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A B S T R A C T

Maize, a vital global crop, faces numerous challenges, including outbreaks. This study explores the use of spectral
vegetation indices for the early detection of maize diseases in individual leaves based on crop phenology at the
vegetative, tasselling, and maturity stages. The research was conducted in rural areas of Giyani in the Limpopo
province, South Africa, where smallholder farmers heavily rely on maize production for sustenance. Fungal and
viral diseases pose significant threats to maize crops, necessitating precise and timely disease detection methods.
Hyperspectral remote sensing, with its ability to capture detailed spectral information, offers a promising so-
lution. The study analysed spectral reflectance data collected from healthy and diseased maize leaves. Various
vegetation indices derived from spectral signatures, including the Normalized difference vegetation index
(NDVI), Anthocyanin Reflectance Index (ARI), photochemical Reflectance Index (PRI), and Carotenoid Reflec-
tance Index (CRI) were investigated for their ability to show disease-related spectral variations. The results
indicated that during the tasselling stage, the spectral differences had minimum absorption in the blue region.
However, a distinct shift in spectral reflectance was observed during the vegetative stage with 70 % increase in
reflectance. First derivative reflectance analysis revealed peaks at approximately 715 nm and 722 nm, which
were useful in the discrimination of the different growth stages. Generalized Linear Models (GLM) with binomial
link functions and Akaike Information Criterion (AIC) showed that individual vegetation indices performed
equally well. NDVI (P<0.001) and CRI (P<0.000) showed the lowest AIC values across all growth stages, sug-
gesting their potential as effective disease indicators. These findings underscores the significance of employing
remote sensing technology and spectral analysis as essential tools in the endeavours to tackle the difficulties
encountered by maize growers, especially those operating small-scale farms, and to advance sustainable farming
practices and ensure food security.

1. Introduction

Maize (Zea maize) is the most cultivated crop across the world
(Dowswell, 2019). It is known to produce variety of products such as
flour, cereal, maize meal, and oil, which are not only consumed locally
but also exported and consumed worldwide (Erenstein et al., 2022). The
importance of maize in agriculture and disease outbreaks faced by the
smallholder farmers in conjunction with climate change highlights the
need for efforts towards adaptation and resilience (Laichena et al.,

2022). Innovative agricultural practices improve livelihoods of farmers
and contribute to food security, poverty reduction, and sustainable
development.

The majority of the people in South Africa rely heavily on maize as a
staple food for human consumption and as a source of feed for livestock.
The country is mostly rural areas that prioritize agriculture as the pri-
mary activity, making maize production a critical part of the economy
and food security (Biénabe and Vermeulen, 2011). Most of the maize
production is dependent on rainfall, making it more vulnerable to the
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influences of climate variability and extreme weather events (Praveen
and Sharma, 2019). Natural factors such as drought, floods, heatwaves,
and diseases pose a considerable threat to maize production (Duchenne-
Moutien and Neetoo, 2021).

Despite playing an important role in agriculture, smallholder farms
face various challenges. Some of the challenges they encounter includes
pest and disease outbreaks, extreme weather events, and market shocks,
which promote poverty and income insecurity (Harvey et al., 2014). Due
to limited resources and access to advanced technologies, these
vulnerable farmers struggle to cope with such risks (Hertel and Rosch,
2010), and their livelihoods are impacted when agricultural production
is reduced. The effects of reduced agricultural productivity extend far
beyond economic concerns. It also directly affects food security, nutri-
tion, income, and the farmers’ well-being (Baiphethi and Jacobs, 2009).
These challenges compromise the farmers’ well-being as it is funda-
mentally tied to their health. Thus, it is of importance to address these
challenges to promote sustainable development and poverty alleviation.

