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A B S T R A C T

Wheat is one of the most important staple crops consumed by more than four billion people in the world.
However, its production is challenged by the impact of climate change which accounts for a 5.5 % reduction in
wheat yield and it is predicted to dwindle further by about 30 % in 2050, due to trends in temperature, pre-
cipitation, and carbon dioxide. An effective annual crop estimate is necessary not only to inform governments the
status of national food security, but also to determine the benchmark on which agricultural commodities are
priced in the market. Thus, annual crop monitoring and yield estimate is paramount to determine the amount of
wheat imports required to make up for the shortfalls in the national wheat production in South Africa, which has
been a net importer of wheat since 1998. This study aimed at investigating the most distinguishable crop
phenology for accurate winter wheat classification during the growing season from August – December 2020
using Sentinel-2 imageries and Random Forest algorithm. The winter wheat crop was more accurately identified
during the crop ‘heading’ stage in October yielding the highest user’s (75.56 %) and producer’s (92.52 %) ac-
curacies, despite the relatively lower overall accuracy (78.14 %) compared to that of December with overall
accuracy of 83.58 % obtained during the maturity stage. This study, therefore, found that the extraction of NDVI
values of the winter wheat crop over the period of the growing season using the Sentinel-2 NDVI series method
and grouping these values into distinct classes using the K-means unsupervised clustering techniques assist to
identify the different crop phenologies based on which the winter wheat crop could be detected and mapped
accurately. The phenology-based classification of the winter wheat crop during the heading stage, reduce the
ambiguity of spectral confusion created with surrounding grass and maize crops.

1. Introduction

Since its first adoption as a cultivable crop in the Middle East over 10
000 years ago, wheat has been regarded not only as the foundation of a
sedentary lifestyle for the early humans but also as a corner stone upon
which many civilizations, particularly those in the west thrived on
(Curtis and Halford, 2014). It is predominantly a crop of the northern
hemisphere, where 90 % of the global production comes from, with
China, Russia, and United States of America accounting for 50 % of the

world’s wheat production (Li et al., 2020). It is one of the three most
important staple crops consumed by a third of the world’s population
(Chang et al., 1994). For most part of the 20th century, wheat produc-
tion showed a progressive increase, more importantly following the food
shortage crisis after the World War II driven by agricultural incentive
policies adopted by many countries. The subsidies from the European
Union’s Common Agricultural Policy encouraged farmers in the United
Kingdom (UK) to double average wheat yield from 3.5 t ha− 1 in 1961 to
7.6 t ha− 1 in 1984 attracting many barely farmers to switch to wheat
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farming (Curtis and Halford, 2014). Germany was importing over 2
million tons of wheat annually after the war, but became self-sufficient
in the 1970s by producing enough for the domestic market (Porsche and
Roebbelen, 2008) and it is currently standing at 130 % self-sufficiency
produced from a total acreage of 3.1 million ha (Stat, 2015; Laidig
et al., 2017). Wheat is also the dominant cereal crop in Poland with
cultivation land areas expanding from 20 % in the 1960 to 25 % in the
1980 s to the current 39 % (Oleksiak et al., 2022) accounting for 22 % of
the total areas cropped in the country (Iwańska et al., 2020).

The most dominant cereal crop in Southern Africa is maize, but
wheat is also grown to supplement the staple maize crop (Shew et al.,
2020). The first wheat production in South Africa dates back to 1652 in
the Cape of Good Hope and as early as 1684 there was enough wheat
production to export to India. The two main commercial wheat species
produced in South Africa are the bread wheat (Triticum aestivum) and the
durum wheat (Triticum turgidum), the former accounting for bulk of the
wheat production in the country (Nhemachena and Kirsten, 2017). The
country is the second largest wheat producer ranking after Ethiopia and
wheat is predominantly produced as a dryland crop with irrigation only
covering 21 % of the total wheat grown area, which accounts for 41 % of
the total wheat production (DAFF, 2014). Wheat production increased
from 0.5 t ha− 1 in 1936 to over 3.5 t ha− 1 in 2015 leading to 87 % in-
crease in yield and 20% improvement in the baking quality in the period
between 1930 and 1990 (Purchase and Van Lill, 1995). It is mainly
produced in the Western Cape, Free State, Northern Cape, North West
and Mpumalanga provinces (Department of Agriculture, 2010) with
over 42 % of the total 1.5 million ton wheat produced in 2019 com
ing from the Western Cape Province (https://www.statis
ta.com/statistics/1135888/wheat-production-in-south-africa-by-provin
ce/). Unfortunately, though, South Africa remains a net importer of
wheat since 1998 after the wheat growing area declined by 46 %
following the changes in policy leading to the deregulation of the wheat
market and dissolution of the existing fixed pricing system by the wheat
marketing board (Shew et al., 2020). The low profitability of wheat
production and other extreme climatic conditions (e.g., drought and
frost) made farmers lose interest in growing wheat and shift to more
profitable crops such as maize and soybean (Sosibo et al., 2017). For
instance, the drought incidence of 2015/2016, which particularly hit the
Western Cape Province (where more than 90 % of wheat grows in
dryland condition), led to South African wheat exports to the Southern
African Development Community (SADC) countries drop by 76 %
(SADC, 2016). Although a net importer, South Africa does import wheat
of lower quality to mix with high quality produced locally and export
mainly to other member countries of the Southern African Development
Community (SADC) (Shew et al., 2020).

