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ABSTRACT
Objective  This study reviewed the current state of 
machine learning (ML) research for the prediction of 
sports-related injuries. It aimed to chart the various 
approaches used and assess their efficacy, considering 
factors such as data heterogeneity, model specificity and 
contextual factors when developing predictive models.
Design  Scoping review.
Data sources  PubMed, EMBASE, SportDiscus and 
IEEEXplore.
Results  In total, 1241 studies were identified, 58 
full texts were screened, and 38 relevant studies were 
reviewed and charted. Football (soccer) was the most 
commonly investigated sport. Area under the curve (AUC) 
was the most common means of model evaluation; it 
was reported in 71% of studies. In 60% of studies, tree-
based solutions provided the highest statistical predictive 
performance. Random Forest and Extreme Gradient 
Boosting (XGBoost) were found to provide the highest 
performance for injury risk prediction. Logistic regression 
outperformed ML methods in 4 out of 12 studies. Three 
studies reported model performance of AUC>0.9, yet the 
clinical relevance is questionable.
Conclusions  A variety of different ML models have 
been applied to the prediction of sports-related 
injuries. While several studies report strong predictive 
performance, their clinical utility can be limited, with 
wide prediction windows or broad definitions of injury. 
The efficacy of ML is hampered by small datasets and 
numerous methodological heterogeneities (cohort sizes, 
definition of injury and dependent variables), which were 
common across the reviewed studies.

INTRODUCTION
Injuries are commonly incurred by professional, 
amateur and recreational athletes.1 They can 
have a significant impact on the short- and long-
term health of individual athletes, as well as team 
performance. In men’s elite-level European foot-
ball (soccer), lower injury burden and higher 
match availability are associated with a higher final 
league ranking.2 Similarly, injuries are negatively 
correlated to team success in elite-level rugby union 
in England.3 Diminished on-field performance also 
leads to a loss of potential revenue for sporting 
organisations.4 English Premier League teams lose, 
on average, an estimated amount of £45 million 
due to injury-related decrements in performance 
per season.5

To inform injury risk mitigation initiatives, sports 
practitioners and researchers leverage the wealth 
of player-related data made available through 
the proliferation of electronic performance and 

tracking systems. For instance, wearable Global 
Positioning System (GPS)-based units can provide 
a multitude of outcome metrics on a player’s phys-
ical exertions with millisecond granularity.6 In addi-
tion to these GPS-based outcome metrics, scientists 
collect data on self-perceived wellness scores,7 
ratings of perceived exertion (RPE),8 9 musculo-
skeletal screening tests10 and sleep quality11 from 
players on a regular basis.

In an effort to explore the complex interaction 
of different player-related datasets, sports scientists 
increasingly apply machine learning (ML) models. 
As a subset of artificial intelligence, ML could estab-
lish previously unknown relationships in complex 
datasets12 across a variety of sporting domains, 
including results prediction,13 player scouting14 and 
tactical team analysis.15 To address the problem of 
injury risk prediction in sports, ML models could 
be a suitable solution due to their ability to harness 
the complex non-linearity associated with the phys-
iological and biomechanical processes that precede 
an injury.16

These complexities extend to the highly indi-
vidualised nature of sporting injury, influenced by 
numerous factors specific to an individual athlete. 
Given the abundance of player-related data from a 
multitude of sources, it is important to better under-
stand the ML approaches that have been applied 
to sports injury risk prediction to date. We might 
anticipate that ML methods and approaches will be 
selected based on the available data and the purpose 

WHAT IS ALREADY KNOWN ON THE TOPIC
	⇒ The increased rate of data collection relating 
to athlete load has led to interest in machine 
learning (ML) approaches for sports data 
analysis, including injury risk prediction.

	⇒ Prior reviews have examined the application 
of ML for both performance analysis and injury 
risk prediction, although no charting of study 
characteristics were conducted.

WHAT THIS STUDY ADDS
	⇒ Random Forest has been tested more than any 
other ML approach.

	⇒ Extreme Gradient Boosting (XGBoost) provided 
the best performance in each paper in which it 
was tested.

	⇒ Numerous heterogeneities exist, including 
definition of “injury”, granularity of data and 
scope of prediction windows.

	⇒ Lack of clinical relevance hampers the utility of 
some study findings.
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of the analysis, yet we do not know what models are more often 
included and how their performance is defined.