Crop diseases occur in smallholder farms in many ways due to
changing weather and climate conditions. Fungal diseases become
gradually dominant and destructive as weather pattern changes,
creating favourable environments for diseases (Sibiya, 2009; Lam-
ichhane and Venturi, 2015). Furthermore, there are 67 viruses identified
as affecting maize crops (Redinbaugh and Zambrano, 2014). Disease
detection is crucial and timely management strategies are urgently
required. Redinbaugh and Zambrano (2014) showed that old plants tend
to turn purple or reddish in the leaves and dwarfing is common when
diseases infect plants in the early development stages. Accurate infor-
mation about their location, extent, and severity is important to effec-
tively fight these diseases and mitigate their influence (Zhang et al.,
2019). Furthermore, details on disease distribution is of importance to
guide suitable crop protection measures. The understanding of the scope
of infections enable farmers to implement targeted and effective stra-
tegies, such as adjusting planting times, or using fungicides and pesti-
cides carefully.

The traditional monitoring of such crop disease infection with the
naked eyes may lead to inaccurate diagnosis (Ahila Priyadharshini et al.,
2019). In contrast, hyperspectral remote sensing provides non-
destructive ground information for detecting and monitoring crop dis-
eases (Shi et al., 2017). These sensors serve as evolutional approach in
agricultural management. These sensors produce high quality images
with spatial and spectral resolution, which are suitable for detailed and
accurate crop monitoring (Ghamisi et al., 2017). This includes
discrimination of vegetation at species level and detection of plant
physiology to determine plant health status (Susič et al., 2018).
Hyperspectral remote sensing consists of hundreds of narrow intervals of
spectral bands (Ranjitha and Srinivasan, 2014), that provide informa-
tion such as stress conditions and it is very crucial in crop disease
management. The technique of detecting healthy and diseased crops can
be done focusing on a number of key wavelengths in the spectrum and
those that use the entire spectrum response.

Remote sensing has been proven to be a valuable tool for crop disease
detection at the leaf and canopy levels (Herrmann et al., 2018; Zheng
et al. 2018). In detecting Fusarium virguliforme from soybean, Herr-
mann et al. (2018) using canopy and leaf spectral data found classifi-
cation accuracies of 88 % and 91 % for calibration, 79 % and 87 % for
cross-validation, and 82 % and 92 % for validation respectively. To
enhance the accuracy and sensitivity of plant reflectance measurements
and mitigate the impact of background interference, researchers use
vegetation indices. Vegetation indices that combine sensitive bands in a
specific mathematical form can improve plant parameter reflectance
sensitivity and reduce the effects of various types of background inter-
ference (Zheng et al., 2010). In the past few years, researchers have put
forth and explored different vegetation indices for various specific
purposes (Bolton and Friedl, 2013; Gao et al., 2020). These purposes
include pinpointing, measuring, or distinguishing issues such as water
stress, diseases, pests, and nutritional deficiencies in plants. Several of

these indices are seen as applicable to identifying plant diseases because
when plants undergo physiological stress, it results in alterations to their
pigment composition, such as carotenoid, chlorophyll, and xanthophyll,
which are detailed in Table 1.

Notably, these indices can be used to estimate crop yield (Panda
et al., 2010), detect leaf area index variations (Brantley et al., 2011), and
identify crop diseases (Huang et al., 2014). Several spectral indices
derived from the literature have shown promise for detecting plant
diseases. Huang et al. (2014) found that the photochemical reflectance
index (PRI) was strongly correlated with the yellow rust disease index in
wheat. Furthermore, Devadas et al. (2009) found that the anthocyanin
reflectance index (ARI) demonstrated promising capabilities in dis-
tinguishing between yellow rust-infected wheat and healthy wheat, as
well as wheat affected by other rust diseases.

Currently, no study has quantified the ability of spectral indices to
discriminate healthy versus diseased plants using the crop of maize. This
study aimed at developing models for detecting maize diseases using
spectral indices derived from spectral signatures of the different crop

Table 1
Spectral reflectance indices used for the description of disease of stress in crops
as derived from a detailed literature survey.

Spectral Indices Define Formula Reference

Normalized
difference
vegetation index
(NDVI)

The NIR (Near-Infrared)
and Red bands encompass
wide spectral ranges,
spanning from 775 to 825
nm for NIR and from 650
to 700 nm for Red,
effectively covering the
majority of essential
pigments.

