopes rather than flatter ones. However, there is also some indication 
that mires may prefer slopes between 0° and 10°, although the probability of occurrence on 
such slopes is lower than for steeper slopes.  
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Figure 6. Response curves for each of the eight variables (except the categorical variables (soils and 
geology)), indicating the effect of a predictor variable on the probability of the response variable. Values 
closer to 1 on the y-axis indicate a high probability of occurrence at a range of predictor variable values 
on the x-axis. The curves include standard deviation values, highlighted by greyed areas for continuous 
variables and error bars for categorical variables, which show the variability in predicted probabilities 
across different ranges of each predictor variable. a. Normalized Difference Water Index (NDWI): 
shows the effect of water presence on the probability of occurrence. b. Slope (degrees): represents the 
impact of terrain slope on the probability of occurrence. c. Night-time mean monthly temperature (°C): 
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shows how the average night-time temperature affects the probability of occurrence. d. Annual 
precipitation: displays the effect of total yearly rainfall on the likelihood of the response variable. e. 
Distance from coast: Indicates how the proximity to the coast influences the probability of occurrence. 
f. Landforms (Topographic Position Index): illustrates the influence of terrain shape, such as valleys or 
ridges, on the probability of occurrence. g. Daytime mean monthly temperature: shows how average 
daytime temperatures affect the probability of occurrence. h. Topographic Wetness Index (TWI): 
represents the potential for water accumulation based on topography. 

 

Figure 7. Predicted distributions of mires on a. Marion Island and b. Prince Edward Island. The white 
area on the western side of Marion Island indicates a region where mires could not be modelled due to 
the lack of available satellite data and therefore no surface wetness information being available. 

The distribution of mires on the Prince Edward Islands 

As no training data (mire presence-absence) exist for Prince Edward Island, the model trained 
on Marion Island was projected onto Prince Edward Island. The binary map indicates that mires 
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on Prince Edward Island mostly occur on the eastern side of the island, while Prince Edward 
Island's mires are prevalent in the north-western and south-eastern parts of the island, where 
plains are the dominant landform (Fig. 7).  

Discussion 

The ability of multiple regression-based and machine learning species distribution modelling 
algorithms (Table II) to predict the distribution of mires on the PEIs using several combinations 
of predictor variables (Table III) was assessed in this study. The best model in this study 
performed only ‘fairly’ (i.e. moderately well; AUC = 0.74, TSS = 0.42). Therefore, the 
predictive power of this study's models was limited. 

While the best model was able to identify general regions where mires were known to occur, 
it was not as accurate at predicting the occurrence of individual mires. One possible explanation 
for this could be that some mires on the PEIs were small and confined to a limited area, with 
an approximate size of 3 × 3 m. The input data used in the model had a coarser resolution than 
this. This mismatch in sampling and modelling resolution may have resulted in limited 
matching between the precise locations of mires and the predicted locations. Additionally, the 
distribution of mires on Marion Island is patchy in certain areas, with vegetation changing 
rapidly from mire to non-mire vegetation and back again over short distances; this variability 
has already noted by Momberg et al. (2021). Overall, the study suggests that further refinement 
of the models and more precise data collection may be necessary to improve the accuracy of 
mire distribution predictions on the PEIs. 

The models that performed the best in this study utilized variables from Scenario 2 (topo-geo-
sat variables) and Scenario 4 (all variables). The two most important predictor variables, slope 
and NDWI, were consistently included in the best models across Scenarios 2 and 4. Conversely, 
models relying solely on climatic variables (Scenario 1) performed the worst across all 
measures, as shown in Fig. 3. The input variables, although resampled to 10 m of the satellite 
imagery, have different spatial resolutions in their original format. Climate variables at 30 arc-
seconds simply do not capture the spatial variations required for a fine-scale study. The same 
applies to the coarse-scale geology and soil layers that required removal before final modelling 
based mostly on poor spatial resolution. The original spatial resolution of the input variable is 
thus an important factor to consider for future modelling. In addition, some variables might 
have been excluded completely, as in many cases the required proxy data used to predict mire 
occurrence were not available. Regardless, a comparison of the performance of models based 
on climatic factors to those based on a combination of variables, including topography and 
satellite imagery-derived variables, indicates that the latter better determine the prevalence of 
mires across the terrain at the spatial scale examined in this study. 