The global population is projected to grow by 35 % and reach 9.3
billion by 2050 (U.S. Census Bureau, 2011), which will require an
estimated 70 % increase in food production mainly in wheat, maize, and
rice (that collectively occupy 58 % of the annual crop area and account
for 50 % of the calories required) to cater for the future food demands
(FAO, 2009; Stewart and Roberts, 2012). Wheat production has to in-
crease by 60 % to ensure the global food security of the projected of
world population growth (Jaiswal et al., 2017). Many of such production
increases are expected to come from developing countries, where agri-
cultural lands must double, and the low production level improve
through intensive farming. Most of the production in these countries, is
however dependent on dryland conditions and due to climate change
effects, which causes a variable and unpredictable weather conditions
and increased drought frequencies, crop production might suffer a
setback to meet the growing global food demand. Irrigation farming
could be the focus of future crop production for a substantial contribu-
tion in the global food security, but water resources are limited and
requires effective management, which will depend on accurate and
timely crop-type knowledge for robust water budget and irrigation
plans. This is particularly important in arid and semi-arid regions of the
world, where most of the land expansion required to increase future food

will come from.
Crop yield forecast during the growing season before harvest is

paramount not only to facilitate the decision making of whether or not
to import seasonal shortfalls of staple crop production to ensure food
security, but also seasonal crop estimates produced nationally are used
as a benchmark on which agricultural commodities are priced in the
market and it has a direct bearing on decisions taken by government,
farmers, and the business community by large. The two components
required for crop production forecast are the crop acreage and the ex-
pected acres to harvest (Vogel and Bange, 2004); where crop-type
mapping is the most important aspect of crop management and yield
forecast to characterize the dynamic and unpredictable changes of the
agricultural land cover patterns (Zhong et al., 2011). For many years
crop estimate depended on complete censuses, sample survey systems
from farmers’ reports, observed data from large point samples, con-
ventional area frame systems, and data obtained from administrative
offices (Craig and Atkinson, 2013). Either as a separate estimation or a
partial survey for ground-truthing of the recent remote sensing–based
crop estimate methodology, crop area survey remains widely in practice
across the world (Craig and Atkinson, 2013). Although such traditional
area survey methods could be accurate, they are expensive, labour and
time demanding, and do not produce accurate crop spatial distribution
(Pan et al., 2021). The advent of high spatial and spectral resolution
remote sensing technology has, however, allowed the crop estimation
data survey to evolve and satellite imageries are currently used for
agricultural land classification and estimation of acreages to be planted
or harvested. It has become a popular tool of choice for crop yield
forecast. Thus, although complete census is still in practice in many
countries, remote sensing and sample ground survey for training has
synergistically revolutionized the crop-type mapping methodology.

The different crop biological events from planting to harvest over the
growing season, referred as crop phenology, depends on climatic,
edaphic, and agronomic practices, and varies with time and location
(Gao and Zhang, 2021). Timely mapping of such changes in crop
developmental stages are significant for crop growth management, such
as determining the irrigation and fertilizer requirement regimes, which
could be scheduled on the phenological stage, and crop yield forecast
(Gao and Zhang, 2021). Different vegetative indices (VI) are used to
determine crop phenology using the changes in the vegetation status
following the different developmental stages such as green-up, heading
and senescence. The progressive advancement in the temporal and
spatial resolutions of satellite observation on the earth surface has
enabled the use of a near-real time approach to monitor crop growth on
pixel basis.