(P800 –
P680)/(P800
+ P680)

Rouse et al.
(1974)

Anthocyanin
Reflectance Index
(ARI)

Anthocyanin
accumulation is initiated
by factors such as strong
light, UV-B radiation
exposure, low
temperatures, arid
environmental conditions,
physical damage, bacterial
and fungal infections, and
deficiencies in nitrogen
and phosphorus. To gauge
the presence of
anthocyanin in both
healthy aging leaves and
leaves experiencing stress,
an Anthocyanin
Reflectance Index (ARI)
has been proposed as a
potential assessment tool.

(1/P550)-(1/
P700)/P800)/
(1/P550)-(1/
P700)

Gitelson
et al., 2002

photochemical
Reflectance Index
(PRI)

R531 is associated with
the condition of the
xanthophyll cycle, and
because xanthophyll
pigments function as a
defense mechanism
against excessive light,
they have a pivotal role in
enhancing the
effectiveness of light
utilization (LUE). As a
result, increased
xanthophyll activity is
linked to elevated stress
levels, which in turn lead
to a decrease in light
utilization efficiency
(reduced LUE).

(P531-P570)/
(P531 + 570)

Gamon
et al., 1992

Carotenoid
Reflectance Index
(CRI)

Utilized for the
determination of the
carotenoid-to-chlorophyll-
a ratio.

(1/P510)-(1/
P550)/(1/
P510)-(1/
P700)

Steddom
et al.
(2003)
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phenological stages focusing on the vegetative, tasseling and maturity
stages.

2. Study area

The study was conducted in Giyani (23◦24′59.99″ S 30◦44′59.99″ E)
in Mopani District of the Limpopo Province, South Africa (Fig. 1). Small-
scale farms are mainly located in the rural areas and are characterised by
low production and small sizes that range from 0.5 to 15 ha, produced
primarily for personal use and with little marketable surplus (Cousins,
2010). The soil is mainly basalt, sandstone, and biotite gneiss, and
generally has low endemic soil fertility. Mopani District is in a sub-
tropical region with warm temperatures all year round (Fitchett et al.,
2016), receiving an average of 500 mm annual rainfall during summer
between October and March. The large portion of Mopani District Mu-
nicipality consist of rural communities under subsistence livelihood. The
western part of the district is abundant in fertile land, making it
conducive for large-scale commercial agriculture (Nembilwi et al.,
2021). The cultivated land and residential areas are located in the
western half of the district, with woodlands and grasslands in the east.
Despite the dry and drought-prone agro ecology, maize is the predom-
inant grain in most districts.

3. Data and methods

3.1. Data acquisition and processing

The study was conducted in Giyani from April 2023 to June 2023 and
focused on three distinct phenological stages of maize crop, namely the
vegetative, the tasselling, and the maturity stages. In order to conduct a

comprehensive evaluations of the crops, a systematic sampling approach
was employed. A total of 36 data points were collected from a carefully
designed 10 x 10 m systematically grid-sampling scheme, strategically
placed to cover the entirety of the study area at each of the specified
growth stages. This approach allowed for a representative and
comprehensive analysis of the health and disease prevalence in the
maize fields under examination. The methods used in this study, which
are detailed in Fig. 2, were critical in achieving the study objectives.
These methods encompassed a range of techniques, including but not
limited to visual inspection, laboratory analysis, and data collection
tools. Each method was selected and implemented to ensure the accu-
racy and reliability of the findings, ultimately contributing valuable
insights into the health and disease dynamics within the maize crops
during these crucial growth stages.

Spectral reflectance were collected using spectroradiometer (ASD
Inc., Boulder, CO, USA) FieldSpec®3 spectrometer. Maize leaves were
first inspected with visual observation for any potential disease symp-
toms. Spectral signatures of both diseased and healthy crops were
recorded. The spectra reflectance was taken during sunny and clear-sky,
which gives interpretability of reflectance as opposed to the radiance
reflected by a given object . The spectroradiometer used in the field
contains the wavelength ranging from 350 to 2500 nm (ASD, 2005),
enabling to capture a wide-range of spectrum information. Referencing
panel was used to calibrating the ASD instrument during the data
collection (Labsphere North Sutton, NH, USA). White reference mea-
surements were taken every fiveminutes for precision and accuracy. The
reflectance spectra were analysed using View Spec Pro software
(Analytical Spectral Devices, Inc.).

