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A B S T R A C T

The increasing deployment of renewable energy resources has led to massive energy cost reductions worldwide
in the past decade. The emergence of this cost revolution led electricity consumers to increasingly adopt
distributed renewable energy resources to decrease dependence on traditional power grids. This paper applies
the integrated resource planning framework, the objective of which is to design a least-cost electricity system by
looking at renewable energy resources, efficient appliances, and demand response management strategies to
reduce electricity bills. The results show that the commercial entity can save its electricity bill by $0.16 if it
installs 6 MW solar PV over the lifetime of the solar PV plants. Besides, it was observed that wind turbines were
not economically feasible to install at the site because of low wind resources. Biogas power plant is too expensive
mainly because of the cost of fuel (waste). It also shows that by retrofitting 2000 compact fluorescent lamps
(CFLs) with light-emitting diodes (LEDs), the company can save $0.15 million. By shifting between 0.5 MW and
1.4 MW of heating and cooling demand to periods of low tariff costs, the company can save $0.013 million
annually. The climate transition plan for this company relies on PV, efficiency interventions and demand
response. The study also demonstrates that an integrated resource planning framework can be used to plan a
mini-grid.

1. Introduction

In response to the imperative to mitigate climate change and capi-
talise on cost-effective renewable energy sources, various companies,
cities, and municipalities are transitioning to power systems predomi-
nantly reliant on renewable power generation. Through the adoption of
renewable energy technologies for electricity generation, consumers can
benefit from lower electricity bills. Additionally, in non-liberalised en-
ergy markets, many utilities employ the integrated resource planning
(IRP) framework as a guiding principle in their decision-making process
[1,2].

The IRP framework is a long-term electricity capacity expansion
planning process that optimises the electricity system based on least-cost

(LC) principles. It aims to identify the most cost-effective and efficient
energy demand-side and supply-side technologies and forms a portfolio
mix to meet future electrical demand reliably [3–6]. Non-liberalised
energy markets, like South Africa and the Caribbean, predominantly
rely on the IRP framework [7,8] to strategically plan their electricity
systems.

In the ongoing energy transition, there is a growing trend of cus-
tomers installing distributed energy resources on their rooftops or
property sites worldwide [9]. Whether in small scale, utility customers,
are transforming into utilities themselves and are referred to as pro-
sumers. These customers actively produce and consume electricity
rather than being solely passive off-takers of electricity generated up-
stream in the electricity network. This shift has led organisations to
recognise the need for an integrated resource planning framework [10],
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allowing them to comprehensively assess the technical implications and
financial advantages associated with the chosen energy resources [11].

Extensive studies have been conducted on various technical, finan-
cial, and operational aspects of distributed energy generation and inte-
gration [12,13]. Some studies address issues and propose solutions for
voltage control, power quality, and protection [14,15]. Adefarati et al.
[16] evaluated the reliability and capacity of microgrid networks in
handling distributed generation. Kasturi et al. [17] examined inte-
grating photovoltaic (PV) systems and batteries within distribution
networks, particularly emphasising voltage stability and energy loss.
Meera and Hemamalini [18] optimised the distribution grid network to
minimise power loss and voltage fluctuations using particle swarm
optimisation. Mbungu et al. [19] demonstrated how demand response
strategies can be coordinated and implemented within a microgrid
environment. These studies evaluate the capacity of selected distribu-
tion networks or microgrid environments to accommodate the energy
resources under investigation.

Among the studies on distributed energy generation, the secondmost
prevalent type focuses on the economic dispatch and operation of in-
tegrated energy resources within microgrid environments [20–22].
These studies play a vital role in understanding how to economically
dispatch renewable energy resources. However, in many dispatch
studies, the capacity of the energy resources to be installed is
pre-determined, and the least cost capacity is not determined. For
instance, in Ref. [20], the demand response was assumed to operate for
4 h, implying that the operating strategy of the demand response is
pre-determined. In contrast, researchers in Ref. [23] explored

demand-side management but did not determine the least cost capacities
for the PV and battery systems, focusing primarily on operations control.

The widespread investigations typically assume that the microgrid
will install the capacity being studied, thereby excluding the determi-
nation of the least cost portfolio capacity mix [24,25]. In Ref. [25], the
analyses focus solely on supply-side energy technologies. Additionally,
the study assumes a reduction in load before considering supply-side
interventions [25],. Consequently, future load/demand forecasts for
installing energy efficiency measures [26,27] are adjusted. In Refs.
[20–22,24], the operations analysis of demand response is incorporated,
but it is not integrated into the capacity determination equations. This
brings us back to the situation where capacities are pre-determined, as
observed in the previous section [20–22].

As observed, there is a presumption that demand-side energy re-
sources, particularly energy efficiency technologies, are inherently
economic and automatically considered the least cost options for
implementation. However, it is worth noting that the cost of renewable
energy resources has significantly decreased over the past decade [1],
hence making dual assessment of both supply and demand energy op-
tions a necessity. For instance, solar PV technology has experienced an
81 % reduction in unit electricity costs [28], while wind energy costs
have decreased by 34 % [29]. In light of these significant cost re-
ductions, a crucial question arises: Are demand-side energy resources
still the initial least cost options when diversifying the energy portfolio?
To address this question, this study conducts a planning case study
focusing on a commercial entity in Gauteng Province in South Africa.

In South Africa, companies actively pursue energy diversification

Abbreviations

BAU Business as usual
BW Bid Window
CFLs Compact fluorescent lamps
COUE Cost of unserved energy
DSM Demand side management
cTS Current tariff structure
HVAC Heating, ventilation, and air conditioning
IDM Integrated demand management
IRP Integrated resource planning
LC Least cost
LED Light-emitting diodes
LCOE Levelized cost of electricity
MT Medium term
NERSA National energy regulator of South Africa
NPV Net present value
PASA Projected assessment of system adequacy
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RAF Retirement annual factor
RE Renewable energy
REIPPPP Renewable Energy Independent Power Producer

Procurement Programme
ST Short term
UEC Unit energy consumption
VoLL Value of lost load
ά the scale parameter, determining how the failure rate

changes through time
β The shape parameter determining how the failure rate

changes through time,
ρ The air density
θ The delay parameter – which provides for a delay before

any failure occurs
v The wind speeds from the mast
A The rotor area

f(x) Weibull probability density function
g Generator
Lt The number of hours in the dispatch period t
P(x) Weibull cumulative distribution
Pgmax Maximum generating capacity of generator g
Pw The hourly power from the wind speed (w)
t period
x Age that is attached the operating period of the appliance
y Year
Costt The net present value of the system cost in period t
BuildCostg Built cost for generator g
Demand t Power demand in dispatch period t
DFt∈y Discount factor
GenBuildg,y The number of generating units built in year y for

Generator g
GenBuildUnitsg,t The number of generating units built in year y for

Generator g
GenLoadg,t Dispatch level of generating unit g in period t
FOMChargeg Fixed operating and maintenance costs for generator g
MaxUnitsBuiltg,y The maximum number of units built in year y for

generator g
SRMCg The marginal cost of generation g
Unitsg The existing number of units of generator g
USEt Unserved energy in dispatch period t
LCOEtech The levelized unit cost of producing electricity with a

particular
NPVcosts the net present value of costs
NPEtech net present value of energy produced or saved by an

intervention
n the number of years the technology will be in service
Ct the capital cost
Ot the operational cost
Vt the variable cost
Et the energy produced or saved by an intervention
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strategies to reduce their electricity bills and mitigate Carbon Tax pay-
ments. Diversification has become more accessible due to upcoming
exemptions for power plants with generation capacities of up to 100MW
from generation license registrations [30]. In Gauteng, one specific en-
tity has set a vision to diversify its energy portfolio. Fig. 1 illustrates the
desired future outlook of this organisation. The entity must compre-
hensively understand available electricity energy resources and their
associated costs to prioritise and evaluate the cost implications of
different energy resources.

