
November 2008

EPL, 84 (2008) 30006 www.epljournal.org

doi: 10.1209/0295-5075/84/30006

Classical typicality of the canonical distribution
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Abstract – We consider the typicality of the canonical ensemble’s probability distribution from
a classical perspective, resuming recent discussions on quantum-mechanical aspects of canonical
typicality. In the conventional derivation of the classical canonical distribution for a system S
that is weakly coupled to a heat bath B, it is assumed that the composite S+B is represented
by the microcanonical ensemble i.e., by a uniform probability distribution on an energy shell
of the composite S+B. Here we show that for a very large heat bath almost all probability
distributions defined on this energy shell behave according to the microcanonical ensemble,
yielding a marginal probability distribution for S of the canonical form. Consequently, the classical
canonical distribution can be regarded as much more “typical” than suggested by the standard
derivation.
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When deriving the canonical ensemble’s probability
distribution corresponding to a system S, which is weakly
coupled (and in thermal equilibrium) with a heat bath B,
one usually assumes that the composite S+B is described
by the microcanonical ensemble distribution [1,2]. The
composite S+B is represented by a uniform probability
distribution in an energy shell corresponding to states
with energies within an interval [E−∆, E+∆] with
∆�E. This derivation is valid in classical and quantum-
mechanical scenarios alike. More recently, however, it
has been pointed out that the quantum-mechanical case
allows to weaken assumptions substantially when deriving
the canonical distribution. For the majority of pure
states of the composite S+B belonging to the subspace
associated with the aforementioned energy interval,
the reduced state of the system S is represented by a
canonical ensemble density matrix [3,4]. This result has
attracted considerable attention in recent years [5–13].
A detailed and instructive analysis of its application to
several quantum model systems can be found in ref. [4].
The aim of the present letter is to show that this robust
characteristic of the quantum-canonical distribution
has a classical counterpart. Based on a purely classical
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probabilistic line of reasoning, we argue that for “typical”
probability distributions defined in an energy shell, i.e.,
not necessarily microcanonical distributions, the marginal
probability distribution corresponding to the system S
exhibits Gibbs’ canonical form.
There are numerous motivations for exploring the

robustness of the canonical distribution from a classical
point of view. First, there are many important classical
settings for which it is important to asses the typicality
of the corresponding canonical distribution. For example
consider a classical, microcanonical molecular dynamics
simulation of an N -particle system. As the (Hamiltonian)
evolution proceeds, the system moves along a trajectory
contained within a hyper-surface of constant energy. When
concentrating on a small subsystem of the N -particle
system, for instance just one single molecule, it is found
that the time averages of the corresponding dynamical
quantities coincide with the averages computed from an
appropriate canonical distribution of that subsystem. This
can be explained assuming that the full N -particle system
surveys the constant-energy hyper-surface uniformly, so
that it is represented by a microcanonical probability
distribution. It would be very appealing to weaken the
latter assumption, that is, considering the case in which
the distribution describing the full system is not strictly
microcanonical, while still being able to obtain a canonical
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distribution for the subsystem. Second, the argument for
the typicality of the canonical distribution may offer new
(speculative) fuel for the epistemic vs. ontic debate on
the foundations of quantum mechanics [14]. The classical
argument for the robustness of the canonical distrib-
ution, when contrasted with its quantum-mechanical
counterpart may be regarded as supporting the epistemic
interpretation of the quantum wave function, because
it illustrates once more the deep similarities that exist
between classical probabilities, on the one hand, and
probabilities of quantum origin, on the other one [14–16].
Finally, it is worth stressing that most textbooks of
statistical mechanics derive the canonical distribution
for a given system from the microcanonical distribution
associated with the composite “system+bath”. It is
certainly important to assess the possibility of obtaining
the canonical distribution under more general conditions,
without the microcanonial assumption.
In our derivation we assume discrete and finite state

spaces ΩS and ΩB for the system and the bath, respec-
tively. The composite S+B is described by the Cartesian
product space ΩS+B =ΩS ×ΩB . Notice that these
discrete spaces represent classical settings, that is, our
state spaces are classical rather than Hilbert spaces, and
instead of quantum-mechanical wave functions or density
matrices we consider classical probability distributions
defined on ΩS+B . We further assume that the interaction
term in the total Hamiltonian governing the evolution
of S+B is sufficiently small to be neglected. In other
words, the total Hamiltonian will be written as a sum
H(S+B) =H(S)+H(B) and, consequently, the total
energy can be cast into

