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A B S T R A C T

An accurate estimation of photovoltaic (PV) power production is crucial for organizing and regulating solar
PV power plants. The suitable prediction is often affected by the variable nature of solar resources, system
location and some internal/external disturbances, such as system effectiveness, climatic factors, etc. This paper
develops a novel strategy for applying a predictive control technique to PV power forecasting applications in
a smart grid environment. The strategy develops the model predictive control (MPC) under demand response
(DR) and some data-driven methods. It has been found that it is challenging to model an MPC for solar
power forecasting regardless of its robustness and ability to handle constraints and disturbance. Thus, an
optimal quadratic performance index-based MPC scheme is formulated to model a forecasting method for a
PV power prediction. This strategy is then compared with some machine learning approaches. The developed
strategies solve the problem of accurately estimating the direct current (DC) power yielded from the PV plant
in a real-world implementation. The study also considers external disturbances to evaluate the significance of
the developed methods for a suitable forecast. Therefore, this study optimally demonstrates that an accurate
solar PV DC power prediction can relatively be estimated with an appropriate strategy, such as MPC and
MLs, considering the system disturbances. This study also offers promising results for intelligent and real-time
energy resource estimation that assist in developing the solar power sector.
1. Introduction

Solar power is a game-changing resource of modern energy systems
to support sustainable development goals. For instance, all renewable
energy resources, from geothermal passing hydro systems to wind
power, depend on solar power [1]. The diversity of energy sources in
this modern world is a key figure in maintaining the resilience and
reliability of the electrical grid. Distributed energy resources based
on variable renewable energies are increasingly being implemented in
several countries worldwide [2,3]. Therefore, solar power is considered
one of the best sustainable energy resources to enhance the perfor-
mance of the utility grid, which is challenged by intensive demand
growth [1]. The estimated power-generating resource for a reliable
electrical network is suitable for ensuring its effectiveness. Besides,
the uncertainty of variable renewable energy necessitates a robust
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control method to provide a secure power supply [4,5]. The appli-
cation of forecast modelling effectively assists in the estimation of
variable renewable energy. This can be modelled using modelling
and/or data-driven strategies [6].

Solar power plants are increasing and getting more attention in
the primary electricity grid, resulting from the high penetration of
independent power producers derived from renewable energy sources.
Thus, the smart grid technologies offer opportunities to plan, control,
monitor, supervise and distribute the independent power producers [7,
8]. The power system consistently requires the prediction results of
different input sources to meet the energy demand and plan the fu-
ture [9]. Manual computations, empirical formulae, and simplified
predictions based on historical data and climatic characteristics are
all used in conventional approaches to forecast solar energy [10,11].
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Nomenclature

𝐴𝑝𝑣 PV panel surface [m2]
𝑁 Time horizon of the system design
𝑡 Sampling time [minute]
𝜂𝑖𝑛𝑣 Inverter efficiency of the BESS
𝜂𝑝𝑣 PV panel efficiency
𝐼𝑝𝑣 Solar irradiation incident measured on the PV

panel [kW/m2]
𝐽 Objection function
𝑃𝑏𝑎 Power flow on the BESS
𝑃𝑝𝑣 Generated power by the PV
𝛥𝑡 Time variation [minute]
AC Alternative Current
DC Direct Current
DER Distributed Energy Resource
DG Distributed Generation
DSM Demand Side Management
MPC Model Predictive Control
MPPT Maximum Power Point Tracker
PV Photovoltaic
RER Renewable Energy Resource
RMS Root Means Square
RTP Real-Time Pricing

These methods can be laborious and vulnerable to errors since they
frequently need substantial human work and skill to examine and in-
terpret the data, resulting in less precise forecasts [12,13]. Therefore, it
s essential to conduct prediction studies and accurately yield estimates

of solar power generation. In addition, several published works have
developed strategies for solar power forecasting using data-driven and
model-based methods under predictive control techniques.

Machine learning (ML) algorithms transform solar energy fore-
asts using cutting-edge computational methodologies. ML methods can
apture dynamic interactions between factors and adapt to changing
ircumstances, producing more accurate and trustworthy predictions
or solar energy [14]. A variety of practical solar forecasting tech-

niques are available, including statistical, persistence, physical, and
ophisticated hybrid models [15]. Statistical models are again classified

into time series models and artificial neural networks (ANN) models,
hereas physical models consist of numerical weather prediction mod-

els. Sophisticated hybrid models include genetic algorithm, fuzzy logic,
ANN combined fuzzy, ANN combined genetic algorithm, maximum
likelihood estimation, and more [16,17]. In [18], a day-ahead strategy
for the solar power forecasting model is presented. The system design
is modelled using the numerical weather prediction model to optimally
orecast the energy from the photovoltaic (PV) power plants. A suitable
ositive correlation between the observed and forecasted output power
as been observed. Deep learning (DL) strategies can also be used to
nvestigate the efficacy, productivity, and possible uses of solar energy
otential [14]. In contrast, ML models like ANN are effectively being
sed to forecast solar energy output [19].

Recurrent neural networks (RNN) and convolutional neural net-
works (CNN) performed better than some AI-based practices; however,
he feature is retrieved in spatial dimensions with CNN, and solar power
eneration incorporates both spatial and temporal characteristics [20].

However, the majority of studies are more focused on the prediction ca-
pabilities of CNN-RNN, leading to a mixture of solutions. A methodical
description of the CNN-RNN system for multivariate data is currently
inadequate. Moreover, it is not evident which architectures could pro-
duce the best forecasting results [21]. In Xingtai City, northern China,

eng et al. [22] employed datasets with bright, overcast, and wet days
2 
to conduct random forest (RF) forecast studies. The ultimate outcomes
ere calculated by averaging the regression findings for each data set.
he RF method outperforms better than other ML models because it

can take advantage of past feature values, and it provides an accurate
prediction.

Aprillia, H et al. [23] introduced an innovative approach that
combines the CNN with the salp swarm procedure for predicting power
from a solar PV system. Through a salp swarm algorithm, develop-
ers can optimize the best parameters for each CNN regression. The
suggested strategies are tested for effectiveness by comparing them
to the salp swarm algorithm vector support and the long-term neural
memory network-based salp swarm algorithm. Ref. [24] observed that
he convolutional self-attention-based long short-term memory (LSTM)
rchitecture increases the precision of predictions by gathering spe-

cific information from the context and producing locally applicable
variables and concerns. Solar power production estimates use actual
ata and power demand forecasts to evaluate system implementation,
owering energy consumption when compared with canonical deep
eural networks, LSTM, and self-attention-based LSTM models. Abdulai

et al. [25] cover data analytics strategies for solar power prediction,
such as statistical models, ML, and ANN.

Ahn et al. [26] suggested a deep RNN under a short-term forecasting
ethod to predict 12-time steps and 3 RNN layers for solar power gen-

eration. They attained excellent accuracy in their short-term prediction
study. Similarly, Harrou et al. [27] suggested a multidimensional LSTM
approach in their research on PV power prediction under multiple
environmental factors, including ambient temperature, wind speed, cell
temperature and more, that are added to the solar irradiation variables
to improve model accuracy. Gao et al. [28] examined three prediction
ituations, including cloudy, overcast and rainy. They extrapolated that
he LSTM method is the most appropriate and adequate at portraying
he shifting character of solar energy production.