Therefore, the aim of this scoping review was to synthesise the 
findings of the published literature on the use of ML to predict 
sport-related injuries. Objectives were to:
1.	 Summarise the ML approaches that have been used to pre-

dict sport-related injuries.
2.	 Assess the efficacy of the ML approaches that have been used 

to predict sport-related injuries.

METHODS
Protocol and reporting
Our review protocol is publicly accessible via the Open Science 
Framework (https://osf.io/tyu5f/, DOI: 10.17605/OSF.IO/
TYU5F). We have reported our review in accordance with the 
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses extension for Scoping Reviews.17

Inclusion criteria
We included studies published in a peer-reviewed journal as full-
text English articles that described the use of an ML technique to 
predict in vivo sport-related injuries.

Exclusion criteria
We excluded studies if: (1) ML models were not used to predict 
in vivo sport-related injuries; (2) the full-text article published 
in a peer-reviewed journal was not available in the English 
language and (3) the article was a review (narrative, systematic 
and scoping), editorial or conference abstract/paper.

Search Strategy
We conducted an initial, exploratory Google Scholar search 
(March 2023) for thematically relevant studies. 20 relevant 
studies were visualised using the wordcloud library in the statis-
tical programming language R (R Foundation for Statistical 
Computing, Vienna, Austria), allowing key search terms to be 
identified. These were reviewed for relevance, with additional 
terms included based on the authors’ domain knowledge. This 
process led to the development of the following search strategy:

(‘sport*’ OR ‘athlet*’ OR ‘soccer’ OR ‘basketball’ OR ‘rugby’ 
OR ‘football’ OR ‘volleyball’ OR ‘skating’ OR ‘handball’ OR 
‘distance running’ OR ‘hockey’) AND (‘injury’ OR ‘inju-
ries’ OR ‘injured’) AND (‘artificial intelligence’ OR ‘bayesian 
logistic regression’ OR ‘boosting’ OR ‘decision tree*’ OR ‘deep 
learning’ OR ‘elastic net’ OR ‘k-means’ OR ‘lasso’ OR ‘learning 
algorithm*’ OR ‘machine learning’ OR ‘naive bayes’ OR 
‘nearest neighbo*’ OR ‘neural network*’ OR ‘random forest*’ 
OR ‘ridge’ OR ‘support vector machine*’ OR ‘XGBoost’). This 
search strategy was applied across the following four electronic 
bibliographic databases: MEDLINE via PubMed, EMBASE via 
Ovid, SportDiscus via EBSCOhost and IEEEXplore. The data-
bases were searched from the date of earliest publication to 20 
May 2023.

Selection of sources of evidence
Two reviewers (CL and ED) independently screened the titles, 
abstracts and, where necessary, full text of all articles identified 
through the search strategy. Discrepancies in their identification 
of articles that satisfied the inclusion criteria were iteratively 
discussed with a third reviewer (NVD) until a consensus was 
reached.

The data items were initially charted following an itera-
tive process using a customised Microsoft Excel spreadsheet. 

Collected data included, but was not confined to, publication 
year, cohort information (volume, age range and gender), study 
duration and the sporting discipline in which the research was 
conducted. The location and classification of the injuries being 
investigated were also collected, as well as the ML algorithm, 
which was found to yield the highest predictive performance. 
Information was also collected regarding the dependent variables 
used during each analysis. Data relating to the stated hypoth-
eses were also collected to investigate the potential existence of 
‘Hypothesising After the Results are Known’ (HARKing).

Synthesis of results
Studies were charted based on common topics and themes. 
These included the study cohort (ie, elite or amateur, youth or 
adult, male or female), the type of injuries they sought to predict 
(ie, contact or non-contact and the location of injury) and the 
sport in which they were conducted.

Equity, diversity and inclusion statement
The authorship group acknowledges a gender imbalance among 
the contributing researchers. The group was assembled based on 
the academic research studies panel, convened for the purposes 
of CL’s progression through his PhD research. This panel was 
assembled based on everyone’s expertise, availability and will-
ingness to engage with the project.

During the data charting, the gender of each study cohort was 
recorded and reported within the results section of the following 
review.

RESULTS
Numerical analysis
The results of the search strategy and screening process are 
illustrated in figure 1. The initial electronic search yielded 1787 
potentially relevant studies; 548 of these were duplicates and 
were removed. Title, abstract and, where necessary, full-text 
screening of the remaining 1241 articles yielded 37, which 
satisfied the inclusion criteria. The inter-rater agreement of the 
two reviewers who independently assessed the eligibility of all 
the studies was 98%. Following a manual reference list search, 
one additional article was identified as relevant and included, 
resulting in the inclusion of a total of 38 studies. A summary 
of the main features of each study is available in online supple-
mental table 1).