While the utility of remote sensing to classify and characterize
different crop-types has been previously studied, this study particularly
focused on crop-phenology based classification using temporal and
spatial remote sensing satellite data. It aimed at investigating effective
methods of extracting and clustering NDVI values obtained during the
crop growth period to match the known crop phenologies of winter
wheat crop for an accurate classification of winter wheat based on the
crop phenology.

2. Materials and methods

2.1. Study area

The study was conducted around the town of Reitz in the Thabo
Mafutsanyane District, the Free State Province of South Africa, the
second biggest wheat producer in the country after the Western Cape
Province (Fig. 1). Reitze is located (27◦48′6.23″S and 28◦25′31.54″E) in
th north-eastern part of the province and experiences a humid-
subtropical climate with average annual precipitation in the region
ranging from 300 − 900mm (Moeletsi, 2010). It is predominatly planted
with winter wheat from late July to early August and yellow maize from
Ootober depending on the onset of rainfall.
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2.2. Data acquisition

A handheld Global Positioning System (GPS) receiver (Garmin eTrex
20 X) was used to collect 2 017 coordinates from the months of August
(521), October (686) and December (803) during the growing season of

winter wheat crop in 2020 (Fig. 2). Among some of the land use land
cover (LULC) classes were water, natural vegetation, furrow, maize,
grass, beans, built up and winter wheat including their phenological
stages.

Fig. 1. Sentinel-2 Normalized Difference Vegetation Index (NDVI) composite map of the study areas in Reitz, Free State Province, South Africa.

Fig. 2. Ground-truthing Global Positioning System (GPS) points collected during the growing season of winter wheat in August, October and December.
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2.3. Image classification using Random Forest

The multispectral Sentinel-2 satellite imageries with cloud cover of
less <5 % were selected for the phenology-based classification using the
Random Forest (RF) algorithm and the classification accuracy was

computed in a confusion matrix table. The total (2 017) ground truthing
GPS dataset was split into two as a training subset data accounting for
two-third (70 %) of the total data and the remaining third (30 %) of the
data as a validation dataset for the Random Forest classification algo-
rithm from which the accuracy assessment matrix including overall,

Fig. 3. The different phenological stages of winter wheat during the growing season from August to December 2020 in Reitz, Free State Province, South Africa.
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producer’s and user’s accuracies, and the kappa coefficient were
computed to determine the classification accuracy of the Sentinel-2
imageries. The winter wheat dataset obtained from 130 farms were
clustered into groups from the NDVI time series values averaged from
14 days of the winter wheat growing season spanning from August to
December to determine the optimum number of k-means cluster using
Iso Cluster Unsupervised Classification algorithm on R software.

2.4. Plant phenology

The most common phrenological stages of winter wheat (Fig. 3.)
includes Tillering (from germination stage with a single shoot to 2–5
shoots), Jointing (when first nodes appears above the soil surface),

Booting (when the flag sheath swollen enclosing the awns), Heading
(when the first anther appears) and Flowering (when anthers covers the
entire head), Maturity (when developed kernel contains 40 % of mois-
ture and can be split by fingernail) and Ripening (when kernel moisture
content is about 13 % and turns golden in colour and becomes harder to
split with fingernail) (Knott, 2016).

3. Results

The K-means, a common algorithm for unsupervised classification of
large dataset was used to determine the optimum number of clusters
required to group the entire winter wheat dataset according to their
similarities. The point in the cluster curve at which the decline the

Fig. 4. Elbow method used to determine the optimum number of clusters required to group the datasets into based on their similarity.

Fig. 5. NDVI of winter wheat during the growing season from Aug – December 2020 in Reitz, Free State Province.
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distortion was the lowest also referred as the ‘elbow’ indicates the op-
timum k value (number of clusters) into which the data set will be
grouped. The results showed the optimum or the smallest number of
clusters with low sum of squared errors (SSE) was at k 3, after which the

SSE diminished for every increasing k cluster (Fig. 4).
A total of 130 GPS points were collected from each winter wheat

farm in the study area in early October 2020. The boundary of each farm
containing a GPS point was then drawn into a polygon and as many as

Fig. 6. Unsupervised classification of winter wheat dataset using K-mean clustering algorithm.
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1018, 1595, 2011, 2583 and 1595 points were generated for each of the
phenological stages namely tillering, Jointing, Booting, Heading and
Maturity, respectively. Sentinel-2 NDVI times series values over the
period of 14 days spanning from 1 August to 31 December 2020 were
extracted using Google Earth Engine software and classified using K-
means clustering technique across the study area. There were five
distinct groups with varying NDVI values over the growth period
(Fig. 5).