The model predictive control (MPC) algorithm is a groundbreaking
method that has dramatically acquired recognition in several opti-
mal control operations [29]. Due to its adaptability in how functions
are executed and the speed of its processors, the MPC approach has
received widespread attention [30]. For instance, through the MPC
framework, a hybrid prediction model with both long and short terms
was verified within a measured dataset from an actual Japanese office
building energy system. The findings demonstrate that the suggested
hybrid prediction MPC framework enhanced the results by 81.6% when
compared to the baseline control logic [31]. Ref. [32] develop a mixed
trategy for PV power prediction under artificial neural networks (ANN)
nd seasonal auto-regressive integrated moving average in the design
ramework conceptual of MPC applications. This strategy is formu-
ated using a short-term forecast method with a prediction horizon
f 15 min. The developed hybrid approach increases the redundancy
nd resilience of the forecast approach and minimizes the forecast
rror compared to a no-hybrid strategy. In [33], a stochastic MPC is

applied to control the thermal solar collector fields. This strategy also
considers predicting the solar irradiance forecast within an uncertain
environment. It has been demonstrated in [6] that predictive control
echniques can be designed under several strategies, including the MPC

algorithm, ML and more, to estimate and/or predict diverse variables
of energy resources. It is also observed that the MPC strategy has not
et been developed for solar power forecasting applications. Therefore,
his study seeks to address this chasm by developing a novel strategy

for model-based MPC to accurately forecast solar PV power generation.
Table 1 presents a comprehensive assessment of some relevant

published works narrowed down into the developed approaches of
this study in order to observe their contributions, detail gaps and
provide the novelty of this study. Therefore, this work looks at the
system performance for practical estimation of solar power forecasts by
applying a predictive control technique. MPC and various ML strategies
have been developed to formulate the system dynamic that can forecast

the electrical energy generated by a solar PV system. ML strategies
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Table 1
A comprehensive overview assessment of various studied approaches in solar PV power forecasting.

Papers MPC & ML approaches Observation of contributions

Ref.: Year MPC CNN RF CNN-RF BiLSTM-GRU DR PV power forecasting

[35]: 2024 ✗ ✓ ✗ ✗ ✗ ✗ ✓: day-ahead regional power
[36]: 2024 ✗ ✓ ✗ ✗ ✓ ✗ ✗: solar irradiance forecasting
[33]: 2024 ✓ ✗ ✗ ✗ ✗ ✗ ✗: solar thermal plant control
[37]: 2023 ✗ ✗ ✓ ✗ ✗ ✗ ✓: short-term prediction
[38]: 2022 ✗ ✓ ✗ ✗ ✓ ✗ ✓: weekly power forecasting
[39]: 2021 ✗ ✗ ✓ ✓ ✗ ✗ ✗: solar irradiance forecasting
[40]: 2021 ✗ ✓ ✗ ✗ ✗ ✗ ✓: monthly power prediction
[41]: 2020 ✗ ✓ ✗ ✗ ✗ ✗ ✓: day-ahead in grid-tied PV
[22]: 2020 ✗ ✗ ✓ ✗ ✗ ✗ ✓: daily power forecasting
[35]: 2019 ✗ ✗ ✓ ✗ ✗ ✗ ✓: great accuracy/robustnees
This work ✓ ✓ ✓ ✓ ✓ ✓ ✓: MPC under DR scheme and

some MLs for a week power
forecasting, considering
disturbance, are developed for
a grid-tied PV application.
Fig. 1. Established 2.88 kW on-grid PV/T system in University of Sharjah, UAE.
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re CNN, RF, CNN-RF, and DL-based bidirectional LSTM (BiLSTM)
nd gated-recurrent unit (GRU). Therefore, the developed strategies
ook to model the predictive behaviour of solar direct current (DC)
lectricity supply output through the conceptual framework of dynamic
orecasts. The advantage of the developed strategies using predictive
nd intelligent schemes is also demonstrated by their capability to

handle various disturbances [6]. The application of intelligent schemes
ffers several opportunities for dynamic modelling in several research,
evelopment and innovation fields [34]. Therefore, this study also
xamines the performance of each model during the disturbance that
ffects solar radiation to assess the performance metrics of the designed
trategies. The leading contributions of this work are emphasized as
utlined:

• Develop optimal solar PV forecasting strategies by applying sys-
tem modelling and data-driven methods to predict the power
forecast from a real-world implementation of a solar PV system.

• Design a mode-based DC power forecast in the framework system
analysis that combines the generating energy from the PV system
with the demand response scheme. This strategy formulates the
state-space model based on generating energy from solar PV
to develop a DC power forecast under the MPC strategy. This
approach also demonstrates the impact of the developed MPC in a
moving horizon window that handles constraints and disturbance
and deals with control horizon and weighted parameters for an
optimal DC power prediction.

• Implement data-driven methods that use the data from the solar
PV power plant within a given month to predict the dynamic
behaviour of future DC power for the last seven days of the
selected month. Therefore, this model-free technique is developed
using ML approaches, including RF, CNN, hybrid CNN-F and
hybrid BiSLTM-GRU.
 𝜁

3 
• A comparative analysis of MPC and ML methods is also performed
to assess the performance of the developed approaches. This
assessment considers the performance metrics of each proposed
strategy to analyse its effectiveness and evaluate its prediction
impact in terms of optimal DC power forecasts from solar PV
systems.

The remaining sections of this work are presented as follows: The
xperimental system and its implementation, including data analy-
is and desired performance metrics, are detailed in Section 2. Sec-
ion 3 discusses system design and modelling for the developed so-
ar PV power forecasting strategies. Section 4 presents and discusses
orecasting results. The study is concluded in Section 5.

. System configuration

Table 2 summarizes the implementation configuration for the de-
eloped forecasted methods. This is a roof-inclined 2.88 kW rated
rid-integrated PV system established at the W-12 building (Lat 25.34◦

; Long 55.42◦ E) at the main campus of the University of Sharjah,
harjah, UAE, as presented in Fig. 1. The DC solar power for a given
ime horizon 𝑁 is formulated in Eq. (2).

𝑝𝑣(𝑡) = 𝜁𝑝𝑣𝑆𝑝𝑣

𝑁
∑

𝑡=1
𝐼𝑝𝑣(𝑡) (1)

ith 𝜁𝑝𝑣 is the efficiency of the PV panels, 𝑡 is the sampling time of the
omputational horizon 𝑁 , 𝑆𝑝𝑣 is the surface area of the PV [m2], and
𝑝𝑣 represents the solar irradiance incident on the PV panels [kW/m2].
he PV conversation efficiency can be presented in the function of the
emperature as follows [13]:
𝑝𝑣 = 𝜁𝑟𝑒𝑓 [1 + 𝛽(𝑇𝑝𝑣 − 𝑇𝑟𝑒𝑓 )] (2)
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Table 2
Technical specifications of established on-grid PV system.

Components Role & Features

Solar PV Energy System
– DC unit comprises nine PV modules, each rated at 320 W.
– The alternating current (AC) unit comprises a 3.7 kVA Inverter
responsible for synchronization with utility grid requirements.
– AC unit is also coupled with an energy metering device for
constant recording of energy generated in kilowatt hour.

Data Collection Unit

– Monitor all electrical and environmental metrics through the
centralization of measurement sensors.
– Centralization of sensor data from common sensor box.
– Use wired/wireless data logging capability for real-time data
collection.
– Features a cloud-supported user-friendly interface for user
depiction of system overall performance.

Installed data
measurement sensors

– Electrical Sensors:
∙ Use for the measurement of DC and AC variables.

– Solar Irradiance sensor:
∙ Use for the measurement of solar irradiance in W/m2.
∙ Compose of monocrystalline silicon solar PV cell
∙ ±5% of the uncertainty in the measurement

– Anemometer:
∙ Measure the wind speed of the system in m/s.
∙ ±5% of the uncertainty in the measurement is applied to
facilitate a precision of 1 m/s.

– Temperature sensors:
∙ Use for the measurement of module and ambient temperature

based on PT-1000 technology.
∙ ±0.8 ◦C of the uncertainty in the measurement.
∙ Range between -50 ◦C to +230 ◦C.
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with 𝜁𝑟𝑒𝑓 is the PV conversion efficiency at standard testing conditions,
𝛽 is the temperature power coefficient, 𝑇𝑝𝑣 is the module temperature,
nd 𝑇𝑟𝑒𝑓 is the temperature at standard testing conditions.