In this study, an IRP framework is utilised to analyse the technical
operations of the microgrid, assess the financial implications, and
determine the technology prioritisation required to reduce the electricity
bill of the commercial entity under investigation. The organisation has
experienced a consistent increase in its electricity bill since 2006, despite
a decrease in electricity consumption during the same period, resulting in
a total reduction of 5 GWh, as shown in Fig. 2. For ten years (2006–2017),
the bill had surged by 400 %, equivalent to an average annual increase of
$125 000. The continuous rise in municipal electricity tariffs guarantees
further annual bill increases. In financial terms for 2017, the organisation
paid $1.9 million annually for its electrical demand. With recent ap-
provals by Eskom, the national utility, for revenue recoveries, tariffs are
projected to increase by more than 15 % over the next three years, as
reported by the National Energy Regulator of South Africa (NERSA).

A decade ago, investing in energy-efficient technologies was consid-
ered the best and most cost-effective strategy to address the escalating
electricity bill, as supported by research [31–33]. However, the successful
implementation of energy efficiency interventions is dependent on the
presence of incentives. Energy audits are crucial in optimising energy
consumption by providing insights into customers’ consumption habits
[34–36]. In 2008, Eskom, the National Utility, initiated an Integrated
Demand Management (IDM) incentive program to financially compen-
sate customers for electricity savings. This incentive program ended in
2015 when the South African government introduced the 12L incentive,
allowing companies to claim financial benefits through the tax system
[2]. However, the 12L incentive program was concluded by December
2022. As a result, both demand-side and supply-side energy technologies
can now compete with demand-side interventions to reduce electricity
bills without the impact of incentives.

The mentioned entity further carried out an energy audit to identify
potential areas for energy efficiency interventions. Following the audit,
a business case was formulated to evaluate the interventions based on
their positive Net Present Value (NPV). However, in this specific case,
the appraisal of energy efficiency interventions alone and solar PV alone

did not provide a conclusive decision, as the assessment for solar PV
interventions also yielded positive NPV results. Moreover, these indi-
vidualised analyses failed to present a comprehensive overview of the
energy diversification plan that the organisation should pursue. This
realisation prompted the recognition that a different energy initiatives/
technology selection or planning approach was required.

The recent significant cost reductions in solar PV and wind tech-
nologies and the absence of policy incentives for energy efficiency raise
the question of whether demand-side technologies, specifically energy
efficiency technologies, are still the primary candidates for commercial
customers aiming to reduce their electricity bills. To address this ques-
tion, an integrated resource planning framework is employed to co-
optimise both demand-side and supply-side technologies simulta-
neously for a business with time of use tariff. This planning framework
offers a comprehensive perspective on the customer’s electricity system
plan by assessing the technical and financial implications of various
options from both sides. It aims to determine the least cost (LC) capacity
to install on the supply-side and demand side technologies to install to
reduce electrical demand. Another crucial aspect this study considers is
evaluating load/demand shifting to periods characterised by low tariff
costs. The implication of the study is to demonstrate, with a case study,
that capacity planning can be done in greater detail by taking the
technological configurations into very fine detail. This was done using
site-specific wind and solar resources and reviewing nearby waste

Fig. 1. Future desired outlook of the customer’s campus outlook: the desired microgrid.

Fig. 2. The evolution of the organisation’s bill from the municipality.
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availability to feed biogas plants in order to assess the possible formation
of a comprehensive renewable-based micro-grid. This study contributes
to the existing literature in five significant ways.

● Utilise the integrated resource planning framework to optimise en-
ergy resource supply and demand technologies at the customer level,
considering energy-efficient appliances and flexible load as co-
optimisation candidates.

● Highlight the optimisation process that determines the capacity to be
shifted solely based on price signals without pre-determining the
capacity and operating cost periods of the shifted load. This enables
dynamic and responsive load-shifting strategies.

● Showcase the integration of energy audit data into long-term power
plans at the customer level, ensuring the inclusion of accurate con-
sumption information in the planning process.

● Implement appliance stock modelling to forecast electricity demand
plays a crucial role as an input within the integrated resource plan-
ning process.

● Demonstrate the usefulness of PLEXOS, a power system simulation
and analysis tool, in determining operational schedules and assessing
the financial implications associated with diversifying the energy
mix of the organisation.

The paper is organised into six sections and is structured as follows:
Section 2 presents the integrated resource planning methodological
framework and its application at the customer level. Section 3 details
data and input assumptions. The details include descriptions of sce-
narios, load, renewable energy resource profiles, and costs included in
the planning framework. Section 4 details model calibration, validation
and testing for reliability of the system. Section 5 presents the results and
discusses the work. Finally, section 6 provides the conclusions and
future improvements.

2. Methodological approach: applying an integrated resource
planning framework at the customer level

2.1. Integrated resource planning framework

Fig. 3 illustrates both the supply and demand-side technologies
considered in the plan as potential optimisation candidates, as guided by
the vision outlook depicted in Fig. 1. The critical input assumptions are:
demand forecast for the organisation, the tariff provided by the mu-
nicipality and its forecast, the existing on-site power plants, their
decommissioning schedule, as well as the costs and performance

characteristics of new supply options. By utilising the integrated
resource-planning framework, the organisation aims to determine the
electricity plan with the least cost (LC), enabling the diversification of its
electricity supply. The PLEXOSmodelling tool has been employed in this
study, and its applicability is further described in Sub-section 2.2.

2.2. PLEXOS modelling tool

The PLEXOS model is configured, built, and developed to optimise
generation on hourly resolution throughout the year [18,37]. Addi-
tionally, the intermittent renewable energy resources – wind and solar
PV and the load have hourly temporal resolution throughout the
modelling period. PLEXOS is used internationally to model the energy
markets, assess the profitability of purchasing power agreements (PPAs),
and conduct integrated resource plans for countries [36,37], regions [7],
and the world [38].

The PLEXOS model enables the co-optimisation of supply-side op-
tions, demand-side technology options, and new-build investment
technology options throughout the planning horizon, aiming to achieve
the least cost solution within predefined boundary conditions. PLEXOS
utilises an objective function formulated as a mixed-integer problem,
which minimises the NPV of the technologies to be constructed. The
objective is to minimise retirement, construction, generation costs (fuel
costs), and operating maintenance costs while ensuring that the capacity
is adequate to meet current and future peak loads, along with a required
reserve margin. The capacity optimisation in PLEXOS is governed by Eq.
(1) and is subject to the conditions specified in Eqs. (2)–(4).

The modelling only considers the generation part of the electricity
system, excluding the network constraints and new network investment
costs. The outputs of interest are the total discounted system cost, the LC
electricity capacity mix of electricity-generating and demand-reducing
technologies to prioritise, the generation profile of supply-side tech-
nologies and the reduction profile for demand-side technologies. The
study uses scenarios described in Sub-section 3.1 to create meaningful
and well-defined future pathways.