Publication year and country of origin
Studies were identified from 15 countries (figure  2), with the 
USA contributing 37% (n=14). Australia, the only Oceanic 
nation represented, contributed five articles. 10 European Union 
member states contributed 16 articles, with Spain contributing 
three articles. Studies by Asian countries, Iran (n=1) and China 
(n=1) accounted for two articles. No relevant articles were iden-
tified from South American or African countries.

Research in the domain of ML for injury risk prediction in 
sports has grown steadily over the last 10 years (figure 2). The 
most recent full calendar year included in our review was 2022, 
which represented the greatest volume of academic output in 
the field, with 12 articles, an increase of 140% on the previous 
year. We expect similar growth in the number of publications for 
2023, given the number of articles included in the review up to 
20 May 2023.
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Study cohorts and environments
Nine studies were undertaken in football, while three studies 
were conducted in both Australian football and basketball, and 
two studies were conducted in long-distance running. One study 
was conducted in each of the following sports: rugby league, 
baseball, speed skating, cricket, ice hockey, American football 
and futsal. 11 studies included more than one sport and/or mili-
tary personnel. Three studies did not report in which sport the 
research was conducted.

Studies including male-only cohorts were most common 
(47%, n=18). Only 18% of studies included entirely female 
cohorts (n=7). 12 studies (32%) analysed mixed-gender cohorts, 
while one study did not report the sex of the participants. In 
most cases, studies included adult cohorts (n=26, 68%). Eight 
studies included youth athlete cohorts, and four studies included 
mixed-age cohorts. Furthermore, 68% of studies were conducted 
in elite or professional sports settings (n=26), while 12 studies 
(32%) were conducted in amateur or recreational sports settings.

Cohort sizes within the included studies varied significantly 
(table 1). The smallest study included 11 participants, while the 
largest study comprised 15 682 participants. The median cohort 
size of the included studies was 122 participants. The heteroge-
neity in cohort sizes equates to a coefficient of variation (CV) of 
264%. This variation is further evidenced when considering the 
number of injuries included in each of the studies upon which 
the ML models were to be trained (table 1). The heterogeneity in 
the number of included injuries is large (CV of 299%).

Injury data collection
Injuries were diagnosed and reported by professional medical 
staff in 30 studies (79%), with four studies (11%) requiring MRI 
verification of included injuries. Five studies (13%) relied on 
self-reported survey responses and three studies (8%) used data 
from publicly available sources.

Nine studies conformed to the consensus statement of Fuller,18 
with regard to the reporting, classification and severity of inju-
ries. Two studies followed the consensus statement of the Union 
of European Football Association.19 18 studies (47%) explicitly 
required that the injuries used to train the ML models were time-
loss injuries. This time period was predominantly defined as a 
1-day minimum (n=13). Other studies defined this minimum as 
two (n=1), five (n=1), seven (n=1), eight (n=1) and nine (n=1) 
day periods of absence from physical activity (table  2). Nine 
studies (24%) included non-time-loss injuries within the target 
variable. Two studies (5%) permitted the inclusion of medical 
illnesses within the definition of injury.

Contact versus non-contact
18 studies (47%) limited their analyses to non-contact injuries 
(injuries without any direct contact or collision with another 
individual).20 Two studies considered only contact injuries: one 
relating to concussion and one to dental injuries. In 47% of the 
studies (n=18), contact and non-contact injuries were consid-
ered jointly.

Figure 1  Preferred Reporting Items for Systematic Reviews and Meta-Analyses Flowchart.
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Body part analysed
16 studies (42%) assessed the predictive capabilities of ML 
models relating to injuries sustained to any body part. 10 studies 
(26%) refined the target variable definition to any injury occur-
ring to the lower extremity (ie, hamstring, calf, ankle, etc) as a 
whole, with another study (n=1) considering injuries to both 
the lower body and trunk. One study jointly predicted the onset 
of injuries to the knee joint and ankle joint of participants. The 
remaining 10 studies analysed injuries sustained to specific body 
parts; the most common were the knee (n=3) and hamstring 
muscles (n=3). Other injury locations under analysis included 
the mouth (n=1), shin (n=1), head (n=1, concussion) and 
kidneys (n=1).