2.1. Real-world implementation configuration

The installed grid-connected PV system comprises two simultaneous
loops that structure the topology of the given system, which are the
ower and communication loops. The power loop controls the power
onversion unit, i.e., the DC–AC power converter and grid synchroniza-
ion requirements. The synchronization with local grid requirements is
ital in achieving power quality, preventing mismatches in voltage and
requency requirements, and avoiding unexpected disconnections from
he utility grid [1].

The data acquisition is centralized under a single data manager
o effectively assess the system efficiency based on multiple installed
lectrical and environmental sensors for measurement with a 5-minute

resolution per reading stored. The integrated Fronius data manager
allows for flexible communication between the grid-connected inverter
and the installed measurement sensors. A communication network
containing a wired/wireless local area is established for seamless data
ransmission between the data manager and a dedicated cloud-based
nterface. This is successfully achieved through the dedicated IP address
ssociated with the system that provides remote access to its perfor-
ance and insights into the system’s performance through analytical

isual representations. Moreover, optimum and real-time monitoring is
onducted based on the seamless configuration of the data manager’s
ntegrated web server, allowing the inspection system’s anomalies in
eal time. Additionally, the real-time measurements from outdoor sen-
ors are seamlessly integrated within the real-time monitoring package
ased on a Fronius sensor box, which allows for the simultaneous
ntegration of six sensors for monitoring critical environmental pa-
ameters such as irradiance and temperature. In this notion, the data
cquisition unit not only allows instantaneous monitoring of the sys-
em’s performance but also exports this data for further processing and
ncorporates different modelling and forecasting methods associated
ith this study. Fig. 2 presents the system configuration of a real-world

implementation, as shown in Fig. 1.
 h

4 
2.2. Data analysis

The forecasting methods developed in this investigation utilized
 data set comprising environmental parameters, including ambient
emperature, solar irradiance, module operating temperature and the
peed of wind, along with the maximum DC power generated during
ay 2022. The data is experimentally driven from the aforementioned

n-grid PV system, which observed the highest energy yield compared
to other months across the year. The target objective of this work
is to estimate the maximum DC power generation with the current
data set to establish an accurate and precise prediction model for
implementation in large-scale PV grid-connected systems under harsh
weather conditions, such as Sharjah, UAE.

The heatmap in Fig. 3 reveals the interdependencies of various
environmental factors regarding DC power output. This heatmap is a
function of the system implementation, as presented in Fig. 1. The
rovided heatmap clearly emphasized how closely the performance of
V systems is related to weather conditions that keep changing. The
eatmap suggests a decisive relationship between DC power and solar
rradiance, as well as between DC power and module temperature. Thus
mphasizing the importance of these features in the precise prediction
f DC power and the final overall energy yields of the system. In
nother observation, the ambient temperature points towards a mod-
rate degree of correlation, and wind speed depicts a relatively weaker
orrelation to the DC power.

Table 3 presents a statistical characterization of the data set. This
erves to quantify the performance of the PV system and monitor
nvironmental and election impacts. Besides, the dataset is diverse,
eflecting the multifaceted nature of the system performance under
arying environmental and operational conditions.

3. System modelling of forecasting methods

3.1. Model predictive control

MPC is one the robust algorithms of the predictive control tech-
niques [6]. ∀𝑡 ∈ 𝑁 , as shown in Eq. (2), ⇒ 𝑡 = 𝑘, therefore, Fig. 4
demonstrates the implementation scheme of MPC for given control
orizon 𝑁 and predicted time horizon 𝑁 with a computational time
𝑐 𝑝
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Fig. 2. Power and communication topology for the installed grid-tied PV system.
Table 3
Descriptive statistics of environmental and electrical variables.

Statistics Ambient
temperature

Wind speed Solar
irradiance

Module
temperature

DC power (W)

Count 8928.00 8928.00 8928.00 8928.00 8928.00
Mean 33.12 3.15 315.55 41.39 739.55
Std 5.46 3.06 349.89 13.75 837.28
Min 23.00 0.00 0.00 23.00 0.00
25% 29.00 0.00 0.00 30.00 0.00
50% 32.00 3.00 86.00 34.99 137.84
75% 37.00 5.00 716.90 55.00 1704.56
Max 47.00 18.00 919.00 73.00 2259.52
Fig. 3. Heatmap: Data assessment of the system implementation.

at a given sample 𝑘. This is a closed-loop optimal control strategy
considering a receding horizon that can be applied to several industrial
applications, including the forecast for distributed energy resources.
Several modelling approaches can be used to implement the moving
horizon window of the MPC scheme. The state-space formulation is one
of the modelling approaches that is also applied in the MPC method.
5 
Therefore, Eq. (3) represents a canonical state-space model with input
disturbance formulated in this study [43].
{

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵 𝑢(𝑘) − 𝐵𝑣𝜈(𝑘)
𝑦(𝑘) = 𝐶 𝑥(𝑘) (3)

with 𝐴, 𝐵, 𝐵𝑣, 𝐶, and 𝑥 are the state matrix, the input matrix, the
scaling and mixing matrix for the process noise input, the output
matrix, and the state vector; the signal being received is represented
by 𝑢, 𝜈 is the disturbance applied to the system, 𝑦 represents the final
output signal, and 𝑘 is the sampling time.

By considering the real-world implementation configuration de-
tailed in Fig. 2, the MPC solar PV power forecast strategy-based demand
response under a real-time pricing scheme is modelled with a single
input and single output (SISO) method. Therefore, each matrix of
Eq. (3) is a one-by-one or scalar matrix to formulate a SISO forecasting
scheme-based-MPC modelling. This implies that ∀𝑘 ∈ N ⇔ 𝐴 = [1],
𝐵(𝑘) = [𝜂𝑖𝑛𝑣𝑝𝑟𝑒(𝑘)𝛥𝑘], 𝐵𝑣(𝑘) = 𝐵(𝑘), 𝐶 = 𝐴, 𝑢(𝑘) = 𝑃𝐷 𝐶 (𝑘) and
𝑥(𝑘) = 𝑐(𝑘), with 𝜂𝑖𝑛𝑣 is the inverter efficiency, 𝑝𝑟𝑒 is the real-time
electricity price from the solar PV, 𝑃𝐷 𝐶 is the generated DC power from
the PV system, 𝛥𝑘 is the time variation between 𝑘 and 𝑘− 1, and 𝑐 is the
cost of energy. Furthermore, DR programs offer several applications,
including dynamic pricing, incentive programs, and automated DR. The
dynamic pricing program contains real-time, time-of-use, and critical
peak pricing schemes. Therefore, dynamic pricing-based real-time elec-
tricity pricing suggests an opportunity for the DSO to implement it
regardless of the type of end-users

The system design, as presented in Eq. (3), is modelled by the
function of the system state related to the energy cost from the PV plant
and the dynamic of the energy market attached to the input matrix.
Fig. 5 presents the dynamic implementation of the developed MPC-
based-DR under a time-based program using a real-time pricing scheme
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Fig. 4. MPC: Implementation based-closed loop optimal control scheme [42].
Fig. 5. Flowchart: SISO MPC modelling for solar power forecasting.
for DC solar power forecasting. This model only considers the dynamic
electrical variable of the implementation configuration presented in
Fig. 2, as summarized in Table 3. It should be hypothesized that
the developed forecasting model interacts with the distributed system
operator (DSO) only in the context of a real-time pricing scheme.
Therefore, the load demand is not considered, and the forecast strategy
assists in the optimal estimation of solar PV to be injected into the DSO.

By considering the closed-loop implementation model of the MPC,
described in Fig. 4(a), the cost function of the MPC modelling devel-
oped in Eq. (3) is a quadratic shape as described in Eq. (4).