CostT =
∑

y

∑

g
DFy×

(
BuildCostg ×GenBuildg,y

)
+
∑

y
1000× DFy

×

[

FOMChargeg ×Pgmax ×Unitsg +
∑

i≤y
GenBuildUnitsg,t

)]

+
∑

t
DFt∈y× Lt ×

[

VoLL×USEt +
∑

g
SRMCg ×GenLoadg,t

]

(1)

Fig. 3. Supply and demand technologies: candidates for techno-economic optimisation.
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where CostT is the net present value of the system cost in period t, DFy is
a function of DF, which stands for the discount factor within a year y,
FOMChargeg is the fixed operating and maintenance costs for generator
g, Pgmax is the maximum generating capacity of generator g, Unitsg is the
existing number of units of generator g, GenBuildUnitsg,t is the number of
generating units built in year y for Generator g, Lt is the number of hours
in the dispatch period t, VoLL is the value of lost load, USEt represents
Unserved energy in dispatch period t, SRMCg is the marginal cost of
generation g, and GenLoadg,t is the dispatch level of generating unit g in
period t.

Eq. (1) is subjected to three constraints, listed as follows.

1. Energy demand is met by satisfying Eq. (2)
∑

y
GenLoadg,y +USEt = Demand t (2)

2. Energy dispatch is feasible for all generators and all periods through
Eq. (3):

(

GenLoadg,t ≤Pgmax

(

Unitsg +
∑

i≤y
GenBuildUnitsg,y

)

(3)

3. Feasible Builds:
(
∑

i≤y
GenBuildg,i ≤MaxUnitsBuiltg,y

)

(4)

with Demand t is the power demand in the dispatch period t, and
MaxUnitsBuiltg,y is the maximum number of units built in year y for
generator g.

Given its robust simulation, PLEXOS can handle 4 phases of simu-
lations, each serving a different purpose. Eq. (1) solves the long-term
plan (LT Plan phase) – which deals with the LC technology mix to
install. LT Plan determines the LC capacity size (MW) of either supply or
demand side technology (energy efficiency technology) to install. LT
Plan also defines the timing of such new investments – which year are
they economical to install. The second phase is the project assessment of
the system (PASA) phase, which deals with system outage scheduling
and reserve margin allocation. The schedule following PASA is the
medium-term schedule (MT) – which explicitly deals with maintenance
schedules and outages and optimises decisions spanning weeks, months,
or years.

The last phase is the short-term (ST) schedule, which deals with
chronological unit commitment, ramping requirements, and detailed
economic dispatch profiles of the power system. ST phase optimises
decisions for the short term (an hour or less). In addition, the ST phase
highlights the economic dispatch of generation profiles for supply-side
technologies and demand reduction profiles for demand-side
technologies.

The organisation is tied to the municipality distribution grid.
Therefore, the municipal grid meets its ramping requirements, allowing
the size of demand response to be as large as the model economically
determines. As a result, the model is not set for any ramping boundaries
and needs as the grid is assumed to offer this microgrid (the organisa-
tion) unlimited flexibility [39].

The study runs the three optimisation schedules so that the customer
knows. These are described as follows.

1) How to reduce electricity system costs in the long term through new
investments, economic dispatch and shifting the shiftable loads to
periods of low tariff costs,

2) the quantity of electricity demand to be reduced by installing effi-
cient appliances, and

3) the amount of electricity demand that can participate in a demand
response strategy. The paper does not give details of which load
control strategy or demand response strategy to implement. Instead,
the study highlights the maximum quantity of demand (MW) to shift
to minimise system costs.

2.3. PLEXOS modelling environment

PLEXOS is an optimisation modelling environment whose funda-
mental structure is shown in Fig. 4. The optimisation takes place within
the PLEXOS engine, receiving inputs from both the relational data base
(plant’s parameters) and text file (load profile and resource profiles).
The relational database contains portfolio options and their perfor-
mance characteristics. These performance characteristics are technical,
economic and environmental in nature and are presented in Tables 1–3.
These parameters are also featured within the optimisation equations
shown in Equations (1)–(4), and their values per plant are shown in
Appendix, Tables A.1 – Table A.5.

Carbon dioxide (CO2) is often modelled as a function of generation
for both municipal electricity grids (Tshwane grid) and biogas power
plants, whereas SOx (SO and SO2 by-products) is best modelled as a
function of fuel used. This model is only applicable to biogas plants that
use fuel locally at the business site. NOx (NO and NO2) is often modelled
using a combination of generation and fuel emission properties along
with the scaling biogas plant emissions scalar factor.

3. Data and input calculations and assumptions

When conducting an integrated resource planning study, about six
types of inputs are needed. These are.

1) Load/electrical demand forecast
2) Renewable energy resource profiles
3) Energy efficiency resource characterisation
4) Costs – capital investment costs, fuel costs, operating and mainte-

nance costs

Fig. 4. Underlying PLEXOS operational environment [40].
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5) Tariff from the municipality
6) General assumptions such as the discount rate (the study assumes a

10 % discount rate)

This study employed scenarios to manage future uncertainty and test
the impacts of drivers of change in the future. This section gives a
detailed account of the inputs used in this study.

3.1. Scenario definitions and considerations

Since planning for the future is highly uncertain, the modelling tests
three future possibilities through scenarios. It is implausible that one
possible future will unfold. The scenarios provide a framework for
exploring future energy perspectives, various combinations of technol-
ogy options and their implications. One of these future possibilities is the
business as usual (BAU) scenario that looks at the organisation’s current
energy system without considering further investments into new energy
infrastructure. The second and third scenarios are the LC scenarios with
demand-side management (DSM) (LC cTS) and LC without DSM (LC cTS
(no DSM)). Table 4 presents the detailed assumptions for each of the
scenarios.

3.2. Electrical demand forecast

The critical input for IRP is the anticipated demand for the future.
The optimised technology options meet this demand. Demand forecast
requires several assumptions to get plausible future electricity demand.
In this study, the organisation’s demand was 30 GWh in 2017, with a
peak demand of 7 MW. Fig. 5 shows the weekly demand profiles for
Summer and Winter. In Summer, peak demand occurs in the afternoon
when the need for cooling of offices increases. In winter, heating is
required early in the day when it is cold. Hence, the Winter demand
peaks in the mornings. The demand profile shapes for Winter and
Summer are assumed to stay the same, as shown in Fig. 5, into the future
before the implementation of any demand intervention.

Thus, the only change in demand will be when a demand interven-
tion is implemented economically through model optimisation. Sec-
ondly, the analysis assumes that the organisation will not increase its
workforce by around 2000 in the next ten years; hence, the demand is
not expected to increase in the future. Finally, based on the HVAC
replacement program that the organisation adopted in 2019, it is
assumed that the demand will be on a declining trajectory.

The organisation adopted a replacement strategy for HVAC systems.
Any HVAC unit needing replacing (due to retirement or failure) will be
replaced with an efficient one. Therefore, the demand will decrease
slightly over time as new HVAC units are installed, reducing unit energy
consumption for HVAC systems. Most of the HVAC systems within the
organisation are single-unit HVAC systems installed in offices. There are
very few HVAC systems directly opposite most buildings in China [39].
Therefore, in the future modelled energy plan, demand forecasting is

Table 1
Technical parameters.

Parameters PLEXOS Environment

Capacities Used in both Long term (capacity determination), medium
term (adequacy stability or flexibility assessment) & short
term

Minimum stable
generation

Minimum generation, below which point it becomes
uneconomic to run like biogas plant at low capacity
factors.

Maximum generation Each generation have maximum capacity set.
Ramp rates For diesel generators, 2 MW/min.
Heat rates For biogas heat rates are important as they determine the

efficiency of how the plant uses the fuel.
Minimum up and
down times

The minimum generation level when the unit is committed
Adds only one additional constraint per generator/period
to the formulation. Generally easy for the solver to
optimise, unless MSL is a very high proportion of capacity.

Failure/availability
rates

5 % assumed failure rates for both solar \pv and wind

Maintenance rates and
time

Assume % spent in maintenance by different plant types

Load forecast The initial shape is given as a growth parameter. The shape
does not change and is put into the model, as shown in
Fig. 4, for a full year (base profile).