3.2. Data analysis

3.2.1. Spectral reflectance measurements using ASD
The spectroradiometer is an invaluable tool which accurately takes

and records five spectral measurements for each sampling location, so
these measurements could be further averaged to mitigate the impact of
the instrumental and environment noise (Zhang et al., 2011). The at-
mospheric water absorption waveband located at 350–400 nm,
1350–1450 nm and 1800–1900 nm were removed from analysis (Wei
et al., 2017 ). After this initial data processing step, spectral indices were
collected for each growth stages of maize. The main focus was to collect
spectral signatures of healthy and diseased maize crops at the canopy
level, then extract vegetation indices at each growth stages. Vegetation
indices including the Normalized Difference Vegetation Index (NDVI),
the Anthocyanin Reflectance Index (ARI), the Photochemical Reflec-
tance Index (PRI) and the Carotenoid Reflectance Index (CRI) to eval-
uate the levels of carotenoid pigments within the maize leaves, were
used to examine the properties of crops.

3.2.2. Developing models for detecting maize diseases
The Generalized Linear Model (GLM) approach with a binomial link

function, utilizing the R software (R version 4.3.1 (2023–06-16) − -
“Beagle Scouts” ©2023 the R Foundation for Statistical Computing) was
used to build models using vegetation indices. This statistical approach
enabled the exploration of the relationships between disease detection
and spectral indices (NDVI, ARI, PRI, and CRI), across all three growth
stages of maize. This aim was to assess the ability of the spectral indices
to discriminate maize diseases at each specific growth stage. For model
building and selection, step-down procedures were implemented and
the Akaike Information Criterion (AIC) was used evaluate the fit of the
models.

Each model was evaluated based on the residual deviance statistic to
gauge the contribution of each predictor variable. The AIC model se-
lection process played an important role in guiding our model choice,
serving as a measure for comparing the relative support of each indi-
vidual model. Models with delta AIC values< 2 were considered equally
well fitted, implying that they provided comparable explanations of the

Fig. 1. Mopani district and the field selected for maize study in Limpopo,
South Africa.
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data. In cases where multiple models exhibited delta AIC values< 2, our
decision-making process favoured the model with the fewest parame-
ters, in line with principles of model parsimony and simplicity, as the
most appropriate choice. This comprehensive analytical framework
enabled us to understanding the relationships between spectral indices

and maize diseases across various growth stages.

Fig. 2. Flowchart of the methodology used to develop the models for maize diseases detection with existing spectral indices.

Fig. 3. Spectral reflectance of different phenological stages of maize crops in Giyani.

B. Lammy Nkuna et al.
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4. Results

4.1. Spectral analysis of healthy and diseased maize

The spectral reflectance in the chlorophyll region of the spectrum
differs according to the crop health status and the farm management-
condition used. The pattern of the spectral signature for the vegeta-
tive, tasselling and maturity stages were similar (Fig. 3). The spectral
signature of the maize crop during tasselling stage showed the highest
absorption in the red band around 670 nm of wavelength in the elec-
tromagnetic spectrum followed by vegetative and maturity stages.
However, the vegetative stage showed the highest spectral reflectance of
70 %.

The patterns of the overlapping spectral signatures obtained from the
three different phenostages, were further teased into a first derivative
curve, showing a conspicuous peaks at 715 and 722 nm wavelengths for
the first and the second peaks, respectively (Fig. 4). The pattern of the
first derivate is more explained and different in the vegetative stage with
the highest peaks shown. The tasselling stage, followed by maturity
stage showed a shift to the longer wavelengths.

4.2. Developing models to predict maize diseases

The pattern of reflectance of the spectral indices differ according to
the growth stages (Fig. 5). However, Vegetative and taselling stages
showed similar patterns where CRI had the highest reflectance, followed
by NDVI and PRI. The reflectance of ARI was the lowest. Moreover, the
maturity stage had a different pattern with the highest reflection in CRI,
followed by ARI and NDVI. The PRI reflectance was the lowest. The
spectral reflectance of maize crops showed significant differences be-
tween the spectral indices (P<0.000) regardless of the growing stages.