Commonly applied ML models
Most studies (92%) related to classification tasks, whereby the 
ML models were developed to assign records to a particular class 
(ie, ‘injury’ or ‘non-injury’). Two studies21 22 used time-to-event 
analysis, with one other study23 investigating regression analysis.

In 42% (n=16) of studies, only one ML model was assessed. 
Other studies applied two (n=3), three (n=8), four (n=4), five 
(n=4) and six (n=3) different methods to determine which 
achieved the highest statistical performance. Random Forest 
was the most investigated method of predictive ML algorithm, 
with variations of the method (including conditional, calibrated 
and survival) applied in 54% of studies (n=21), amounting to 

Figure 2  Included studies by year of publication and location. Number of studies added in columns.

Table 1  Statistical summary of reviewed cohort sizes, volume of 
injuries analysed and dependent variables

Mean (SD) Median (IQR) Range
Coefficient 
of variation

Cohort size 1417 (3,747) 122 (36–623) 11–15 682 264%

Injuries (n) 493 (1,471) 57 (28–194) 10–6982 299%

Dependent 
variables

61 (150) 31 (16–48) 7–957 246%

Table 2  Data collection methods and injury definition criteria

Injury data collection (n(%))

Medical staff 30 (79%)

 � Club/team medical staff 19

 � Other medical personnel 11

Self-reported survey 5 (13%)

Public data source 3 (8%)

Definition of injury (n(%))

Time loss (number of days) 18 (47%)

 � ≥1 13

 � ≥2 1

 � ≥5 1

 � ≥7 1

 � ≥8 1

 � ≥9 1

Medical Evaluation 11 (29%)

 � Assessment by clinician 7

 � MRI diagnosis 4

Non-time-loss and time-loss 9 (24%)
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23 models. Nine studies developed and applied decision trees 
and variations thereof including Chi-square automatic interac-
tion detector (CHAID), C4.5, SimpleCart, J48 and random tree, 
amounting to a total of 15 models. Logistic regression (n=12), 
Support Vector Machines (SVM, n=9) and Extreme Gradient 
Boosting (XGBoost, n=8) were also commonly applied.

Highest-performing ML models
XGBoost and Random Forest were both reported as the highest-
performing ML methods in eight studies (table 3). A Random 
Forest solution achieved the highest AUC across the studies 
reviewed, with a reported value of 0.95.24 XGBoost was reported 
as the statistically highest performing approach in each of the 
eight studies in which it was applied, although four of these 
instances considered it as the only predictive ML model. Four 
studies determined SVM as the highest-performing model, of 
which only one paper failed to compare it against other models. 
Decision trees were deemed the highest-performing approach in 
five studies.

23 studies (61%) determined that the statistically highest-
performing approach was a tree-based solution. These solutions 
included Random Forest,21 22 24–29 XGBoost30–37 and decision 
trees,38–40 referenced above, along with Recursive Partitioning 
and Regression Trees (n=1)41 and Gradient Boosting Algorithms 
(n=1).10 Artificial neural networks (ANN) provided the highest 
performance in two studies,42 43 having been applied in six. Two 
ANN architectures included one hidden layer,42 43 two used 
two hidden layers44 45 and two failed to disclose the number of 
hidden layers.33 46 Four studies determined that logistic regres-
sion outperformed the other ML models against which it was 
applied.9 44 47 48 Bayesian approaches were reported to provide 
the highest predictive performance in two studies: Naive Bayes 
(n=1)46 and Dynamic Bayesian Networks (n=1).49 These results 
are summarised in table 3.

Class imbalance, cross-validation model explainability
15 studies (39%) identified an imbalance between classes within 
the data. This imbalance exists due to the infrequent nature of 
injuries, given that an athlete will experience more days uninjured 
than injured. All 15 studies applied oversampling techniques. 10 
studies applied the synthetic minority oversampling technique 
(SMOTE), with others using random oversampling (n=4) and 
adaptive synthetic sampling (n=1). Four of these studies also 
applied undersampling techniques, with each randomly under-
sampling the majority class. Cross-validation techniques were 
performed in 32 studies (84%).

Seven studies (18%) applied model explainability methods. 
Five studies (13%) used SHapley Additive exPlanations (SHAP) 
values to improve model interpretability, with two studies using 
local-interpretable model-agnostic explanations.