Resource generation
profiles

For wind, solar and waste (as shown in Fig. 13(a) and
Fig. 13(b)

Table 2
Economic parameters.

Parameters PLEXOS Environment

Individual fuel
costs,

Fuel costs as applied to biogas are described in Table A.5 in the
Appendix.

Variable O&M
rates

Variable costs for each plant type and the data assumption are
shown in Table A.5 in Appendix.

Start costs, Fuel costs as applied to biogas (See Table A.5 in the Appendix
Tariff cost profile As shown in Fig. 16

Table 3
Environmental parameters.

Parameters PLEXOS Environment

Pollution Particulate emissions (sulphur dioxides & Nitrogen dioxides) from the
municipal electricity (based on Eskom coal grid factors)

CO2 Carbon dioxide as per Eskom grid emission factor
CH4 Methane as per Eskom grid emission factor
N2O Nitrous Oxide as per Eskom grid emission factor

Table 4
Detailed inputs in each scenario.

Scenario Key Assumptions

Business as
Usual

• The model optimally dispatches the existing organisation’s
capacity (1.9 MW of solar PV) and the municipality’s imports to
meet the expected electricity demand at the LC.

•The organisation will not build any new supply-side energy
options.
•The municipality’s tariff structure will remain the same
throughout the planning period but will increase in absolute
terms each year.
•The existing fleet has been decommissioned as per the expected
decommissioning dates.

LC with DSM •The model freely optimises the energy mix based on the
principles of the LC.
•New supply options include wind, solar PV, biogas, and batteries
(Li-ion).
•New (renewable energy) RE supply options are limited to what
the campus can accommodate spatially. The maximum installable
capacity assumptions are as follows:
o Max energy efficiency potential of 5.1 GWh in the form of
lighting, heating ventilation and air conditioning (HVAC) and
water heating
oUp to 8.5 MW of additional Solar PV
oUp to 2 MW Wind
oUp to 2 MW Biogas

•Wind and solar PV costs align with the organisation’s
procurements, reducing by 30 % and 25 % by 2030, respectively,
aligning with international estimates. Battery costs starting at
Draft IRP 2016 values with moderate learning (cost reduction of
66 %) assumption to 2030.
•The existing organisation’s fleet was decommissioned as per
expected decommissioning dates.
•Municipality tariff is assumed to increase as per IRP LC scenario
from the organisation analysis [18] - no change to tariff structure.
•Discount Rate = 10 % (Nominal)
•Cost of Unserved Energy (COUE): Assume the National Energy
Regulator of South Africa (NERSA) rate/kWh for the commercial
sector: $7036/MWh

LC without
DSM

•All the assumptions at the LC with demand-side management
options
•Energy Efficiency interventions and Demand response initiatives
are not considered.
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considered as the HVAC replacement strategy detailed in Section 3.3.

3.3. The declining electrical demand forecasting: embedding HVAC stock
modelling

A comprehensive dataset regarding the appliances employed within
the organisation was available and obtained through an energy audit.
Leveraging this extensive data, the study utilises appliance stock
modelling to forecast future demand, specifically focusing on the HVAC
replacement strategy outlined in Section 3.2. Additionally, in order to
assess and evaluate the electrical demand implications resulting from
these regular HVAC replacements, stock modelling was performed
employing a Weibull survival function as described in Eq. (5). Weibull
distribution was chosen over poison distribution survival function and
others because it allows for more accurate predictions [41,42]he sur-
vival function in Fig. 6 was closely related to the longevity of HVAC
appliances that the company analysed shared.

P(x)= e
−

(
x− θ

α

)β

(5)

The P(x) presents Weibull cumulative distribution, which is mainly
used for modelling appliance reliability and decay, ultimately giving the
probability that the appliance is still in use at age x. θ is the delay
parameter –which provides for a delay before any failure occurs. β is the
shape parameter determining how the failure rate changes through time,
and ά is the scale parameter, determining how the failure rate changes
through time. Weibull probability density function f(x) in Eq. (6) also
uses the three parameters used in conjunction with Eq. (4)

f(x)=
β
α

(
x − θ

α

)β− 1

e
−

(
x− θ

α

)β

(6)

Most appliances do not take up to their lifetime to fail. Therefore, the

correct decay profile should be adjusted with at least a 5-year actual
decay/replacements factor to get the proper Weibull distribution for
appliances under consideration [18,43]. Unfortunately, there is no such
data from this customer; thus, only theoretical coefficients are used. The
initial values for β = 3, θ = 0.5, x = 1 and α = 9.9. These parameters are
unknown for any stock that is estimated, and for estimating the survival
of the HVAC in this study, available data about lifetime and re-
placements that had happened in the past 10 years was used to calibrate
this survival function to match the actual data.

Eq. (6) presents the survival probability function used to project
retiring stock, while Eq. (7) and Eq. (8) project sales and retirement.

Retirements (j)=
Stock(j)

L
× RAF × (1 − P(x)) (7)

Sales (j)= Stock (j) − Stock (j − 1) + Retirements(j) (8)

where j is the year of the analysis, L represents the average lifetime of the
appliance. This is the average length of time between the purchase of a
new appliance and its removal from the operating stock. The removal
can be through either failure, early replacement or scrapping. Re-
tirements (j) is the total number of appliances that retire from the
appliance stock during year j. RAF is the retirement adjustment factor
and annual replacement factor used to calibrate the model to the
observed HVAC retirement data received from the company’s facility
department. P(x) is the Weibull cumulative distribution factor derived
from Eq. (5), j is the year, and j-1 is the period prior to the current year.
Stock (j) is the total number of appliances bought by the company in the
year (j) and are in service at the end of the year [44]. Purchases (j) are
new appliances (HVAC units) bought by the company in the year (j).

The customer has about 2500 HVAC units of varying sizes. The
number of HVAC systems will not increase or decrease; hence, there
must be 2500 units every year. The survival function, as shown in Fig. 6,
is multiplied by the number of units used to retire existing units. Eq. (8)
is then used to derive new purchases each year and add them to the
existing stock to keep the balance of the HVAC required in the system. As
new efficient HVAC units replace old appliances, the average unit en-
ergy consumption improves. Since there was no information on the age
of the existing appliances, all HVAC units were assumed to have the
same survival trajectory as presented in Fig. 6. Given this survival tra-
jectory, the HVAC units will retire and be replaced, as shown in Fig. 7.
Every new colour represents the stock that was purchased in year j. The
colour shows how that stock follows the derived survival function in
Fig. 6 until it is out of stock.

Based on the above assumptions, by 2030, 92 % of existing HVAC
units will be replaced with new efficient ones, as shown in Fig. 7. The
remaining 8 % will be out of the system by 2034. As a result of the
replacement strategy employed and modelled, as shown in Fig. 7 and
using the survival function, as shown in Fig. 6, the HVAC stock increases
some energy efficiency gains. The efficiency gains of the stock are shown

Fig. 5. Typical weekly load profile for both Summer and Winter.

Fig. 6. Survival probability trajectory for HVAC units.
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in the decreasing unit energy consumption (UEC) of HVAC stock over
time. The base UECwas 2614 kWh per HVAC unit, and by 2030, it would
improve to 2059 kWh per HVAC unit until it is ultimately 1890 kWh
once all the old stock has been replaced with the most efficient units.
Ultimately, the electrical energy consumption from HVAC units
decreased from 6.44 GWh in 2017 to 4.91 GWh in 2030. Forecasting
electricity demand in this manner accurately accounts for energy saved
through the optimisation process and the energy saved due to the HVAC
replacement strategy.