The response curves of the model variables (shown in Fig. 6) indicate that mires are more likely 
to occur in areas where NDWI values (which serve as proxies for surface water) fall between 
-0.75 and -0.25. This range of values indicates the lack of open surface water and is commonly 
associated with land-cover classifications such as vegetation, bare soil or rock. This implies 
that while mires are habitats that require high soil moisture, their water is typically not visible 
at the surface on the PEIs. As mires are characterized by a layer of peat at the surface covered 
by vegetation, this range of values is plausible. The finding that the model suggests mires on 
the PEIs prefer slopes between 30° and 62°, with some preferring gentler slopes between 0° 
and 10°, is somewhat surprising given that the largest mires on Marion Island are known to 
occur on undulating landscapes with gentle slopes. While this discrepancy may suggest that 
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the model is flawed, it is important to consider the complexity of the landscape on Marion 
Island. Mires on Marion Island often have exposed ridges and plateaus around their edges 
(Yeloff et al. 2007), which may not have been captured at the scale of the study (10 m), 
potentially leading to a generalization of slopes, ridges and plateaus, influencing the modelling 
of mire occurrence. Moreover, the variability in vegetation cover, soil moisture and other 
factors across the island may also contribute to the inconsistency between the model's 
predictions and observations. These environmental factors can vary greatly over short 
distances, as demonstrated by Momberg et al. (2021) on Marion Island, where wind stress was 
linked to species richness, vegetation cover and community composition using fine-scale, field-
collected data. As the model does not account for this fine-scale variation, it struggles to 
accurately predict mire occurrence and distribution. Therefore, it is necessary to conduct 
further investigation to explore the potential sources of bias in the model and refine it 
accordingly. Overall, the findings highlight the need for caution when interpreting the results 
of species distribution modelling, particularly in complex and heterogeneous landscapes where 
small-scale variations may have significant impacts on the occurrence and distribution of 
species. 

The predicted distribution of mires on Marion Island and Prince Edward Island (Fig. 7) 
corresponds somewhat to the areas in which mires are described as common. Smith & Mucina 
(2006) state that ‘mire vegetation is found in most lowland areas, being most extensive below 
200 m, but found up to 400 m altitude. On Marion Island approximately 30% of the area below 
100 m and approximately 3% of that between 100 and 300 m is occupied by mire vegetation; 
the largest mires on Marion Island are found on the coastal plain between Repetto's Hill and 
Long Ridge, inland of East Cape, Macaroni Bay and on the western coastal plain between 
Kleinkoppie and Kampkoppie.’ However, it should be noted that mires on the western side of 
Marion Island are not as common as they are on the eastern side. Figure 2 offers a visual 
depiction of this description. Based on this description, the model was able to predict two of 
the large mires known to exist on the eastern coast of Marion Island, on the coastal plain 
between Repetto's Hill and Long Ridge, inland of East Cape, Macaroni Bay. Smith & Mucina 
(2006) indicated that a third mire exists on the western coastal plain between Kleinkoppie and 
Kampkoppie; however, the model predicted a minimal extent of mires in this area. In addition 
to the fact that prediction was impossible for a small section of the area, this underestimation 
could suggest the absence of critical environmental factors. Additionally, variations in 
environmental factors, such as climate, between the eastern and western sides of the island 
could also affect the model's predictive ability. 

For Prince Edward Island, the model suggests mires are common in the north-western and 
south-eastern sections of the island, where plains represent the major landform and slopes are 
gentler. Whether the SDM trained on data from Marion Island can be used to accurately predict 
distributions of mires on Prince Edward Island remains to be determined. While the PEIs 
experience similar climates (le Roux 2008) and possess similar geologies and landforms, 
Marion Island has permanent human habitation and many more invasive species than Prince 
Edward Island (Greve et al. 2017, 2020). This is because, for conservation reasons, Prince 
Edward Island may only be accessed for short periods of time at intervals greater than 4 years, 
and visits sometimes happen even less frequently. Human activities and invasive species affect 
not only individual species, but also ecosystem processes (Smith 2002, Greve et al. 2017), 
which could potentially influence the position of mires. With both islands thought to be similar 
in environmental variables, this difference regarding human activity (and invasive species 
presence) is worth noting, as the prediction based on Marion Island data might not be suitable 
for mire prediction on Prince Edward Island. However, without the relevant datasets required 
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for Prince Edward Island to perform such modelling, the results from Marion Islands provide 
the next best option for modelling mire occurrence on Prince Edward Island. 

Conclusion 

We showed some, but not very strong, support for the use of SDMs in predicting mire 
distributions on sub-Antarctic Marion Island. Our models identified most of the general areas 
in which mires occur and would thus be useful in predicting for potential mire presence over 
broader regions if the methods used here are applied to other sub-Antarctic islands. While the 
models were not very successful at identifying mires at finer grain, improved geospatial layers 
at finer resolution could improve prediction. Of note is that climate played almost no role in 
predicting the distribution of mires on Marion Island. This finding implies that, within the range 
of climatic variation considered in this study, non-climatic factors were more influential. Yet 
it is also important to note that the impact of climate change on mire distribution might not be 
immediately apparent unless there are significant shifts in climatic conditions. Regardless, 
there are some indications that mires on Marion Island are drying out due to ongoing climate 
change (Hedding & Greve 2018), and such changes can be attributed to macroclimatic changes 
that simultaneously affect the whole island. Considering the present climatic trajectory on the 
PEIs, the islands can be expected to become warmer and dryer, which will dry out mires and 
potentially reduce their distribution over the terrain. 
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