The spectral indices varied amongst the growth staged of maize,
thus, their model performance differ. During vegetation stage, the IAC
values ranged from 28.86 to 31.09 (Table 2). The single variable models
showed the IAC values compared to the multiple variable model. ARI
had the lowest AIC value of 28.86, followed by NDVI with 29.12 AIC
value. All models had Delta AIC of 1 and the alike weights (wi) of 1.

Fig. 4. First derivative curves of different phenological stages of maize crops in Giyani.

Fig. 5. The vegetation indices extracted from the spectral signatures of maize:
NDVI (a-b), ARI (c-e), PRI (f-h) and CRI (i-j) during the vegetative, tasselling
and maturity stages of maize. Means were related by one-way ANOVA and
those followed by the same letter(s) are not significantly different (p > 0.05;
Fisher LSD test).

Table 2
Comparative fit of alternative models relating to the occurrence of diseases in
maize during the vegetative stage of growing.

Models Sample size K AIC Delta AIC(Δi) Akaike weight(wi)

ARI 36 1 28.86 0 1
CRI 36 1 29.10 0 1
PRI 36 1 29.11 0 1
NDVI 36 1 29.12 0 1
ARI+CRI 36 2 30.08 0 1
ARI+PRI 36 2 30.84 0 1
PRI+CRI 36 2 31.09 0 1
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Multiple variable models did not show an influence in improving the
model AIC values from the single variables.

During the tasselling stage, the model performance decrease with
increasing AIC values ranging from 58.41 to 60.39 (Table 3). The best
performed model for tasselling was with the single variable CRI (58.41
AIC value), followed by NDVI with AIC value of 58.52. The models in
this stage has poor performance compared to the vegetative stage. The
performance of the models among the single variable and multiple
variable are more comparable as their AIC values are more close to each
other.

The results shows that the multiple variable carried the same Akaike
weights as those of the single variable (Table 4). During the maturity
stage, the models outperformed those from vegetative and tasseling
stages with the lowest AIC values ranging from 4 to 14.9. The best
performance was found from NDVI and ARI+CIR with AIC values of 4
and 6 respectively. The performance of both single variables and mul-
tiple variables models during the maturity stage suggest that they are
potentially the best-fitting models among the three growing stages.
Thus, all the models carried the delta AIC of 0 and the Akaike weights of
1.

5. Discussion

Crop disease detection is computationally fast and non-destructive
(Mahlein et al., 2013; Bauriegel et al., 2011; Shirzadifar et al., 2020),
which is important for effective crop management and the use of pes-
ticides. The study developed models to detect maize diseases with
vegetation indices derived from spectral signatures collected during
three growing stages of maize (vegetative, tasseling and maturity). The
examination of the spectral reflectance highlighted the valuable insights
of both healthy and diseased maize of their growth cycle.

Spectral signatures of the diseased crop is mostly affected by the
change in biochemical and biophysical content in a plant, which dam-
ages the leaf pigment and water content (Lillesand et al., 2008; Zhang
et al., 2019; Adam et al., 2017). The influence of maize diseases were
found in the visible (VIS) wavelength from 550 m to 700 nm and in the
red-edge-NIR wavelength from 700 nm to 850 nm (Fig. 4). These spec-
trum regions are associated with chlorophyll content, leaf water content
and leaf internal structure (Zheng et al., 2018). The observation in the
vegetative and maturity stages revealed marginal difference in the
reflectance patterns of healthy and diseased crops. Spectral reflectance
patterns during the vegetative, tasseling, and maturity stages of maize
followed similar pattern, however, there was a dense absorption in the
blue region during the tasselling stage. This prominent slope in reflec-
tance level serve as a potential indicator of crop health and disease
vulnerability, which is consistent with previous study on spectral
reflectance (Genc et al., 2013).