Accurately distinguishing energy savings derived from replacements
versus those resulting from the model optimisation process prevents any
double counting. Equation (8) computes the projected energy savings
achieved through optimisation. Over the course of 15 years, the total
annual electricity demand is projected to decrease by 6 % between 2017
and 2034, primarily due to the replacement of old HVAC units with new
energy-efficient ones, refer to Figs. 8 and 9.

Optimised energy savings = Loady – forecast loady (9)

3.4. Energy efficiency technologies and demand response

The IRP planning framework co-optimises the supply and demand
side, as shown in Fig. 3, by considering the new supply-side energy

options, the energy reduction impacts of energy efficiency and the de-
mand response on the electrical system. PLEXOS represents energy ef-
ficiency interventions/retrofits as power plants with specific
characteristics. The energy audit showed that the organisation has six
end uses, as presented in Fig. 10. All minor end uses that were not sig-
nificant were grouped under the other end-use. The audit pointed out
that 17 % of electricity can be reduced by installing efficient appliances
for these six end-uses. The most significant savings can be realised by
replacing compact fluorescent lamps (CFLs) with light-emitting diodes
(LEDs) and replacing old inefficient HVAC units with new efficient ones.
However, the audit only highlighted savings from replacing inefficient
appliances with efficient technologies. It did not quantify any savings
resulting from shifting the load to periods of low tariff periods. The
energy-efficient appliances shown in Fig. 11 replace the inefficient ap-
pliances. Table A.1 presents the number of demand-side units installed
and the related costs for efficient replacements. Fig. 12 shows the effects
of installing efficient appliances on electrical demand.

3.5. Solar PV and wind technologies: hourly resource profiles

The study also optimises for shiftable demand that can be shifted to
low tariff periods. However, the study only looks at the capacity that can
be shif6+ted and does not develop operational details of the demand
response strategies as in Ref. [45]. Therefore, further research is needed

Fig. 7. Retirements of old HVAC units (red dots) and sales of new HVAC units. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 8. HVAC stock replacement level and resulting energy efficiency savings.
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to determine the operating schedule of the demand response strategy
selected in this plan. In such research, demand response operating
strategies will be designed to maximise financial benefits considering
other issues, such as least effort and operational complexity [45–47].
Close to 50 units are centralised, and 2405 units are small office HVAC
systems. Given the heterogeneity of the HVAC stock within the organi-
sation, single-unit HVAC systems (small systems) and centralised HVAC
systems will require different implementation strategies, excluding such
operations. The current study highlights the LC capacity (in MW) that
can contribute to the demand response strategies but does not develop
those strategies.

Demand response assumes that the resource is free, but the optimi-
sation includes the cost of enabling load shifting. The enablement cost
consists of the controller, telemetry equipment, installation, program-
ming labour costs, and maintenance costs [47]. The controller costs
range from R300 to R7000 depending on the features needed on the
programmed controller. According to this study, the shiftable load/de-
mand is unlimited since the grid can provide all the ramping needs
required.

The supply-side technologies considered in the planning are solar PV,
batteries, wind, and biogas. For wind, solar PV, and biogas, it is para-

mount to have detailed information on resource availability as inputs
into the modelling process. Based in Pretoria, the customer wanted to
put all the options in one location, i.e., Pretoria, and all the resource
assessments were done for Pretoria. However, as shown in Figs. 13 and
14, this site has a meagre wind resource, which is also highly variable in
any given month. For every 1 MW of wind capacity installed, an average
output of 0.2 MW is possible. The hourly wind speed information comes
from the wind mast installed on the company premises. Eq. (10) cal-
culates the hourly power generated from the wind speeds. Given that the
national average wind capacity factor is 36 % [48], this is a meagre wind
resource. In Fig. 13, the capacity factor is proportional to the wind re-
sources. This is because wind resources are proportional to solar power
generation.

Pw=
ρAv3
2

(10)

with Pw is the hourly power from the wind speed, A is the rotor area of
the 2MWS turbine assumed for the organisation, ρ is the air density, and
v is the wind speeds from the mast. For solar, the outlook is auspicious
because for both North and East-West facing PV plants, for every 1 MW
installed, about 0.6 MW is the output during most periods of the day, as

Fig. 9. Annual electricity demand forecast up to 2030.

Fig. 10. End-uses within the organisation and potential energy savings.
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described in Figs. 13 and 14. PV system was used to derive the power
from a typical PV module.

3.6. Biogas power plant and waste resource availability

Fig. 15 gives the varying waste input streams that were assessed in
the feasibility study. This design is the business perspective for a small
biogas plant investigation. In conducting the PLEXOS optimisation, no
gate fee for waste was assumed; waste is got for free from nearby
shopping centres.

There are two proposed sites for biogas: site 1 with 10 000 m2 and
site 2 with 13 000m2. These two proposed sites (sites 1 and 2) can have a
maximum biogas plant capacity of 1.5 MW and 1.95 MW, respectively.
At these capacities, a daily waste loading of between 86 tonnes–112
tonnes per day is required to be delivered to the organisation or have
such storage capability built on the campus, as shown in Fig. 16. The
waste is to be sourced from businesses that deal with the trash within 50
km of the organisation. The economic performance of biogas is

presented in Section 3.8.

3.7. Electricity tariff from the municipality

A fundamental assumption for this study is the future anticipated
municipal electricity tariff. Although the tariff structure, as shown in
Fig. 17, does not currently change, in this study, it is assumed that the
tariff will increase by 2 % per annum for both energy and network
charges. By non-changing tariff structure, the paper means that in 2030,
the peak charges will occur at the same periods as in 2017. The differ-
ential increases and decreases between the Summer and Winter seasons
will be the same.

Fig. 18 indicates the assumed average annual tariff increase over the
study horizon. The study adopts an inflation rate of 5.5 %. The yearly
accumulation was applied uniformly to the energy charges (volumetric
charge) and network portion of the mega-flex tariff. The tariff trajectory
is indexed to the organisation’s LC scenario from the National IRP (IRP
2019) [49]. The feed-in tariff is assumed to increase from

Fig. 11. Organisation’s end uses and energy efficiency replacement options.

Fig. 12. Unit profile changes due to energy efficiency interventions.
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Fig. 13. Performance of existing solar PV plants on campus.

Fig. 14. Hourly resource profiles for input into PLEXOS: (a) solar PV, (b) Wind power.

Fig. 15. Proposed design of the biogas plant.
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$0.00625/kWh in 2018 to $0.0336/kWh in 2030 and stays constant.

3.8. Cost assumptions for the investment options

To inform the energy planning to be undertaken, a range of demand-
side and supply technology costs and their expected evolution into the
future need to be well understood (amongst a range of other input as-
sumptions). Table A.2 shows the total and unit cost of installing energy
efficiency and demand response technologies. For supply technologies,
there are two broad categories of electricity systems costs. These are
built costs, fuel costs, and fixed and variable operating and maintenance
costs. These costs are used to calculate the levelized cost of electricity
(LCOE), which Eq. (1) considers within the optimisation. The power
generation costs influence the choice of new capacity built within the LP
Plan of the PLEXOS simulation phase and the utilisation or dispatch of
existing and new generators within the ST simulation phase. Wind and
solar PV typically have high fixed costs and negligible variable costs. In
contrast, conventional technologies have varying fixed-to-variable costs
depending on their utilisation, as shown in Fig. 21 for the biogas plant.

Fig. 16. Correlation of electrical capacity versus the needed waste for
biogas generation.

Fig. 17. Structure of current and future tariffs.