Although the optimum number of clusters into which the winter
wheat dataset will be grouped is calculated at K 3, unsupervised clus-
tering was also calculated for K 5 and K 4. The results showed crop
phenological stage of ‘Maturity’ was consistently separable for all clus-
tering groups of K-3, K-4 and K-5 (Fig. 6). When the dataset was clus-
tered into five groups, there was an overlap between the winter wheat
crop stages ‘Booting and Heading, as well as between Tillering and
Jointing. The same was true in the latter when the clustering was
reduced to four groups. However, clustering them into a group of 3,
showed no overlap between Tillering, Heading and Maturity.

The overall accuracy (OA) of the unsupervised classification using
the k-mean clustering algorithm was the highest at the optimum cluster
number of K-3 with 89.33 % compared to 63.23 % and 75.21 % when
the dataset was grouped into clusters of K-5 and K-4, respectively
(Table 1). The confusion was more prominent between the Tillering and
Jointing and between Booting and Heading crop stages. The user’s ac-
curacies (UA) were the lowest in the first two paired stages with 57.17 %
and 52.96 %, respectively.

The crop phenology-based classification of the winter wheat using
Sentinel-2 satellite imageries and the Random Forest (RF) algorithm
during the months of August, October and December 2020 growing
season (Fig. 7) produced overall accuracies of 75.16 %, 78.14 % and
83.58 %, respectively (Table 2) increasing with the age of the crop from
emergence in August to maturity and ripening in December. In August,
the two dominant land use types were extensive furrowed farmlands and
early stages of wheat crop tillering, and no other crop stages were
identified. The furrow class showed a spectral confusion with grass and
wheat emergence. The same was true with the wheat that overlapped
largely with furrow followed by grass (Table 2) as a result, the two
classes received the lowest user’s accuracies of 61.17 % and 62.86 %,

respectively. The overall accuracy (78.14 %) of the classification in
October showed a slight improvement compared to the first stages of
wheat in August. The spectral mix-up, however, remained between the
same classes of wheat and furrow, although relatively lower than in the
previous month. The wheat tillering (WT) and wheat heading (WH)
were the only two phenological stages identified in the study areas
recording the highest users’ (73.60 % and 75.56 %) and producers’
(89.51 % and 92.52 %) accuracies. In December, the last month of the
active growing season of the winter wheat crop in the study area (in
Reitz) the wheat maturity (WM) was the only phenological stage iden-
tified yielding the lowest user’s accuracy (67.24 %) and producer’s ac-
curacy (70.91 %), despite the highest overall accuracy (83.58 %)
recorded.

4. Discussion

Cultivation of winter wheat in Free State Province (Reitz) starts from
mid July to the first week of August and harvested in late December. The
crops start germinating in winter during the dry season on the existing
soil moisture from the previous rainfall season in summer and reach the
heading and flowering stages fromOctober with the onset of the summer
rainfall and maturity in December. Planting dates of the winter wheat
varies from 1 to 3 weeks amongst farmers and therefore, the crop
phonological stages of the study areas vary accordingly. The winter
wheat crop was mapped using the multispectral Sentinel-2 NDVI time
series over a 14-day period stretching from August – December and the
wheat dataset was clustered into 3–5 groups using the K-mean unsu-
pervised clustering technique. The different crop phenological stages
were matched to each cluster from field observation records. A spectral
confusion was observed between the tillering and jointing stages as well
as the booting and heading stages when the wheat data set was clustered
to five groups (Fig. 6). This either could be due to the different planting
dates of the wheat crop across the study areas resulting in an onset of a
crop phenological stage in one farm or developing into the next stage in
another. The NDVI time series clustering results showed the different
grouping of the study area based on the wheat crop phenological stages
with varying dates of reaching each crop stages (Fig. 5). The study areas,
was however, distinctly clustered when the dataset was classified into

Table 1
Accuracy assessment of unsupervised classification of winter wheat dataset using k-mean clustering algorithm into which crop phenological stages were grouped.
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Fig. 7. Classification map of winter wheat using Sentinel-2 satellite data with Random Forest algorithm for (a) August, (b) October and (c) December months of the
crop-growing period in Reitz, Free State Province, South Africa.
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three groups as tillering, heading and maturity producing the highest
overall accuracy of 89.33 %. The winter wheat classification based on
phenological stages over the period of August, October and December
resulted in overall accuracy of 75.16 %, 78.14 % and 83.58 %, respec-
tively. The highest accuracy result reported during the crop maturity
stage in December was higher compared to the overall accuracy of
72.22 % reported in another similar study of phenology-based classifi-
cation of winter wheat using Sentinel-2 (Nkuna, 2021). The finding of
this study was also comparable to the overall accuracy of 84 % reported
for winter wheat phenology-based mapping using sentinel-1 (Song and
Wang, 2019).