Evaluation methods
10 evaluation metrics of predictive validity were reported across 
the 38 studies. 27 studies (71%) reported the area under the 
curve (AUC) of the receiver operating characteristic curve as 
a measure of model performance. An AUC of 0.5 represents 
a model with predictive performance no greater than random 
chance, while an AUC of 1 signifies a perfect predictor. The 
reported values of AUC, illustrated in figure 3, ranged between 
0.57 and 0.95. The narrative assessment of ‘poor’, ‘acceptable’, 
‘excellent’ and ‘outstanding’ conforms with the work of Stur-
divant et al.50 One-third of studies reported AUC values in the 
regions of ‘poor’ (between 0.50 and 0.69) (n=9), with 37% 
(n=10) achieving ‘acceptable’ (between 0.70 and 0.79) results. 
Five studies (19%) reported AUC scores between 0.80 and 0.89, 
considered ‘excellent’, and three (11%) attained AUC scores 
more than 0.9—classed as ‘outstanding’.

Of the remaining 10 studies that did not report AUC, sensi-
tivity, also referred to as recall, was reported most often (n=6), 
with an average value of 0.81. Precision (n=4), specificity (n=2), 
F1 Score (n=2) and F2 Score (n=2) were the only other metrics 
stated more than once within these studies, achieving averages 
of 0.79, 0.85, 0.73 and 0.87, respectively. Across all 38 studies, 
measures of accuracy were reported in only six studies (16%) 
with an average score of 89.79%.

Dependent variables
A total of 1359 dependent variables were analysed across the 38 
studies (see online supplemental table 1). The number of depen-
dent variables available for predictive modelling in a single paper 
ranged from 7 to 957.45 46 The average number of dependent 
variables was 61, with a coefficient of variation equal to 246%. 

Table 3  A summary of different machine learning and statistical 
approaches identified

Method Applied

Highest 
performing 
method

Only 
method 
applied

Random Forest*21 22 24–29 23 (23%) 8 (21%) 6 (38%)

Extreme Gradient Boosting 
(XGBoost)30–37

8 (8%) 8 (21%) 4 (25%)

Logistic regression9 44 47 48 12 (12%) 4 (11%) 0 (0%)

Support Vector Machine45 

64 66 67
9 (9%) 4 (11%) 1 (6%)

Decision tree+ 38–40 15 (15%) 3 (8%) 1 (6%)

Artificial neural network42 43 6 (6%) 2 (5%) 1 (6%)

SmoteBoostM1 technique 
with a cost-sensitive AD 
tree68 69

2 (2%) 2 (5%) 0 (0%)

Naïve Bayes46 70 4 (4%) 1 (3%) 0 (0%)

LASSO regression54 2 (2%) 1 (3%) 1 (6%)

UnderBagging technique with 
a cost-sensitive SMO56

1 (1%) 1 (3%) 0 (0%)

Ridge regression23 1 (1%) 1 (3%) 0 (0%)

Gradient boosting algorithm10 1 (1%) 1 (3%) 1 (6%)

Dynamic Bayesian Network49 1 (1%) 1 (3%) 1 (6%)

Recursive partitioning and 
regression trees41

1 (1%) 1 (3%) 0 (0%)

K-nearest neighbours 6 (6%) 0 (0%) 0 (0%)

Elastic Net 2 (2%) 0 (0%) 0 (0%)

Generalised estimating 
equations

1 (1%) 0 (0%) 0 (0%)

Logit classifier 1 (1%) 0 (0%) 0 (0%)

Generalised linear mixed-
effect models

1 (1%) 0 (0%) 0 (0%)

Linear discriminant 1 (1%) 0 (0%) 0 (0%)

Ordinary least squares 
regression

1 (1%) 0 (0%) 0 (0%)

Stepwise forward regression 1 (1%) 0 (0%) 0 (0%)