Fig. 18. Average annual tariff increases and average annual electricity tariff for current and future structures.
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Before conducting this IRP study, the organisation had already pro-
cured its solar PV at LCOE between $0.065/kWh and $0.054/kWh from
2015 to 2017, as shown in see Fig. 19. Table A.3 presents the investment
costs for existing PV plants. The investment and operating costs for
batteries and other new supply options are shown in Table A.4 and
Table A.5, respectively. By 2030, the investment cost for solar PV is
expected to have dropped by 30 %, in line with international cost
learning rates and reduction forecasts. The value of the lost load is $7/
MWh as per [49].

Fig. 20 summarises the outcomes from the Renewable Energy Inde-
pendent Power Producer Procurement Programme (REIPPPP) up to the
latest Bid Window (BW) 4 (Expedited) announced in November 2015,
while Fig. 21 presents the battery costs with an assumed initial from
IRP2019. The future cost trajectory was estimated using learning rates of
10 % [40]. It is important to note that the REIPPPP costs include the
shallow grid connection costs, including dedicated grid infrastructure
costs and pro-rata contributions towards shared grid infrastructure.

The biogas design presented in Fig. 15 can operate in 3 modes – base
power plant (providing power all the time to the campus), mid-merit
mode (providing power only most of the time when the company has
high tariff from the municipality) or purely during peaking periods to
reduce the cost of using peak electricity. The tariff structure in Fig. 16
shows that the peak electricity within this municipality goes up to $0.2/
kWh in the Winter season and is $0.08/kWh in the summer season.
Depending on how the biogas plant is used, the cost of producing

electricity with it differs based on its electricity demand profile. For
example, suppose the plant operates as a peaking plant. In that case, it
costs between $0.66/kWh – $0.60/kWh versus $0.13/kWh - $0.07/kWh
when used as a mid-merit plant, as shown in Fig. 22. By power gener-
ation economics, baseload power stations are cheaper than peaking
power plants. It can be seen also in the assessment of the small biogas
that the company wanted to invest in. If the biogas were going to be used
during peak times (short periods), the cost of electricity produced by it
would be higher and vice versa. Appendix in Table A.5 presents addi-
tional cost data for the biogas plant.

4. Model calibration, validation and testing for reliability

4.1. Models validation and calibration

With the energy planning model, the critical validation is providing
evidence that the models used are accurate in predicting the outputs. In
Ref. [50] energy planning requires four types of model validations and
their objectives are presented in Table 5.

4.2. Replication and calibration: calibration of survival curves for HVAC

Replication through calibration demonstrates the ability to model
existing systems appropriately, hence validating the output [50]. This
method is used to indicate that the survival curve rates used in this study

Fig. 19. Solar PV Investment costs (Installed and future assumed cost trajectory).

Fig. 20. Wind cost trajectory up to 2030.
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are closer to what really happened. There is a paucity of data that can be
used in South Africa to estimate the lifetime of HVAC units, as there are
no annual appliance audits done for commercial or residential sectors. In
the US, the US Energy Information and Administration office conducts
two buildings-sector surveys—the Residential Energy Consumption
Survey (RECS) and the Commercial Buildings Energy Consumption
Survey (CBECS)—that provide rich data on equipment stock lifetimes,
and energy consumption, etc within existing buildings [53]With such
audit data from the surveys, deriving parameters for survival curves and
estimating equipment lifetimes (a, q, and r) is simplified. In this study,

the only data was the number of units replaced in recent years.
This number of HVAC units replaced was used to test the validity of

the model in estimating appliance survival. The Facility Department (of
the organisation used as a case study) had data on the number of HVAC
units that were replaced in the 5 years prior to the study but did not
know how far back (in years) those units were installed. In total, 396
HVAC units were replaced in the preceding 5 years (including the year of
study), 269 of which occurred in the recent two years (122 in the year
preceding the year of study and 147 in the year of study). Equation (11)
was used to derive a survival curve based on this replacement data,
which is shown in Fig. 23.

Survival Curveactual =
Unt − Repunit
Totalunits

(11)

Unt is the total number of units being replaced, Repunit is the total
number of units replaced, and totalunits is the number of units in stock.
The survival curve closer to one derived using Eq. (6) data was assumed
for this study. The calibration process was done by iteratively changing
parameters (shape parameter-β, delay parameter – θ, and the scale
parameter – α) and in Eq. (2) to closely match the survival curve based
on actual data.

4.3. Validation through comparison: average lifetime of HVAC units

As shown in Eq. (2), appliance lifetime is one of the critical inputs to
derive the survival curve for pieces of equipment. Equation (12) was
used to derive the average lifetime for this study. This derived average

Fig. 21. Cost assumptions for the battery.

Fig. 22. The cost of producing electricity with biogas.

Table 5
Model validation techniques and their objectives.

Validation/
Verification
Type

Short description Equation
#

Validation
done

References

Replication
and
calibration

Testing the ability of
the model/tool to
replicate systems
described with
existing statistical/
actual data.

(6), (7) ✓ [50]

Validation
through
comparison

Compare results
outputs with other
studies

(6), (7) ✓ [50]

Theoretical
validation

Testing model choice
criteria

(8) ✓ [51]

Sensitivity
analysis

Testing response to
input assumptions

​ χ [52]

Fig. 23. Survival rates in comparison to actual replacements of HVACs.
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lifetime was compared to the average lifetimes of the American Society
of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). A
typical HVAC unit has an average lifetime between 10 and 15 years [54]
and studies in Refs. [55,56] have shown an average lifetime of 19 as
presented in Table 6. By iteratively changing parameters (shape
parameter-β, delay parameter – θ, and the scale parameter – α) and
matching the survival curve to the one derived from actual data, 13
years is the average lifetime for HVAC in this study.

MHVAC= θ + α(ln(2))1/β (12)

4.4. Theoretical validation: technology choice based on LCOE

The PLEXOS modelling tool makes technological choices based on
the levelized cost of energy. It is critical to test the validity of such a
choice using the LCOE of different technologies within the model (intra-
model validation). This is expressed in Eq. (13). As presented in Fig. 3, it
is clear that biogas and batteries are expensive throughout the modelling
period (2017–2050), so it will not be economically viable for them to
form part of this organisation’s portfolio. The model optimises to meet
the demand with the least cost within a scenario.

LCOEtech =
NPVcosts
NPEtech

=

∑n

t=1

Ct+Ot+Vt
(1+df)t

∑n

t=1

Et
(1+df)t

(13)

LCOEtech is the levelized unit cost of producing electricity with a
particular technology under consideration. NPVcosts is the net present
value of costs, and NPEtech is the net present value of energy produced or
saved by an intervention.N is the number of years the technology will be
in service, Ct is the capital cost, Ot is the operational cost, Vt is the
variable cost, and df and t represent discount rate and year t, respec-
tively. Et is the energy produced or saved by an intervention.

The biogas plant could only make economic sense if it were used as a

baseload plant, as shown in Fig. 14. The cost of producing electricity
with biogas will be lower than the cost of municipal electricity only
when the biogas plant production is maximised and is used at avail-
ability of 80 % and above. Therefore, a biogas plant will only make
economic sense if it replaces municipal electricity and is run as a base-
load power plant, feeding the business with powermore than 80% of the
time. Given that biogas technology does not have a decreasing learning
rate, this can only occur with the tariff increase above the assumed tariff
increase presented in Fig. 17.

With these validation and calibration processes, it has been proven
that the model provides a reasonable selection of technologies to form
the portfolio of electricity-generating assets for this business.

5. Results and discussion

To explicitly show the cost implications of implementing and not
implementing the vision, scenarios described in Section 3.1 compare
these future outlooks. In all the scenarios, the power plants can be built
until 2050. The model is setup assuming perfect oversight: known future
load demand and costs, tariffs and costs assuming learning rates for
solar, wind and renewable energy technologies and batteries.