𝑗(𝑘) = (𝑦(𝑘) − 𝑟𝑤𝑟(𝑘))𝑇 (𝑦(𝑘) − 𝑟𝑤𝑟(𝑘)) (4)

with 𝑟(𝑘) and 𝑟𝑤 are the reference or target to follow and turning
parameter. As presented in Fig. 4(b) and detailed in Fig. 4(a), the imple-
mentation of this MPC approach is considered to optimally determine
the input vector from Eq. (4). This process derives from the closed-
loop approach presented in Fig. 4(a). An MPC is optimally computed
through a moving horizon window procedure to determine optimal
results of both future input and output signals at each sampling of time.
Thus, the optimum output of the system in the function of the input
signal is formulated as stated below:
𝑦(𝑘) = 𝐹 𝑥(𝑘) +𝛷(𝑘)𝑢(𝑘) (5)

6 
Table 4
Summary of constraints matrix.

Constraint Type MPC Equation

Input or control variable Inequality ✓ 𝑢𝑚𝑖𝑛 ≤ 𝑢 ⩽ 𝑢
Increment of control variable Inequality ✓ 𝛥𝑢𝑚𝑖𝑛 ≤ 𝛥𝑢 ⩽ 𝛥𝑢
Output or manipulated variable Inequality ✓ 𝑦𝑚𝑖𝑛 ≤ 𝑦 ⩽ 𝑦𝑚𝑎𝑥
State vector Inequality ✓ 𝑥𝑚𝑖𝑛 ≤ 𝑥 ⩽ 𝑥𝑚𝑎𝑥

with 𝐹 (𝑘) = [

𝐶 𝐴 𝐶 𝐴2 ⋯ 𝐶 𝐴𝑁𝑝
]𝑇 , and

𝛷(𝑘) =
⎡

⎢

⎢

⎢

⎢

⎣

𝐶 𝐵(𝑘) 0 ⋯ 0
𝐶 𝐴𝐵(𝑘) 𝐶 𝐵(𝑘) 0

⋮ ⋮ ⋱ ⋮
𝐶 𝐴𝑁𝑝−1𝐵(𝑘) 𝐶 𝐴𝑁𝑝−2𝐵(𝑘) ⋯ 𝐶 𝐴𝑁𝑝−𝑁𝑐𝐵(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

.

Eq. (6) presents a generalized formulation of the cost function of a
quadratic function for the developed SISO MPC scheme for solar power
forecasting, as demonstrated in Fig. 5. This model is fully constrained
using the system constraints as detailed in Table 4. Therefore, the
dynamic of MPC design can effectively be used to predict or forecast the
DC power of solar PV plants. The advantage of this developed model-
based forecasting method is its ability to have an intrinsic dynamic and
handle various constraints of the system. Besides, the MPC implementa-
tion uses a quadratic optimization approach to compute the algorithm
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Fig. 6. 1D CNN strategy.
of the developed optimal control for the developed solar PV forecast,
as presented in Fig. 5 [43].

𝐽 (𝑘) = 𝑓 (𝑃𝐷 𝐶 (𝑘), 𝑟(𝑘), 𝑝𝑟𝑒(𝑘), 𝑟𝑤, 𝑁𝑐 , 𝑁𝑝) (6)

3.2. Convolutional neural network

CNNs are a prominent DL model widely used in image interpre-
tation, video analytics, and classification due to their effective fea-
ture extraction and weight distribution capabilities. The study high-
lights CNN’s recent success in time series analysis, particularly in voice
automation recognition and wind speed forecasting.

CNNs differ from standard neural networks mainly due to their
convolutional layers, which identify key features in the input data,
aiding in understanding the relationship between the input and output
variables. Thus, the CNN architecture comprises four main layers: pool-
ing, flattening, convolutional, and fully connected layers, each serving
a specific goal, as illustrated in Fig. 6.

Convolution procedures within the convolutional layer acquire char-
acteristics from the input information. The pooling layer then ag-
gregates these features, reducing dimensionality and enabling further
feature extraction. The flattening layer converts the multi-dimensional
feature maps from the pooling stage into a one-dimensional (1D) array,
preparing them for the fully connected layer. Eventually, the regression
prediction is performed by the completely connected layer, integrating
the characteristics from the pooling and flattening stages.

For time series forecasting tasks, 1D convolutional filters are pre-
ferred. The convolutional layer operation is expressed as:

𝑓 = 𝛹 (𝛺𝐾 ∗ 𝑥 + 𝛽𝑘) (7)

where 𝛺 represents the kernel weight factors, 𝐾 is the number of
kernels, 𝑥 is the input series vector, 𝛽 is the bias vector, ∗ denotes
the convolution operation, and 𝛹 is the activation function. This study
uses the rectified linear unit (ReLU) activation function to enhance
computational efficiency for nonlinear data. The ReLU function is
mathematically represented as:

𝛹 (𝑧) = max(0, 𝑧) (8)

where 𝛹 operates on the input z, applying a threshold operation that
outputs the input itself when it is positive and zero when it is negative.
This functionality enables the function to maintain linearity for non-
negative values while providing a simple non-linear transformation for
7 
Fig. 7. ReLU activation function.

negative values, turning them to zero, as shown in Fig. 7. This charac-
teristic is particularly beneficial as it helps in reducing the likelihood
of the vanishing gradient problem and accelerates convergence during
training.

After convolution, the feature dimension can be large. To reduce
feature dimensions, a pooling layer follows the convolution layer.
Maximum pooling is often more effective than average pooling for time
series prediction, so this study uses maximum pooling. The maximum
pooling operation is represented by:

𝑌pool = Poolmax(𝑌conv) (9)

In this operation, Poolmax scans through the feature map 𝑌conv,
produced by the convolution layers, and methodically extracts the
maximum value from each segment within the feature map. Each
extracted maximum value signifies the most significant feature in that
segment, effectively preserving only the strongest and most relevant
features while discarding the less significant ones. Consequently, 𝑌pool,
the output from the pooling layer, represents a condensed version of
the input, where only the most critical information is retained.

In this work, a 1D CNN is utilized to predict the DC power of a PV
system. Thus, the CNN procedure consists of two convolution layers,
followed by a max pooling layer and, finally, a fully connected layer.
The 1D CNN parameters are summarized in Table 5.
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Table 5
Models parameters.

Model Layer Parameter Value

CNN Conv 1D (1) Activation Relu
Filters 16
Kernel size 3

Conv 1D (2) Activation Relu
Filters 32
Kernel size 3

Maxpooling Pool size 2
Fully connected 1 Number of units 50

Activation Relu
Fully connected 2 Number of units 1

Activation linear

RF – Number of trees 100
Max Depth 2

CNN-RF Conv 1D (1) Activation Relu
Filters 16
Kernel size 3

Conv 1D (2) Activation Relu
Filters 32
Kernel size 3

Maxpooling Pool size 2
RF Number of trees 100

Max Depth 30

3.3. Random forest

RF, which was first introduced in 2001 by Breiman and further
eveloped by XU in 2013, is considered one of the most popular en-
emble approaches in ML [44]. This method incorporates the prediction

capability of several decision trees to perform higher precision and
resilience.

In RF, each decision tree is exposed to various subsets of the data
hrough bootstrap sampling. This approach ensures that the trees learn
ifferently and enhances their understanding of complex data.

Another interesting feature of RF is its randomized feature selection
trategy. Instead of considering all features for every decision split,
nly a random subset is evaluated. This systematic approach helps
revent biases and excessive emphasis on features resulting in the
eneralization of the model.

The out-of-bag assessment procedure used by RF serves as an ex-
ample of its reflective nature. Unlike machine learning models that
rely on validation sets, RF internally validates itself. It uses data points
excluded during bootstrap sampling to assess its performance continu-
ously. This self-assessment allows the model to identify weaknesses and
improve accuracy over time.

The insights obtained from decision trees are cleverly integrated
ithin RF. The system uses either an averaging method or a voting

system, depending on whether it is a task of predicting values or
lassifying data, as shown in Fig. 8. Therefore, it is essential to note that

the ensemble design naturally reduces the chances of overfitting and
guarantees the model’s dependability. Due to the features mentioned
earlier, in this study, the RF is employed to forecast the DC power of
PV systems as a stand-alone model. The parameters that are used in RF
are available within Table in Sub- Section 3.4.