Maize cultivation in the predominantly wheat grown area of Reitz is
gradually increasing as wheat production and profitability dwindles due
to climatic change effects such as drought and frost during the winter
season. It is planted with the onset of the rainy season in fallowed lands
or after the harvest of the wheat crop in December. Depending on the
planting date, maize spectral signature was found to overlap with the
winter wheat crop at tillering stages (Table 2). Thus, although the
general classification accuracy in December was the highest during the
wheat maturity stage, the users’ (67.24 %) and producer’s (70.91 %)
accuracies were the lowest. 23 maize crops (8.7 %) were misclassified as
wheat in December. This is because maize crops planted earlier were
past the emergence and seedling stages leading to spectral confusion
with the winter wheat. Such interferences from maize were minimal
particularly during the heading stage of winter wheat in October with
only 1.5 % of maize crops misclassified as wheat. Thus, the winter wheat
crop was more clearly identified during the growth stage of ‘heading’ in

October yielding user’s and producer’s accuracies of 75.56 % and 92.52
%, respectively, despite the relatively lower overall accuracy reported in
this month than in December. This conforms with the findings shown by
(Tao et al., 2017) who, using time-series MODIS data, also found a
maximum enhanced vegetation index (EVI) during the heading stage of
the wheat crop in the northern region of China Plain with an accuracy of
92 %. The higher accuracy level compared to the finding in this study
was, however, due to the early planting period of wheat when most
other crops are either harvested or just sown to make any annual
spectral confusion or crop interference. While such time series MODIS
imageries could give a substantially high accuracy level in crop classi-
fication and was widely used to map crops based on their phenological
stages [23;29] under particularly less heterogeneous environments, its
coarse resolution is not suitable for small wheat farms.

With the increasing drought frequencies and unpredictable rainfall
patterns, it is increasingly becoming inevitable that future food security
would gradually depend on partially or fully irrigated lands to produce
wheat and other staple crops. Mapping crop-types classification based
on crop phenology not only is an important component of crop yield
forecast to ensure food security, but also a tool to support farm man-
agement and monitoring with scheduled irrigation and fertilizer appli-
cation during the critical crop developmental stages. Sentinel-2 satellite
imagery and the NDVI time series data can be used to effectively classify
crops based on crop phenology.

Table 2
Accuracy assessment of winter wheat classification using Sentinel-2 satellite data with Random Forest for the growing season from Aug – Dec 2020. NB: UA denotes
user’s accuracy, PA-producer’s accuracy, OA-overall accuracy NV-natural vegetation, WT-wheat tillering and WM-wheat maturity.

a. Accuracy assessment for winter wheat classification map in August 2020

b. Accuracy assessment for winter wheat classification map in October 2020

c. Accuracy assessment for winter wheat classification map in December 2020

S.W. Newete et al. The Egyptian Journal of Remote Sensing and Space Sciences 27 (2024) 695–704 

703 



5. Conclusions

The winter wheat crop was mapped using the multispectral Seninel-2
NDVI series that was used to extract the NDVI values over 14-days
spanning the three months of August, October, and December during
the crop growing period. Using the K-mean unsupervised clustering
technique, the NDVI values were then successfully grouped into three
distinct classes, which matched the tillering, heading and maturity crop
phenologies based on field observation during the growing period. The
classification of the Sentinel-2 imagery using the Random Forest algo-
rithm based on these phenological stages produced the highest overall
accuracy of 83.58% in the month of December followed by October with
78.14 % accuracy. Nevertheless, the highest user’s and producer’s ac-
curacy for the winter wheat were recorded in the month of October
during the ‘Heading’ stage, suggesting that the best time to map winter
wheat crop accurately during the growing season is the heading stage.
These findings, therefore, implies that despite the different planting date
of the winter wheat crop in the region, the extraction of the NDVI values
using the Seninel-2 NDVI series techniques, and the K-means unsuper-
vised clustering of the NDVI values, could be matched to the different
crop phenologies observed in the field assisting the accurate classifica-
tion of the winter wheat using this phenologies.
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