5.1. Business as usual

The BAU scenario in Fig. 25 presents the organisation’s future elec-
tricity demand, associated operational (municipality bill) and mainte-
nance costs with a current asset portfolio of 1.1 MW. No new additional
electrical capacity has been built, except for the additional 0.9 MW of
solar PV currently under construction, which is within the planning
horizon (2027–2050). The decommission starts from 2040 onwards.

The municipal power meets 88 % of the organisation’s electricity
demand from 2019 up to 2036. The NPV of the total electricity costs
over the whole study horizon is approximately.

$24.2 million, equating to an equivalent annuity of $2.6 million/
year over an 11-year horizon (2019–2050). The total electricity cost
includes the total cost of electricity generation (municipal tariff costs)
and fixed operations and maintenance costs for the existing solar PV.

Fig. 26 presents hourly generation from organisation supply capacity
and municipal imports on a typical Summer week. The hourly dispatch
profile shows how solar PV meets the organisation’s peak demand,
which occurs in the middle of the day during weekdays. Energy effi-
ciency and demand response are not implemented under this scenario.

5.2. Least cost–current tariff structure (LC cTS) with DSM consideration

The least cost (LC) scenario considers the same input assumptions as
in the BAU scenario, with an additional option to install new supply and
demand (energy efficiency and demand response) capacity from 2020

Fig. 24. Levelised cost of energy for technologies assessed in the model.

Table 6
Comparison of survival curve parameters and average lifetime for HVAC with
other studies.

β θ x α Average
lifetime (y)

Validated
using

US Study:
HVAC units
[55,56]

2.094 0 T1 -
T50

21.49 19 MHVAC = θ+
α(ln(2))1/β

This Study 2.600 0.5 T1 -
T25

9.90 13 MHVAC = θ+
α(ln(2))1/β

ASHRAE
HVAC units
[54]

​ ​ ​ ​ 10–15 Actual survey
data
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onwards, summarised in Section 3.1 in Table 4. The LC with the current
tariff structure assumes the current tariff structure, as presented in
Fig. 16, will not change in the future; only an annual increase of 2 % is
assumed. The feed-in tariff is supposed to increase from $0.01/kWh in
2018 to $0.03/kWh in 2030 and stays constant after that.

The installed capacity and energy from the organisation’s existing
generation capacity and the energy contribution from the municipality
are shown in Fig. 27. Under the assumed tariff trajectory, wind, biogas,

and battery storage are still not the least cost and cost-effective to invest
in. By 2020, an additional 2 MW of solar PV will be added to the or-
ganisation’s electrical system. By 2025, the new solar PV capacity will
have increased to 4 MW, ultimately resulting in 7 MW of solar PV ca-
pacity by 2027.

All energy-efficient lighting and geyser technologies are economic to
install as early as 2020, while installing efficient HVAC units is not. The
efficiency gains from HVAC systems will only come from the HVAC
replacement strategy explained in Section 3.2. HVAC systems are not
economical compared to other technologies because the LCOE for HVAC
is $0.07/kWh for every unit of electricity saved. This LCOE cannot
compete with the cost of solar PV during the day because the cost of
saving 1 kWh from an HVAC system is costlier than producing a unit of
electricity from the solar PV system.

Although energy-efficient HVAC units are not economic to install for
this organisation, their electricity demand can be shifted to low tariff
periods, as shown in Fig. 28. By implementing a demand response (load
shifting programme), the cost of the least cost scenario reduces by 10 %
compared to the BAU Scenario. Fig. 28 shows that shifting 1.1 MW from
the morning peak tariff period to the off-peak period is economical. The
price of electricity is $0.08/kWh during the peak period, while the price
is $0.03/kWh during the off-peak peak. Therefore, shifting 0.5 MW of
the demand to an earlier standard tariff period in the evening peak is

Fig. 25. Business as usual Scenario outlook into the future.

Fig. 26. BAU - Hourly total generation for a summer week in 2030.

Fig. 27. Installed capacity, energy, net present value and an equivalent annuity of the total electricity costs for the LC (LC cTS) scenario.
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economic. Shifting the electricity demand to the time during sunlight
hours enables the demand to be met with power generated from PV.

After installing the efficient lighting and water geysers, Fig. 29 shows
the electrical load profile will be lower and peaking at 3.5 MW instead of
the current 5 MW. Lighting has the most significant efficiency savings.
Relative to the lighting baseline demand, for every CFL replaced with
LEDs, 68 % of lighting electrical energy is saved. In Figs. 29 and 5% of
the load reduction comes from efficient water heating geysers, while 95
% comes from efficient lighting installation.

By 2030, solar PV will meet 36 % of the organisation’s demand from
optimised energy technologies. Therefore, Fig. 27 shows that the annual
electricity imports from the municipality will contribute 54 % to the
organisation’s electricity demand by 2030. The NPV of the total

electricity system costs $21.5 million over the entire study horizon. This
total cost equates to an equivalent annuity of $2.3 million/year over the
next 30 years. The total electricity cost includes the total cost of elec-
tricity generation (municipality tariff costs), fixed operations and
maintenance costs for the existing solar PV investment and operating
costs of the new solar PV, and energy efficiency and implementation of
the demand response. Thus, the LC cTS scenario reduces the organisa-
tion’s electricity bill by $0.3 million per annum for the next 30 years
relative to the BAU scenario. The LC Scenario is 11 % cheaper than the
BAU Scenario.

The energy efficiency interventions will save about $0.15 million
annually. In contrast, demand response will save the organisation about
$9375 annually, and the savings from installing new PV is $0.165

Fig. 28. Typical load before demand response implementation and after demand response implementation.

Fig. 29. Typical load after energy efficiency intervention installations.

Fig. 30. Typical weekly load in 2030 under the LC scenario with DSM measures.
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million. Therefore, new PV generation saves 50 % of the total system
cost, while 47 % is from energy efficiency. A mere 3 % comes from
demand response savings (shifting the HVAC loads from peak to off-peak
periods, as shown in Fig. 30.

Fig. 30 shows that the model (PLEXOS) sometimes shifts the load far
ahead of time (2–5 h) before the usual demand for that service – HVAC.
This extended shifting occurs because the model does not consider the
payback effect [57]. According to the payback effect theory, if the
heating output reduces for a couple of hours and the temperature lowers
below the set temperature points, the subsequent heating demand will
increase slightly above the case where the temperature was not allowed
to drop too low. This phenomenon adds more complexity to the problem
as the control mechanism needs to manage these side effects. PLEXOS’s
objective function is only concerned with cost minimisation.

5.3. Least cost–current tariff structure (LC cTS (no DSM) without DSM
consideration

If the organisation did not pursue DSM, the total installed PV
installed capacity would amount to 9 MW. However, the cost of such a
system would be $0.1 million higher annually compared to the LC sce-
nario that incorporates demand-side management interventions, as
outlined in Figs. 25 and 31. In the absence of energy efficiency and
demand response implementations, Fig. 31 demonstrates that installing
an additional 7 MW of PV within the organisation by 2030 is the most
cost-effective option.

The net present total system cost is $23.8 million over the planning
period, resulting in $2.5 million per annum. This cost is 2 % higher than
the LC scenario that considers demand shifting (demand response) of the
HVAC units and installing efficient lights. Some significant solar will be
curtailed or sold to the municipality in days with an excellent solar
resource, as shown in Fig. 32.

As highlighted in Ref. [36], once a microgrid is connected to the grid,
the grid serves as a battery. Therefore, the battery competes with the
grid electricity in this case study. Battery systems are still expensive
throughout the planning period compared to the electricity tariff from
the municipality during the same period.