The process of training a forest can be outlined in the subsequent
steps:

1. Extract subsets of data from the dataset using Bootstrap Sam-
pling.

2. Let a decision tree grow for each subgroup. A random subset
of features is employed at each decision point in the tree to
calculate the split.

3. Repeat the aforementioned steps until the forest reaches its
desired size.

4. When new data is encountered, combine the predictions from
trees by either averaging them for regression or using majority
voting for classification to obtain the output of the random
forest.
8 
3.4. Hybrid convolutional neural network and random forest

In this study, a hybrid model named CNN-RF is also developed by
integrating a 1D-CNN with the RF model. The main goal of this hybrid
pproach is to forecast the DC power output of a solar PV system.
he CNN-RF architecture operates sequentially: the CNN functions as a
ophisticated feature extractor, particularly suited for time series data.
t the same time, the RF model utilizes these extracted features for

he final prediction. The 1D structure of the CNN is ideal for uncov-
ring hidden patterns within the temporal data, as its convolutional
ernel operates in a unidirectional manner. Once these features are
xtracted, they are passed to the RF model, which acts as the regression
echanism to predict the output power of the PV plant. This serial

ombination allows the hybrid model to capitalize on CNN’s ability to
rocess raw, structured data and the RF’s strength in delivering robust
nd accurate predictions.

The CNN architecture comprises two convolutional layers, a max
pooling layer and a flattened layer, depicted in Fig. 9. The initial con-
volution layer processes the input sequence to generate feature maps.
The following convolution layer manipulates these feature maps to
produce additional maps. The max-pooling layer then compresses these
maps, retaining only the most significant signal values. After pooling,
the compressed data is flattened into a one-dimensional vector by the
flattened layer. This step is essential as it transforms the sequential
features extracted by the CNN into a format that can be fed into the RF
model. The RF model then predicts the output power of the PV plant.
Besides, the parameters utilized in the CNN-RF model are summarized
in Table 5.

3.5. Hybrid recurrent neural network

A combination of BiLSTM and GRU is developed to mimic the DL
strategy. This proposed architecture is applied for effective solar power
prediction. The training and validation routines are used to account
for and analogize the model. The LSTM network resolved the gradi-
ent explosion issue by permitting memory cells in the hidden layers.

herefore, these memory cells are employed to accumulate information
ppropriately. The LSTM’s basic architecture is shown in [36]. Each cell

of the LSTM consists of a forget gate (𝐹𝑡), input gate (𝐼𝑡) and output gate
(𝑂𝑡), which are used to tolerate or discard any information in each cell
of LSTM architecture. For a forward movement function, the previous
cell state ‘𝐶𝑡−1’ has been discarded by the network. Therefore, the LSTM
network should have three inputs: solar power 𝑃𝑡, the output of the
previous memory cell (𝐻𝑡−1), and the bias of the forget gate (𝐵𝐹 ). As
a result, the activation values can be written as:

𝐹𝑡 = 𝜎
(

𝑊𝑓
[

ℎ𝑡−1, 𝑃𝑖(𝑡)
]

+ 𝑏𝐹
)

(10)

Therefore, the final output of the memory cell can be formulated as
ollows:

𝑂𝑡 = 𝜎
(

𝑊0
[

ℎ𝑡−1, 𝑃𝑖(𝑡)
]

+ 𝑏0
)

(11)

𝐻𝑡 = tanh(𝐶𝑡) (12)

where 𝜎 is a sigmoid function ranging from ‘0’ to ‘1’; 𝑊𝑓 and 𝑊0 are
weight vectors of the LSTM network; 𝑏0, and 𝑏𝐹 are bias vectors of the
LSTM network.

3.5.1. Bi-directional long short-term memory
In the BiLSTM network, the underlying patterns and properties of

data are captured via processing in both directions, which LSTM often
disregards. The BiLSTM network is made up of a forward layer (𝐹𝑙)
and a backward layer 𝐵𝑙, allowing data to be processed both forward
and backward [12]. In the BiLSTM network, the output sequence, the
orward hidden layer and the backward hidden layer are utilized to

update the network. The network iteratively updates from ‘‘T’’ to ‘‘1’’
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Fig. 8. Graphical representation of RF.
Fig. 9. Proposed Method: CNN-RF.
in the backward direction and from ‘‘1’’ to ‘‘T’’ in the forward direction.
The parameters of the BiLSTM network are written below:

𝐹𝑙 = 𝜎
(

𝑊1𝑃𝑖(𝑡) +𝑊2𝐹𝑙−1 + 𝑏𝐹𝑙
)

(13)

𝐵𝑙 = 𝜎
(

𝑊3𝑃𝑖(𝑡) +𝑊5𝐵𝑙−1 + 𝑏𝐹𝑙
)

(14)

𝑃0 =
(

𝑊4𝐹𝑙 +𝑊6𝑙 + 𝑏𝑝0
)

(15)

with 𝑊 is the weights coefficient, and 𝑃0 is final output layer; and 𝑏𝐹𝑙 ,
𝑏𝐵𝑙

and 𝑏𝑃0 are the biases [45].

3.5.2. Modified gated recurrent unit
In the suggested approach, the gated RNN-based GRU is formulated

on BiLSTM to enhance the performance of the forecast strategy. GRU in-
corporates the LSTM’s forget gate and input gate in a single update gate.
Based on the fundamental layout of GRU architecture, Eq. (16) to (19)
described the mathematical modelling of the developed architecture-
modified GRU. Eq. (17) to (19) display the general equations of the
GRU cell. In this model, the utilization of a stacked layer GRU is
preferable due to its faster training with fewer parameters. Therefore,
the framework is exemplified via Eqs. (16)–(18).

𝑢𝑝𝑡 = 𝜎
(

𝑤𝑢𝑝
[

ℎ𝑡−1, 𝑋 𝑖𝑡
]

+ 𝑏𝑢𝑝
)

(16)

( [ ] )
𝑟𝑡 = 𝜎 𝑤𝑟 ℎ𝑡−1, 𝑋 𝑖𝑡 + 𝑏𝑟 (17)
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𝑎𝑐𝑡 = tanh
(

𝑟𝑡𝑤𝑎𝑐
[

ℎ𝑡−1, 𝑋 𝑖𝑡
]

+ 𝑏𝑎𝑏
)

(18)

ℎ𝑡 = (1 − 𝑢𝑝𝑡)𝑎𝑐𝑡 + 𝑢𝑝𝑡ℎ𝑡−1 (19)

where 𝑢𝑝𝑡 is the updated gate, 𝑟𝑡 is the reset gate, 𝑤𝑢𝑝 is the weighted
bias update gate, 𝑤𝑟 is the weighted bias of the reset gate, 𝑋 𝑖𝑡 is the
input data from the training set at time 𝑡, 𝑎𝑐𝑡 is the activation vector,
ℎ𝑡 is the result of the output of the recent layer at time 𝑡, and 𝑏𝑢𝑝 and
𝑏𝑟 are the cell biases.