Total 100 38 16

For each group, the number of models using that method is presented as applied, 
identified as highest performing method or only method applied.
*Includes Conditional Random Forests, Calibrated Random Forests and Random 
Survival Forest,
†Includes Chi-square automatic interaction detector decision tree, C4.5, SimpleCart, 
J48 and random tree.
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Screening data, collected during the preseason or prior to study 
commencement, were the most frequently analysed. 28 studies 
(74%) collected data relating to non-modifiable risk factors, 
including age, injury history, playing position and years of 
competitive experience. 22 studies (58%) analysed musculoskel-
etal screening tests, and 18 (47%) analysed body composition 
and anthropometric measurements. Four studies screened for 
psychological risk factors, and one screened for self-perceived 
ankle instability. The most common measures of internal load 
used within the studies were a rating of perceived exertion (RPE) 
and session RPE (sRPE), which featured in 11 studies (29%), 
while 6 studies (16%) gathered scores related to individuals’ self-
perceived wellness (ie, sleep quality, stress, muscle soreness, etc). 
Seven studies (18%) analysed external load data gathered from 
wearable electronic performance and tracking systems (ie, GPS-
based units). Less common data sources included urine samples 
(n=2), blood tests (n=1), menstrual cycle data (n=1) and sleep 
quality data from WHOOP straps (WHOOP, Boston, Massachu-
setts, USA) (n=1). A study hypothesis was declared in 29% of 
studies (n=11). One study (3%) explicitly defined their analyses 
as ‘exploratory’, with one further study reporting that their anal-
yses were informed via an ‘inductive’ approach.

DISCUSSION
XGBoost and Random Forest were reported as the highest-
performing methods, based on the published statistical evalua-
tion metrics in 42% of the included studies. Random Forest was 
the most commonly investigated method of injury prediction. 
XGBoost was the only method found to provide the highest 
statistical performance in each of the studies in which it was 

applied. In 60% of studies, a tree-based solution was found 
to provide the greatest predictive performance of the methods 
applied. As AUC was the most commonly reported metric of 
model evaluation (71% of studies), it provides the most effective 
means of performance comparison between reviewed studies.

Predictive performance
Random Forest was the most commonly applied ML approach. 
In line with this, Random Forest was reported as the highest-
performing ML model, alongside XGBoost. XGBoost was the 
only method found to provide the highest performance score 
in each of the studies in which it was featured. However, this 
performance must be caveated by the fact that four of the eight 
studies listed XGBoost as the only algorithm applied. In 60% of 
the studies, a tree-based solution achieved the highest statistical 
performance, with an average AUC score of 0.77, 12% higher 
than the average AUC score of 0.69 reported by other tech-
niques. The three studies achieving the highest AUC, exceeding 
0.9, each applied tree-based methods — CHAID decision tree, 
XGBoost and Calibrated Random Forest24 34 40 — with another 
study achieving an F1 score of 94.4% using XGBoost.36

While these reported statistical metrics are impressive, with 
AUC above 0.9 indicative of near-perfect predictive models, 
the variation in approaches is notable when comparing the two 
highest-performing studies. Luu et al34 sought to predict the risk 
of ‘next-season injury’ (to any body part, illnesses included). 
Based on publicly available datasets relating to National Hockey 
League match metrics (ie, minutes played, shots and offensive/
defensive actions), the analysis included 2322 players, yielding 
an AUC of 0.948. Yet, the clinical utility of such a model, with a 

Figure 3  Area under the curve from receiver operator characteristic analysis.
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broad window of prediction that does not define the body part 
in which an injury might occur, is limited. Shaw et al24 achieved 
the highest reported AUC score of 0.95, predicting the onset of 
medial tibial stress syndrome in a group of 99 military trainees. 
Due to the COVID-19 pandemic, the participants were not 
involved in ‘structured physical training’, instead conducting 
their own self-directed running, thus the load could not be accu-
rately tracked. In this study, 35% of the participants developed 
medial tibial stress syndrome following a period of self-directed 
running. This is the same as the expected incidence of 35% 
reported in athletic populations.51

These examples emphasise the need for clinical relevance 
regarding ML research for sports injury risk prediction. Research 
groups should comprise an appropriate balance of technical and 
domain expertise. For instance, a methodologically sound ML 
model developed by a team of data scientists will be of little 
benefit if the question it is designed to answer is misaligned 
with the needs of the clinical practitioners. To more effectively 
disseminate ML research to sports medicine teams, a wider appli-
cation of model interpretability techniques, used in only 18% 
of reviewed studies, should be adopted. These methods, namely 
SHAP values, allow previously deemed ‘black-box’ models (ie, 
complex models that are not easily understood by humans)52 to 
be more easily understood, facilitating their real-world use by 
medical teams, coaches, and athletes.