E(S+B) =E(S)+E(B). (1)

Finally, let ωS+B(E) denote an energy shell consisting of
all states of S+B with total energy E(S+B) in the interval
[E−∆, E+∆]. Then, the microcanonical distribution
pmicrok is defined as follows: if the state k does not belong
to ωS+B(E), then we have pk = 0; however, if the state
k belongs to ωS+B(E), then pk = 1/N [ωS+B(E)] holds,
where N [ωS+B(E)] refers to the total number of states in
ωS+B(E).
The key ingredient in the conventional proof that the

marginal probability distribution for ΩS has a canoni-
cal form is that the joint probability distribution on the
energy shell ωS+B(E) complies with the following prop-
erty: for any subset A⊂ ωS+B(E) with M elements, the
total probability pS+B(A) for the state of the composite
S+B to be in A is given by

p(S+B)(A) =
M

N [ωS+B(E)]
. (2)

This property, in turn, when combined with (1) can be
used to determine the probability of finding the system
S in a state j with energy εj ; see, for instance, [1,17]. If
the system S is in state j, then the energy of the heat

bath B must be within the energy interval [E− εj −∆,
E− εj +∆]. The total number of states of B with energies
in this range is 2∆ g(B)(E− εj), where g(B)(E) is the
density of states of B. Therefore, eq. (2) implies that the
probability of finding the system in state j is

p
(S)
j =

2∆

N [ωS+B(E)]
g(B)(E− εj). (3)

Obviously, the microcanonical distribution, i.e. the
uniform probability distribution on ωS+B(E), complies
with (2). As will be shown below, most probability distri-
butions on ωS+B(E) share the aforementioned property
(2) for large N.
To simplify notation, we abbreviate N [ωS+B(E)] by N

when referring to the total number of states in ωS+B(E).
Let pi be the corresponding probabilities associated with
the individual states i= 1, 2, . . . , N of the energy shell
ωS+B(E). As 0� pi � 1, we can substitute pi = x2i with
−1� xi � 1. Therefore, the normalization of the total
probability implies

N∑
i=1

pi =

N∑
i=1

x2i = 1. (4)

In words, the probability distributions correspond to
points on N -dimensional hyper-sphere in the {xi} space.
In order to study the typical behavior of “most” prob-
ability distributions defined on the set ωS+B(E), it is
necessary to define a “uniform distribution” over the set
of probability distributions {pi}. There is an intuitive
way to introduce a Riemann metric in this probability
space [18,19], characterized by the line element

ds2 =

N∑
i=1

1

2pi
dp2i =

N∑
i=1

dx2i . (5)

This metric, when expressed in terms of the {xi}
variables, is the conventional N -dimensional Euclidean
metric. Using the measure associated with (5), the
uniform distribution on the probability space {pi}
becomes a uniform distribution (in the standard geomet-
rical sense) on the N -dimensional hyper-sphere in {xi}
space, which is given by

f (x1, x2, · · · , xN ) = 2

SN (1)
δ

[
N∑
i=1

x2i − 1
]
; (6)

δ(x) denotes Dirac’s delta-distribution and

SN (r) =
2π

N
2 rN−1

Γ (N/2)
(7)

stands for the surface area of an N -dimensional hyper-
sphere. Note that, in order to have a one-to-one correspon-
dence between the probability distributions {pi} and the
points on the {xi} hyper-sphere, one should consider only
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the positive hyper-octant. It is easy to see, however, that
the average of any function of the squares x2i , on which
we build our present argument, adopts the same value on
every of the 2N hyper-octants; this is also the value one
obtains when averaging the function under study over the
full hyper-sphere.
Next we investigate the typical behaviour of the

quantity

R2 =
M∑
i=1

pi =
M∑
i=1

x2i , (8)

with 1�M <N . To compute the corresponding moments
µ
(M)
n = 〈R2n〉, we consider the marginal distribution
f (M)(x1, . . . , xM ) which can be cast as

f (M) =
2

SN (1)

∫
δ

[
N∑

i=M+1

x2i − (1−R2)
]
dxM+1 · · · dxN .

(9)
The 2n-th (radial) moments of this distribution are

µ(M)n = 〈R2n〉
=

∫
R2n f (M) (x1, x2, · · · , xM ) dx1dx2 · · · dxM

= SN−M (1)
SM (1)

SN (1)

1∫
0

R2nRM−1
(
1−R2)N−M2 −1

dR

=
Γ (N/2) Γ (n+M/2)

Γ (M/2) Γ (n+N/2)
. (10)

Explicitly, we obtain

µ
(M)
0 = 1,

µ
(M)
1 =

M

N
,

µ
(M)
2 =

M +2

N +2
·M
N
,

...