3.5.3. Hybrid BiLSTM-GRU
In this hybrid strategy, the possessions of DL techniques are utilized

to develop a hybrid BiLSTM-GRU network, as illustrated in Fig. 10. It
involves BiLSTM and multiple layers of GRU with a drop-out layer. This
model offers adaptable complexity, leading to more effective training
of input data with lower performance errors compared to fusion models
found in the existing literature. Drop-out layers are included in the
algorithm structure to mitigate data overfitting. The drop-out layer
deactivates specific neurons during the training process. Therefore,
BiLSTM strategies incorporate a drop-out layer between the BiLSTM
and GRU layers. The model uses a sequence input layer, a BiLSTM
layer with 500 hidden neurons, and two GRU layers with 200 hidden
neurons. The probability of the drop-out layer is fixed at 0.1, and a
completely connected layer is employed to obtain optimal forecasted
outcomes.
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Fig. 10. Hybrid RNN-based BiLSTM and GRU Model.
3.6. Forecasting assessment: Evaluation metrics

Some relevant evaluation metrics are selected to assess the perfor-
mance of the developed forecasting benchmarks for the solar PV power
output. The reverent metrics recommended by studies and reports in
the field have been selected. The chosen metrics include R-squared (R2),
mean square error (MSE), root mean square error (RMSE), and mean
absolute error (MAE) [36]. RMSE is commonly used as an evaluation
metric in forecasting studies because it effectively penalizes significant
errors. MAE illustrates the difference value of the forecasted and ref-
erence DC solar power values, providing a comprehensive overview of
how closely the predictions match the actual measurements. R2, also
referred to as the determination coefficient, estimates the variation
proportion in the dependent variable that the independent variables
can illustrate. Its values range between 0 and 1 (or 0% to 100%),
with a value approaching 1, signifying that the model possesses a high
predictive accuracy and closely corresponds with the observed data.
The formulations for these metrics are as follows:

R2 = 1 −
∑

(𝑦𝑖 − 𝑦̂𝑖)2
∑

(𝑦𝑖 − 𝑦̄𝑖)2
(20)

MSE = 1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (21)

RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (22)

MAE = 1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − 𝑦̂𝑖| (23)

with 𝑁 describes the total horizon of time steps, 𝑦̂𝑖 is the forecasted
output power from the PV plant, 𝑦𝑖 denotes the reference power, 𝑦̄𝑖 is
the mean of the reference.

4. Results and discussion

The solar PV DC power forecast is implemented by applying predic-
tive techniques [6], which are model-based MPC and four data-driven
ML strategies. The four developed ML models are CNN, RF, CNN-
RF, and DL-based hybrid BiLSTM-GRU. The implementation of CNN
RF, CNN, CNN-RF, and BiLSTM-GRU is executed in Python, utilizing
Jupyter Notebook. TensorFlow and KERAS served as the principal tools
for DL, facilitating the assembly of models. For tasks related to data
manipulation and processing, Sci-kit Learn and several fundamental
Python libraries were employed. The results are presented for one week
for each particular developed model. The system implementation of
the developed models is validated using the specifications provided
in Tables 2–5, depending on each design scheme. Each developed
strategy is tested in two scenarios. In the first case, the validation of the
10 
design performance is tested without disturbance. The second scenario
is validated by a disturbance from solar radiation during the second
day of the week.

4.1. Scenario-1: Without disturbance

The model-based approach is a quadratic formulation of the MPC
design developed in Eqs. (4)–(6) and depends on some of the most
critical factors of the implementation process, including the dynamic of
𝑝𝑟𝑒(𝑘), 𝑁𝑐 , 𝑁𝑝, 𝑟𝑤 and system constraints, as described in Table 4. Thus,
𝑁𝑐 and 𝑟𝑤 play an essential role in determining a suitable performance
index value at each sampling time as the computational system is
required to handle the system constraints and a determined 𝑁𝑝. In
this first case, ∀𝑘 ∈ N ⇒ 𝜈(𝑘) = 0, as developed in the model-based
system in Eq. (3). Therefore, the system can be computed without
input disturbance. Figs. 11(a) and 11(b) present the optimal forecasting
results from the MPC scheme.

The system implementation of the MPC uses a variable 𝑁𝑐 with a
fixed 𝑁𝑝 of one day, equivalent to a 288-data point. This implementa-
tion is based on the moving horizon window, as shown in Fig. 4(b). The
𝑟𝑤 and 𝑁𝑐 actively participate in the system performance. Thus, ∀𝑘 ∈ N
if 𝑟𝑤 ≤ 2 ⇒ the system performance is not suitable to predict optimum
results. Two other 𝑟𝑤 values, 2 and 2.5, have optimally been applied to
validate the robustness of the MPC design. Besides, five specific points
of time within the daily based on 𝑁𝑝 are also set to identify the control
horizon optimally, 𝑁𝑐 . These are 12, 24, 36, 48, and 60, equivalent
to the first, second, third, fourth, and fifth hours within a day. Table 6
presents the evaluation metrics of the MPC strategy in different horizon
windows in the function of 𝑟𝑤 and 𝑁𝑐 , as depicted in Figs. 11(a) and
11(b).

Figs. 11(c)–11(f) respectively show the results from RF, CNN, CNN-
RF, and BiLSTM-GRU data-driven strategies. Table 7 compares the
performance of each ML method. Thus, it can be observed that each
model optimally follows the reference. Additionally, it is observed
that the error metrics are lower for the developed hybrid BiLSTM-
GRU than those of other MLs and benchmark models in the literature,
with a 99% coefficient of regression [36]. Besides, in the literature,
usually, the data was tested for 9:1, 8:2, or 7:3 ratios [12,46]; the
developed BiLSTM-GRU model in this study is tested for data in the
ratio 5:5 training and testing data, and the results have been shown
only for seven days to validate the developed hybrid BiSLT-GRU archi-
tecture. Moreover, the hybrid CNN-RF method demonstrates superior
performance in multivariate data analysis to predict solar power.

It is observed that for 𝑟𝑤 ≥ 2.5 and 𝑁𝑐 ≥ 48, the MPC strategy
predicts satisfactory results. For ML strategies, as shown in Table 7,
the best-performed model is the CNN-RF, with the lowest RMSE at
14.276, MSE at 203.806, and MAE at 8.072. In addition, the CNN-RF
achieved the preeminent R2 value of 0.9996 compared to other data-
driven strategies. In terms of performance, when considering RMSE, it
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Fig. 11. DC solar PV power forecast without disturbance for the entire week.
Fig. 12. DC solar PV power forecast without disturbance within a day.
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can be seen that the inclusion of RF in CNN has roughly improved
erformance. On the other hand, the inclusion of CNN to RF has
mproved RF performance by approximately 19.527 W, which is above
0%. This can be attributed to the ability of CNN to extract complex
eatures from the data. Thus, it can be concluded that the combination
f CNN and RF has enhanced the predictive accuracy since it integrates

the distinctive features of both models.
The CNN can be classified as the second ML strategy since it has,

at best, R2, RMSE, and MAE, followed by RF and then BiLSTM-GRU.
Besides, the hybrid BiLSTM-GRU also provides optimal results for a
uitable solar DC power forecast prediction. Additionally, it is observed
hat the predicted values closely align with the observed values, as

depicted in Figs. 11(c)–11(f), and the different performance metrics
evaluation is given in Table 7.

Fig. 12 presents a profile prediction profile within a day for 24 h
and 2 h of the most relevant MPC schemes based on 𝑁 = 60 and
𝑐 i
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𝑟𝑤 = 2 or 2.5, and all ML strategies to assess the system performance.
his shows that when 𝑟𝑤 < 2.5, the ML schemes perform better than
he robustness of the MPC regardless of the optimal value of 𝑁𝑐 , as
escribed in Tables 6–7. It should also be adequate to mention the

DR scheme dynamic has actively participated in the computational
process robustness of the MPC design to forecast the solar DC power,
as developed in Fig. 5.

4.2. Scenario-2: With disturbance

The second case considers an external disturbance from solar ir-
adiation that affects the power generated by the PV systems. In this
cenario, ∀𝑘 ∈ N ⇒ 𝜈(𝑘) ≠ 0, as described in Eq. (3). Thus, an additional
tep of the system models is taken by incorporating data instabilities
n irradiance data on the second day of the last 7 days, as depicted
n Fig. 12. This instability is an outside disturbance for the system
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Table 6
Performance Evaluation Criteria of MPC strategies without disturbance.