Examining the spectral reflectance from derivative curves revealed
different variations in slopes within the 690–750 nm (Fig. 4). These
differences in spectral characteristics shows the potential for the
detection and monitoring of maize diseases at the canopy level using
hyperspectral remote sensing data. However, the similarity in the pat-
terns of the spectral reflectance curves of the three growing stages were
challenging to differentiate. The first derivative analysis was employed

and it was able to displayed two picks in the curves in order to distin-
guish between the three growing stages (Newete et al., 2014). The first
derivative curve proved to be an effective strategy for distinguishing the
spectral characteristics of maize crops among the three growing stages.
The first derivative curve resembles that of the spectral reflectance. The
similarity of the first derivative curve and that of the spectral reflectance
validate the validate the effectiveness of the analytical approach
employed in this study, supporting the idea that these peaks were
meaningful indicators of the fundamental spectral characteristics asso-
ciated with each growth stage.

The analysis of spectral signatures across the three growing stages of
maize revealed significant differences in the spectral indices (NDVI, ARI,
PRI and CRI). The distinction of these spectral indices highlighted their
potential as valuable tools for detecting and monitoring maize diseases
(Abdulridha et al., 2023). The analysis imply that these spectral indices
exhibit significant variation based on the growing stage. Such variations
could indicate differing levels of stress or disease susceptibility within
the crops. This findings are consistent with the previous research in
spectral signatures across maize growing stages (Torres-Madronero
et al., 2022). Furthermore, these spectral indices were used to develop
models at each maize growing stages.

The development of GLM models performed differently based on the
AIC values. The model performance during the maturity stage deemed to
be the best-fiiting models with both Single and multiple indices having
the lowest AIC values (Hu et al., 2023). This suggest that during matu-
rity stage can be an optimal window for maize disease detection. The
model performance was also assessed using the delta AIC and Akaike
weights. Delta AIC was 0 for the models, indicating that there is no
model within a category significantly outperformed the others. More-
over, the Akaike weights presents the likelihood of the model being the
fitting model (Burnham and Anderson, 2002). The value of the Akaike
weights was 1 in all the model, which shows that all models performed
the same. The values of the delta AIC and the Akaike weight did not pose
any challenge in choosing the best-fitting models due to the distinct AIC
values of each models.

The best performance of the individual indices during vegetative
stage shows that indicates that despite the additional predictors, the
combination models do not provide a better fit to the data compared to
the single predictor models. The study by Zheng et al. (2018) ARI and
PRI as valuable indices for detecting crop diseases at the canopy scale
respectively. Thus, during the tasselling stage, both single and multiple
indices models had the highest AIC values compared to vegetative and
maturity stages.

6. Conclusion

The outcome of the study highlighted the capacity of spectral anal-
ysis to differentiate between healthy and diseased crops during vege-
tative, tasseling and maturity stages of maize crops and the use of AIC
analysis to assess the performance of the models. Timely and accurate
disease detection crucial to crop health and yield, and beneficial to food
security and livelihoods. The study findings have suggestions for
improving crop disease detection with remote sensing in agricultural
setting. The use of spectral indices deemed important in advancing the

Table 3
Comparative fit of alternative models relating to the occurrence of diseases in
maize during the tasselling stage of growing.

Models Sample size K AIC Delta AIC(Δi) Akaike weight(wi)

CRI 36 1 58.41 0 1
NDVI 36 1 58.52 0 1
PRI 36 1 60.16 0 1
PRI+CRI 36 2 60.21 0 1
ARI+CRI 36 2 60.34 0 1
ARI 36 1 60.39 0 1
ARI+PRI 36 2 62.07 0 1

Table 4
Comparative fit of alternative models relating to the occurrence of diseases in
maize during the maturity stage of growing.

Models Sample size K AIC Delta AIC(Δi) Akaike weight(wi)

NDVI 36 1 4 0 1
ARI+CRI 36 2 6 0 1
CRI 36 1 12.8 0 1
PRI+CRI 36 2 12.12 0 1
ARI 36 1 12.98 0 1
PRI 36 1 12.99 0 1
ARI+PRI 36 2 14.95 0 1
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ability to calibrate satellite sensors when detecting and monitoring crop
diseases. This study has highlighted the importance of adopting remote
sensing and spectral analysis as essential instrument in the continuous
researches to tackle the difficulties encountered in maize production.
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