Available datasets
Compared with traditional statistical methods, ML methods 
are capable of analysing larger datasets with more dependent 
variables to develop more complex models.53 Conversely, this 
review finds no clear correlation between the number of depen-
dent variables being analysed and ML algorithmic performance. 
For example, an SVM model with 957 dependent variables avail-
able for the prediction of concussion achieved an AUC of 0.73,45 
yet was statistically outperformed by an SVM trained with only 
15 features, reporting AUC=0.840.52 These results indicate 
that the volume of dependent variables alone will not guarantee 
improved predictive performance. The context-specific nature 
of ML model deployment, contingent upon both the question at 
hand and the datasets being investigated, is key to interpreting 
the clinical utility of these findings.

Furthermore, ML approaches do not always yield greater 
predictive capabilities than traditional methods, with four studies 
reporting that logistic regression outperformed the ML methods 
against which it was applied. However, these findings require 
additional context. For instance, Jauhiainen et al48 reported 
that logistic regression outperformed Random Forest, with 
achieved AUC values of 0.65 and 0.63, respectively. The negli-
gible difference in AUC of 0.02, with both techniques yielding 
‘poor’ predictive performance, suggests that the dataset at the 
author’s disposal was not conducive to the task of injury risk 
prediction. In another example, logistic regression achieved an 
AUC of 0.82, marginally outperforming Random Forest (0.8), 
as well as SVM (0.73) and K-Nearest Neighbours (0.7).44 The 
authors acknowledge that ‘the data set is too small to fit a more 
complex model’, given that GPS data was collected for only a 
subset of ‘important’ athletes within the group, due to the high 
cost of electronic performance and tracking equipment.

As such, 53% of studies (n=20), used only data taken from 
screening tests to train the ML models. While less costly than 
more continuous methods of athletic monitoring,54 prediction 
of sporting injury through the analysis of screening data alone 
has been deemed ineffective.55 The average AUC score of models 

trained and tested using screening data alone was 0.73. Perfor-
mance was increased when more granular methods of athletic 
monitoring (RPE/sRPE, self-perceived wellness questionnaires, 
GPS metrics, etc) were analysed, achieving an average AUC of 
0.77. The analysis of external load using GPS tracking is insub-
stantial, with only seven studies using the increased granularity 
of data offered by such electronic performance and tracking 
systems (average AUC of 0.75).

These findings highlight the logistical and financial challenges 
that teams and medical staff face in relation to the large-scale 
data collection required to effectively train ML models.44 56

The inherently sporadic nature of sporting injury introduces 
numerous difficulties when developing and evaluating predic-
tive models. First, to address the class imbalance issue, 39% of 
studies applied some form of sampling technique. These methods 
of either undersampling the majority class (ie, ‘non-injury’) or 
oversampling the minority class (ie, ‘injury’) may cause unfore-
seen data issues. For instance, the SMOTE technique, the most 
commonly applied oversampling method in the studies included 
in this review, creates synthetic ‘injury’ instances upon which 
models can be trained. This generation of synthetic data intro-
duces the risk of overfitting, whereby the model learns from 
synthetic cases that are too similar to the original data, thus 
reducing the generalisation of the models. The use of undersam-
pling techniques causes unwanted loss of data, whereby instances 
of the majority class are removed to even the class distribution.

The issue of class imbalance adds complexity when assessing 
model performance, as evidenced by the numerous approaches 
(n=10) to statistical evaluation presented within the studies 
included in this review (online supplemental table 2). The 
frequent use of AUC, reported in 71% of cases, given its 
ability to better reflect class imbalance than accuracy scores.57 
Conversely, recent research has suggested that AUC may not 
be as effective at handling skewed data as previously thought, 
instead proposing the use of the area under the precision-recall 
curve,58 further demonstrating the difficulty in effectively bench-
marking and comparing ML performance. Importantly, there is 
no consensus on the best single metric of model evaluation from 
a sports injury perspective.

In spite of the widely cited recommendations of Bittencourt 
et al16 regarding the suitability of complex ANNs to the task of 
injury risk analysis in sports, such approaches are limited within 
the current research, applied in only 16% of studies. Although 
extensively utilised within other medical research domains,59 
ANN topologies are yet to be thoroughly investigated from 
a sports injury perspective. The limited application of ANN 
methods may be reflective of the small datasets being analysed 
in many cases. A small dataset, for example, compromised the 
development of a long short-term memory neural network by 
Lyubovsky et al.44

Methodological robustness
The definition of, ‘injury’, varies significantly across the included 
studies. Research has most commonly attempted to predict inju-
ries sustained to any body part (42%), discounting the significant 
differences in injury mechanisms relating to each. Moreover, 
47% of studies jointly considered both contact and non-contact 
injuries during their analysis. By attempting to predict such dispa-
rate injury types and locations, models are incapable of appre-
ciating the different inciting events and risk factors surrounding 
each. Additionally, varying injury prediction windows have been 
analysed, ranging from day-to-day,44 weeklong,31 and season-
long34 35 granularity. Each of these definitions has a significant 
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bearing on the nature of the research question and thus the suit-
ability of particular ML models to the task.