Criteria MPC

𝑟𝑤 = 2 𝑟𝑤 = 2.5
𝑁𝑐 = 12 𝑁𝑐 = 24 𝑁𝑐 = 36 𝑁𝑐 = 48 𝑁𝑐 = 60 𝑁𝑐 = 12 𝑁𝑐 = 24 𝑁𝑐 = 36 𝑁𝑐 = 48 𝑁𝑐 = 60

R2 0.939466 0.957701 0.973378 0.985864 0.994432 0.997765 0.99951824 0.999979 1 1
MSE (W) 36 484.88 25 494.42 16 045.38 8519.986 3355.9 1347.224 290.3627261 12.69 0 0
RMSE (W) 191.0101 159.6697 126.6704 92.30377 57.93013 36.70455 17.04003304 3.562303 0 0
MAE (W) 97.99967 79.60943 60.78194 41.66653 22.8534 11.53508 3.709537766 0.307871 0 0
Fig. 13. DC solar PV power forecast with disturbance for the entire week.
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Table 7
Performance Evaluation Criteria of ML Strategies without disturbance.

Criteria RF CNN CNN-RF BiLSTM-GRU

R2 0.9981 0.9994 0.9996 0.9980
MSE (W) 1142.211 316.803 203.806 1228.4
RMSE (W) 33.803 17.799 14.276 35.0483
MAE (W) 18.897 14.043 8.072 22.9366

models of solar power forecasting. As an external disturbance in the
input variable of the system design, it has been observed that the solar
power could be reduced by an external variable on the second day from
a range of 40%–90%, and a deep ending on the irradiance data is added
on the same day. The other input variables are equally interpreted
according to these perturbations introduced in the solar irradiance
data. The observed disturbance magnitude represents realistic varia-
tions in solar irradiance caused by factors like cloud cover, shading,
 p

12 
or atmospheric changes, with the ‘‘deep ending’’ simulating extreme
conditions such as sudden heavy cloud cover or approaching storms.
The process of considering such disturbance to the observational data
is carried out to verify that the developed models are robust with
acceptable or suitable performance metrics, as developed in Eqs. (20)–
22). In operational meteorological models, this type of data synthesis is

commonly used to generate significant variations in the data condition
that will be used in subsequent forecasts. Thus, the results for each
developed method are displayed in Fig. 13.

Figs. 13(a) and 13(b) present the results of MPC with the set optimal
𝑤 when the system considers the disturbance into the input signal. The
obustness of the MPC shows its consistency in handling the system
onstraints described in Table 4. However, it is observed that due

to the disturbance in the input signal, the predicted power struggles
o smoothly follow the system reference. This is compared with the
ptimal results from the MPC scheme during the first scenario, as
resented in Figs. 11(a) and 11(b). In the second scenario, 𝑁 and 𝑟
𝑐 𝑤
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Fig. 14. DC solar PV power forecast with a disturbance within a day.
Table 8
Performance Evaluation Criteria of MPC strategies with disturbance.

Criteria MPC

𝑟𝑤 = 2 𝑟𝑤 = 2.5
𝑁𝑐 = 12 𝑁𝑐 = 24 𝑁𝑐 = 36 𝑁𝑐 = 48 𝑁𝑐 = 60 𝑁𝑐 = 12 𝑁𝑐 = 24 𝑁𝑐 = 36 𝑁𝑐 = 48 𝑁𝑐 = 60

R2 0.88722 0.946601 0.96251 0.975578 0.98515 0.91157 0.99204 0.99325 0.99368 0.99393
MSE (W) 65 352.50 30 942.26 21 725.93 14 151.52 8603.36 51 240.21 4609.42 3905.78 3658.03 3516.64
RMSE (W) 255.6413 175.9041 147.3972 118.9601 92.7543 226.3630 67.8926 62.4963 60.4817 59.3013
MAE (W) 134.1686 89.4258 72.1779 54.6686 37.1700 109.2288 16.9865 12.9254 11.9905 11.5997
e

o
p

G
M
h

a

Table 9
Performance Evaluation Criteria of ML Strategies with disturbance.

Criteria RF CNN CNN-RF BiLSTM-GRU

R2 0.99772 0.99407 0.99474 0.9949
MSE (W) 1319.9553 3442.1238 3050.6081 2980,0
RMSE (W) 36.3312 58.6693 55.2323 54.6067
MAE (W) 20.2126 27.7898 16.3711 16.896

also play the same role in optimal PV system power prediction. The
ata-driven strategies, including RF, CNN, CNN-RF and BiLSTM-GRU,
resent predicted profiles that asymptotically follow the reference, as
resented in Figs. 13(c)–13(f). The same behaviours can be observed
hroughout model-based-MPC assessment when 𝑟𝑤 ≥ 2.5 and 𝑁𝑐 ≥ 24,
s depicted in Fig. 13(b). Besides, Fig. 13(f) shows that the predicted

power from the hybrid BiLST-GRU stumbles from following the refer-
ence when the disturbance is considered compared to the undisturbed
model, as shown in Fig. 11(f). An effective comparison between the
first and the second scenarios can demonstrate the robustness of the
developed model-based and data-driven-based strategies. This can be
assessed by Fig. 11 compared to Fig. 13. For the CNN-RF, the result
presented in Fig. 13(e) shows an optimal following of the reference.
The non-hybrid schemes, RF and CNN, also present optimal predictions

hen the disturbance is considered, as depicted in Figs. 13(c) and
13(d).

Fig. 14 demonstrates the effectiveness of the suggested models to
orecast the generating power from the PV plan during the disturbance.
or the MPC, with 𝑁𝑐 = 60 and 𝑟𝑤 = 2 or 2.5, the results demonstrate

that the approach under-predicted the generated power during the
disturbance. Besides, Fig. 12 presents the under-prediction of the MPC
mplementation when 𝑟𝑤 = 2, as also shown in Figs. 11(a) and 13(a).

Nevertheless, the under-prediction for the MPC scheme can be caused
y several factors and variables, such as the dynamic behaviour of
he designing model, the system constraints formulated in Table 4,
𝑁𝑐 and 𝑟𝑤 as shown in Fig. 11(a). ML strategies also show optimal
results throughout the disturbing day, as presented in Fig. 14. A slight
over-prediction has been observed throughout the disturbing period
for each ML scheme. The data-driven methods are also affected by a
slight underestimation of the forecast power from the PV system. In
12, this over and under-prediction can be considered negligible for ML
trategies. Besides, Tables 6–9 can considerably assist in evaluating the

impact of over and under-predictions for each approach.
13 
4.3. Discussion

It can be observed in Figs. 11 and 14 that the DC power predicted
by the proposed models closely matches the reference DC power. It is
important to note that these profiles do not provide a reliable reference
for model comparison between strategies and scenarios. Therefore, the
valuation metrics described in Section 3.6 are utilized to assess a

comparative examination of the performance of various approaches, as
shown in Tables 6–9. They can also provide a more thorough knowl-
edge of the benefits of each method through optimal solar power fore-
casting modelling and an opportunity for a comprehensive comparative
analysis of strategies during all operation conditions.