6. Conclusions

The main findings of this research indicate a shift in investment

priorities for reducing electricity bills. Energy efficiency is no longer the
primary consideration before exploring supply-side technologies. The
significant decline in solar PV costs has made it the LC intervention for
typical commercial sector customers, especially those on a time-of-use
municipal tariff like the one analysed in this study. The study assumes
the same load shape throughout the modelling period.

The advantages of solar PV are further enhanced as most customers
experience peak demand when solar PV generation is at its highest.
Therefore, increasing the rollout of solar PV is an investment strategy
that offers significant benefits, especially when combined with lighting
retrofits. It should be noted that efficient HVAC systems are not the most
economic investment option for the entire modelling period, as no
learning effect is assumed for HVAC units in any scenario, as saving one
unit of electricity from HVAC is more expensive than generating the
same unit using solar PV.

This work emphasises the need for utilities to prioritise supply- and
demand-side interventions rather than solely focusing on energy effi-
ciency measures. Assessing energy efficiency and supply-side technolo-
gies concurrently provides a comprehensive understanding of the most
effective economic policies to implement. Taking a holistic approach by
considering both aspects simultaneously is the recommended approach.

In this context, the integrated resource planning framework utilised
in this study offers a valuable tool for assessing energy interventions
aimed at long-term electricity bill reduction for customers. This frame-
work should not be limited to utilities at the national level and should be
adopted by a broader range of stakeholders. In the past, energy effi-
ciency interventions with a return on investment of 5–7 years were
considered low-hanging fruit for immediate energy savings. However,
with the decreased costs of solar PV, installing a solar PV system now
offers greater value than replacing an inefficient HVAC unit. The results
show that the commercial entity can save their electricity bill by $0.16
by installing 6 MW solar PV over the lifetime of the solar PV plants. It is
worth highlighting that despite the significant reduction in the cost of
wind energy, installing a wind turbine within the organisation’s energy
mix was still not economical. This is primarily attributed to the lowwind
resources available at the site. The limited energy resource profile
resulted in a higher levelized cost of electricity production from the
wind turbine than the cost of power supplied by the municipality, as
shown in Fig. 24.

Therefore, it becomes evident that the cost of technology and the
availability of an adequate energy resource are crucial factors to

Fig. 31. Installed capacity, energy, net present value and an equivalent annuity of the total electricity costs for the LC (LC cTS) scenario without demand-
side management.
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consider when designing an energy plan. It is essential to acknowledge
that the reported energy efficiency savings from retrofits assume no
changes in user behaviour. Therefore, the results presented in this study
do not account for rebound effects on DSM measures. For instance, if
offices modify their lighting or HVAC usage patterns, the savings derived
from load shifting and energy efficiency interventions may differ from
the quantifications provided in this study due to rebound effects. The
maximum load that can be shifted for HVAC units during periods of low
tariff costs is 1.4 MW. Additional studies are needed to comprehensively
quantify the operational strategies and benefits associated with demand
response from HVAC units.

This study assumed perfect foresight of load, and with demand
response, the load will be dynamic because the future load will be a
function of people coming into the building and temperature and their
needs for heating and ventilation. Studies that incorporate load-shifting
strategies must also look at changes in load shape in subsequent years.
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Appendix

Table A.1
Input assumptions for demand response

Parameter Units HVAC Water Heating

Installed Units Number 2462 191
Installed capacity kW 6249 379
Capacity participating in DR kW 1000 200
Units participating in DR Number 394 101
DR Participation Level % 16 % 53 %

Fig. 32. A typical dispatch profile under an LC scenario without DSM.
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Table A.2
Input assumptions for energy efficiency options

Parameter Units Lighting HVAC Water Geyser

Total investment (appliance and installation) cost $ 490 479 831 803.13 47 686
Existing installed capacity kW 2185 6249 379
Installable efficient capacity kW 387 3272 195
Overnight cost $/kW 1267.36 208 236
Energy saved GWh 3 2 1
Unit energy consumption (UEC) kWh/yr. 88.6 2614 4065
Number of appliances Units 43 865 2462 191
Number of replaceable units Units 43 216 1905 154
Lifetime Years 8 12 5
Appliance unit cost $/unit 11.375 436.625 4779
LCOE ($/kWh saved) $/kWh 0.0344 0.069 0.0225

Table A.3
Cost of existing solar PV plants

Property Units Renewables

Single Axis Tracker Dual Axis Tracker Building 17 Rooftop system PV Phase 1

Rated capacity (net) (MW) 0.56 0.20 0.25 0.91
Total construction time (2017) ($ Million) 1100.94 2045.56 1161.4 946.31
Fixed O&M ($/kW/year) 20.4 19.5 14.44 14.44
Construction time (Years) 0.5 0.5 0.5 0.4
Load factor (typical) (%) 21 % 24 % 20 % 20 %
LCOE ($/kWh) 0.052 0.0625 0.0544 0.048
Technical life Years 25 25 25 25

Table A.4
Cost of battery technologies

Property Units Storage Technologies Battery (Li-ion,1h) Battery (Li-lon, 3h)

Rated capacity (net) (MW) 2 2
Total construction cost (2017) ($/kW) 618.2 1518.8
Total construction cost (2030–2050) ($/kW) 618.2 1518.8
Construction time (Years) 0.2 0.2
Capital cost (calculated) (2017) ($/kW/year) 618.2 1518.8
Capital cost (calculated) (2030–2050) ($/kW/year) 618.2 1518.8
Fuel cost ($/GJ) 0 0
Heat rate (GJ/MWh) 4045 4045
Round-trip efficiency (%) 89 % 89 %
Fixed O&M ($/kW/year) 38.625 38.625
Variable O&M ($/MWh) 0.1875 0.1875
Load factor (typical) (%) 4 % 12 %
Lifetime (Year) 15 15

Table A.5
Cost and performance characteristics of new supply options

Property Renewables

Wind Solar PV (Tracking) Solar PV (Fixed) Solar PV (Rooftop) Biogas

Rated capacity (net) (MW) 2–3 1 1 1 1
Overnight cost per cap capacity [2017] ($/kW) 2157.8 1204.1 1100.93 963.375 3469.75
Construction time (Years) 0.5 0.5 0.5 0.4 1
Capital cost (in 2017 + 6 Value) ($/kW/year) 253.44 132.63 121.31 104.25 382.25
Technical life Years 20 25 25 25 25
Fuel cost ($/GJ) – – – – 0
Heat rate (GJ/MWh) – – – – 20 000
Fixed O&M ($/kW/year) 365.625 20.38 12.5 14.44 0.0625
Variable O&M ($/MWh) – – – – 536
Load factor (typical) (%) 21.3 % 21 % 20 % 20 % 85 %
Minimum Up Time hrs – – – – 1
Minimum Down Time hrs – – – – 1
Maximum Ramp Up MW/min – – – – 0.01
Maximum Ramp Down MW/min – – – – 0.02
Maintenance rate (%) – – – – 2 %

(continued on next page)
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Table A.5 (continued )

Property Renewables

Wind Solar PV (Tracking) Solar PV (Fixed) Solar PV (Rooftop) Biogas

Forced outage rate (%) – – – – 1 %
Mean Time to Repair hrs – – – – 8
Max Time to Repair hrs – – – – 168
Min Time to Repair hrs – – – – 1
CO2 emissions kg/MWh – – – – 670
NOx emissions kg/MWh ​ ​ ​ ​ 1
CH4 emissions kg/MWh ​ ​ ​ ​ 201
Particulate emission kg/MWh ​ ​ ​ ​ 2

Data availability

Data will be made available on request.
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