Numerous methodological limitations are evident within the 
cohort of reviewed studies. In 42% (n=16) of studies, only one 
type of predictive modelling was applied. This methodological 
approach significantly hinders the evaluation of ML techniques 
by failing to offer a comparative analysis as to the most effec-
tive method for the dataset being analysed. Furthermore, by 
declaring only one ML method, these studies are susceptible to 
‘p-hacking’ whereby researchers conduct numerous tests with 
multiple combinations of parameters until a statistically signif-
icant result is found, reporting it in isolation.60

HARKing, a questionable research practice whereby authors 
develop or modify a study’s hypothesis after the data has been 
analysed,61 has been identified in the fields of sports and exer-
cise medicine62 and ML.63 Conversely, it has been argued that 
ML research is inherently inductive in nature, thus not depen-
dent on the acceptance or rejection of a stated hypothesis, as is 
the case with deductive reasoning.49 This is supported by the 
fact that only 29% of reviewed studies declared a hypothesis. 
On the other hand, and in spite of the exploratory nature of 
ML research, only one paper explicitly declared its analysis as 
such. We suspect widespread HARKing within the reviewed 
cohort, with one study stating, in the introduction, that ‘an 
acute kidney injury model of 90% accuracy and sensitivity 
was hypothesised to be possibly constructed.’64 The authors 
later report results of precisely 90% for both accuracy and 
sensitivity.

This review has identified several ML techniques and high-
lighted the large variation in predictive model performance in 
the included studies. This variability is indicative of inconsisten-
cies in many aspects of the study design, including data collec-
tion methods, study populations, definition and scope of injury, 
sources of data and dependent variables analysed. This is an 
important consideration when assessing ML model performance 
beyond the stated evaluation metrics. Importantly, contextual 
factors under which the models have been developed and the 
questions they seek to answer must have real-world utility if 
they are to benefit the sporting community. There exists no 
‘one size fits all’ approach to injury risk prediction. This is 
clearly demonstrated when considering the charted research 
relating to football, the most analysed sport. The nine foot-
ball studies included reported seven different ML approaches 
as providing the best predictive performance, emphasising the 
individuality of each dataset and the need to select the appro-
priate ML method for the type of data being analysed. There-
fore, sporting organisations should collaborate to produce and 
share larger and more granular datasets to develop and validate 
ML models based on complex interactions within the data.65 
Data sharing could bolster the transition from group analyses to 
more individualised risk models. By appreciating the personal 
nature of injury risk profiling, such as an individual’s predispo-
sition to certain injuries, ML models could provide improved 
insights and augment decision-making on an individual basis. 
Our results suggest future research should be based on higher-
quality and more extensive injury data, including more diverse 
sources of data. Diverse sources of data will reduce ML model 
bias. Data from diverse populations (e.g., the Global South) 
and related to important contextual factors, such as playing 
surfaces, weather conditions and use of sporting equipment, 
coupled with regular athletic monitoring through electronic 
performance and tracking systems, could improve the overall 
efficacy of future models.

LIMITATIONS
Our study inclusion criteria did not include grey literature data-
bases. As a result, dissertations, conference proceedings and 
unpublished studies were not included, and important data could 
have been missed. In addition, by not including non-English 
studies, other relevant research could have been missed too. As 
our database search was conducted in May 2023, studies in this 
fast-moving field published after this point were not considered. 
As with any review of this nature, potential publication bias is 
an issue, as noteworthy ML applications may be published more 
readily than those with underwhelming results.

CONCLUSION
The effective application of ML models for sports injury risk 
prediction is hampered by widespread variability in study design, 
methodological approach and statistical analysis. Instances 
in which ML models have failed to outperform traditional 
approaches to sports injury risk prediction demonstrate the need 
for more granular and integrated datasets. These datasets may 
be capable of supplying the volume, variety and quality of data 
required for the effective application of ML approaches.
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