For instance, Figs. 13 and 14 are insufficient to show an effective
discussion and comparison assessment of the system design. These
profiles are summarized in Tables 8 and 9 for an effective evaluation of
developed models based on the performance metrics of each strategy.
Therefore, Fig. 15 provides a critical assessment based on a compar-
ative of each method during both scenarios. Table 8 describes the
assessment metrics of the MPC scheme while considering disturbance.
For 𝑟𝑤 = 2, the MPC scheme possesses the same performance without
disturbance in terms of following the target, as shown in Figs. 11(a)
and 13(a). Besides, their evaluation can be considered unsuitable for
the optimal prediction of solar DC power from the PV plant compared
to MPC (when 𝑟𝑤 ≥ 2.5) and all data-driven approaches. As shown in
Table 8, the predicted values are optimal when 𝑟𝑤 ≥=2.5. However, the
results are less competitive from the effectiveness of the optimal values
without disturbance, as presented in Table 7, especially for 𝑁𝑐 = 48
r 60 with R2=1 and MSE=RMSE=MAE=0. These differences in the
erformance of MPC strategies can also be observed in Figs. 15(a) and

15(b).
Amongst ML approaches, it is demonstrated that the hybrid BiLSTM-

RU provides certain great performance metrics compared to some
Ls. This is regardless of its profile, as shown in Fig. 11(f). Thus, the

ybrid BiLSTM-GU possess an excellent R2, MSE, and RMSE than CNN
and CNN-RF, as shown in Table 9. However, in the first scenario, perfor-
mance metrics from the BiLSTM-GRU strategy could not be compared
to the performance of all ML approaches, as demonstrated in Table 7.
It can be observed that the over and under-prediction of BiLSTM-GRU,
s depicted in Fig. 13(f), could play a significant role in providing

some excellent performance metrics in the disturbed scenario. The
most performing ML approach in the undisturbed implementation, as
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Fig. 15. Performance metrics comparison: Undisturbed and disturbed assessment.
Table 10
Forecasting Methods: Assessment of the implemented strategies.

Methods Observations Advantages Disadvantages Comparison Summary

MPC – Intrinsic dynamic
handling and constraint
management in the
prediction process enhance
the forecast’s reliability.

– Effective handling of
constraints, real-time data
optimization, and high
control accuracy.
- High scalability.
- Optimal prediction.

– High computational
complexity requires a
model of the system and
implementation cost.
- Computational
complexity is increasingly
variable in function of the
prediction horizon and
system model
elaborateness.

– More dynamic and
constraint-aware than
static methods like RF.
- Scalable with advances in
computational hardware
and optimization
techniques.

– A robust closed-loop
control strategy optimizing
future inputs and outputs
for solar PV forecasting
using a state-space model.
- It is excellently suitable
for real-time applications,
including being viable for
real-time control in
large-scale PV systems,
particularly with optimized
configurations.

CNN – CNN layers extract
significant features,
reducing dimensionality
while preserving essential
information. Maximum
pooling effectively retains
critical features for
prediction..

– Efficient feature
extraction and
dimensionality reduction.

– Requires large datasets
for training and can be
computationally intensive.

–More efficient at feature
extraction than traditional
ML methods like RF.

–Uses convolutional and
pooling layers to extract
and condense features for
accurate time series
forecasting, particularly in
predicting PV system DC
power output.

RF – RF’s self-assessment
through out-of-bag samples
provides continuous
validation, ensuring
improved accuracy and
model generalization.

– Robust to overfitting and
handles complex datasets
well.
- High scalability.

– Can be less interpretable
than simpler models and
computationally intensive.
- Moderate computational
complexity, which is
parallelisable and
computationally efficient,
depends on the number of
trees and depth.

– More robust and
generalizable than single
decision trees.
- Robust and scalable to
large datasets and systems.

– Uses multiple decision
trees to enhance precision
and resilience in
predictions, effectively
generalizing the model to
reduce overfitting, suitable
for forecasting PV system
DC power.
- Excellent suitability in
real-time systems,
including low latency,
highly suitable for
real-time applications.

(continued on next page)
14 
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Table 10 (continued).
Methods Observations Advantages Disadvantages Comparison Summary

CNN-RF – CNN extracts significant
time series features, which
are then used by RF for
accurate regression and
prediction, improving
overall forecasting
performance.

– Combines strengths of
CNN and RF for better
performance.
- Moderate scalability.

– Increased model
complexity and
computational
requirements.
- High computational
complexity. This involves
convolutional operations
and random forest
regression, requiring
significant computational
resources for training.

– Combines efficient
feature extraction of CNN
with robust regression of
RF.
- Suitable for medium-scale
systems; may require
optimization for larger
systems.

– A hybrid model
combining CNN for feature
extraction and RF for
regression, effectively
predicting PV system DC
power by leveraging both
models’ strengths.
- Good suitability for
real-time applications, fast
inference once trained,
suitable for real-time in
medium-scale systems.

BiLSTM-GRU – Combines the
bidirectional processing of
BiLSTM with the efficiency
of GRU, enhanced by
dropout layers to prevent
overfitting, providing a
robust model for accurate
prediction.

– Combines strengths of
BiLSTM and GRU with
dropout to prevent
overfitting.
- Moderate to low
scalability.

– Increased model
complexity and
computational
requirements.
- High computational
complexity. This is caused
by resource intensive due
to the sequential
processing of time series
data, demanding training

– More robust and effective
than using BiLSTM or GRU
alone due to combined
strengths and dropout.
- Effective in variable
conditions but may require
optimization for large-scale
systems.

– Combines BiLSTM and
GRU, along with dropout
layers, to enhance training
effectiveness and
prediction accuracy for
complex sequential data,
making it suitable for solar
power forecasting.
- Suitably moderate for
real-time applications. This
requires optimization for
real-time use, especially in
large systems.
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presented in Section 4.1, was CNN-RF, with excellent performance
metric values compared to all ML methods. Table 9 shows that the RF
method is the best-performing model, with exceptional R2, MSE and

MSE, followed by BiLSTM-GRU, CNN-RF and CNN.
Moreover, as presented in Figs. 15(a)–15(d), RF provides a robust

forecast behaviour with less difference between performance metrics
of the disturbed and undisturbed methods. It can be glanced that the
addition of CNN did not enhance the performance of the RF model.

owever, including RF in CNN has slightly improved the performance
of CNN-RF, especially when evaluating MAE, as shown in Fig. 15(d),
compared to all ML strategies during the disturbed scenario. Thus, as
shown in Fig. 13 and Table 9, if only MAE is considered as the best
uitable criterion to evaluate the most performing approach, this should
e the MPC with 𝑟𝑤 = 2.5 and 𝑁𝑐 ≥ 48, followed by CNN-RF, BiLSTM-
RU, RF and CNN. Therefore, the determination of a suitable solar

PV power forecast model, either model-based or model-free strategy,
depends on data structure, disturbance, and system configuration and
modelling, including parameters, location, and constraints.

It has been observed that considering the computational complexity
and scalability of each method is essential to providing further insights
nto the practicality of these forecasting approaches for real-time ap-
lications and their potential scalability to larger PV systems. Thus,

Table 10 summarizes these aspects of the discussed and developed mod-
els, including the computational complexity, scalability and suitability
for real-time applications.

5. Conclusion

In this paper, an MPC under the DR scheme for predicting the DC
ower production of solar PV systems is developed. This method is com-

pared to various data-driven models, including RF, CNN, CNN-RF and
BiLSTM-GRU strategies. The models were tested using real-time data
from the University of Sharjah solar power plant in Sharjah, UAE, with
data normalization techniques used to improve the training algorithms
for each machine-learning scenario. The obtained results demonstrate
that the main goal of accurately forecasting the DC power of the PV
system using MPC under the DR system has been achieved. The DR
scheme provides a dynamic opportunity to support the robustness of
the computational process of the MPC design for effective solar DC
power forecasting. Therefore, the MPC strategy offers an excellent and
accurate power forecast with the best evaluation metrics compared
15 
to ML approaches during the undisturbed scenario. This shows that
PC is robust compared to selected ML approaches. For ML strategies,

he hybrid of CNN-RF provides better results than other data-driven
chemes. The hybrid BiLSTM-GRU is regarded as the last in the list of
ll developed ML approaches. Moreover, if an external disturbance is
onsidered, MPC provides optimal results with some lower performance
etrics values compared to all ML approaches. RF is regarded as a

suitable model with best-performance metrics when the disturbance
is considered. Therefore, this work offers an opportunity to accelerate
and improve the precision and utilization of energy resource planning.
Furthermore, each developed model of this work can effectively be used
to predict and assess an accurate energy resource.

Future studies will also look at implementing the developed model
t the tertiary control level of microgrids for optimal energy coordina-
ion. This will serve as an opportunity to create a digital twin model
or optimum solar power plants to guarantee the total load demand and
et-zero vision.
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