µ(M)n =
M +2(n− 1)
N +2(n− 1) ·µ(n− 1), (11)

which yields

µ
(M)
n+1 <µ

(M)
n and lim

N,M→∞
µ(M)n = αn; (12)

recall that 1�M <N holds. In the above limit we keep
α= M

N
constant. Of particular interest are the mean values

µ
(M)
1 and µ

(M)
2 . On the one hand, we have

µ
(M)
1 =

∫
(p1+ . . . pM ) f

(M) dx1dx2 · · · dxM . (13)

This means that µ
(M)
1 represents the average (total)

probability of finding the composite S+B in one of the
states 1, 2, . . .M . On the other hand, the quantity

σ=

√
µ
(M)
2 −

[
µ
(M)
1

]2
=

{
2M(N −M)
N2(N +2)

} 1
2

(14)

Fig. 1: Density distribution function F (u) as function of u and
N for M = αN with α= 0.5. All quantities are dimensionless.
See text for further explanation.

represents the deviation of the aforementioned probability
from its average value. From (14) we further find

σ

µ
(M)
1

→ 0 (15)

for N,M →∞ with α= M
N
constant. This implies that, in

the limit of a very large heat bath, for an overwhelming
majority of the possible probability distributions on the
energy shell ωS+B(E) the probability of finding S+B in
a subset of A⊂ ωS+B(E) is very close to MN , where M
is the number of states in A. In turn, we can conclude
that for the majority of possible probability distributions
in the energy shell the system S is described by a
probability distribution very close to the canonical one.
These considerations are sketched in fig. 1 where the
density distribution function

F (u) =
Γ (N/2)

Γ ((N −M)/2) Γ (M/2)u
M
2 −1 (1−u) (N−M)2 −1

(16)

for the probability u=
∑M
i=1 pi (arising from the uniform

distribution on the N -dimensional {x1} hyper-sphere) is
depicted for different values of N with M

N
= 12 . As N

increases, the density distribution for u becomes more
concentrated around the mean value 〈u〉= M

N
.

In sum, we have advanced an argument showing that,
even at the purely classical level, the canonical distribu-
tion describing a system S weakly interacting with a heat
bath B has a degree of inevitability much larger than the
one suggested by the standard derivation, which is based
on the assumption that the composite S+B is described
by a uniform probability distribution in an energy
shell; that is, by the microcanonical distribution. When
presuming a large heat bath, the overwhelming majority
of possible probability distributions on the energy shell
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leads to the canonical ensemble distribution for the system
S. This conclusion is consistent with the equivalence of
ensembles in statistical mechanics, although our present
line of thought differs from more conventional arguments.
As in the conventional formulation of the equivalence
of ensembles, however, our derivation also requires the
system under study to be large, i.e. we considered a large
heat bath; see [20] for an interesting discussion regarding
failure of ensemble equivalence in small systems.
We restricted our present analysis to classical systems

with discrete, finite state spaces. Argueably this provides
a fair comparison with quantum systems with finite-
dimensional Hilbert spaces, as considered in [3–5]. The
finite state space case enables one to focus on the basic
conceptual issues raised by the problem of canonical
typicality. On the other hand, classical systems with a
discrete state space are of considerable interest in statisti-
cal physics; the vast amount of literature devoted, e.g., to
the Ising and related models in magnetism, or to lattice
models of fluids attests to that. Let us compare our classi-
cal arguments with the quantum-mechanical counterpart
in more detail. In the quantum case, the microcanonical
mixed state for the composite S+B is not a necessary
starting point to obtain a canonical density matrix for
the system S. Indeed, in typical situations, even the most
determined quantum states for the composite S+B, i.e.
pure states, yield a canonical marginal density matrix for
S. In these cases, the mixedness of the marginal state
describing the system S originates in the entanglement
between S and the heat bath B. In the classical setting, the
most determined classical states for the composite S+B,
corresponding to a complete knowledge of the state of
S+B, evidently do not yield a canonical distribution for
S. In this sense, the classical justification for the canonical
ensemble is much weaker than the quantum one. However,
it is interesting that, even at the classical level, it is not
necessary to assume explicitly a microcanonical distribu-
tion for S+B in order to obtain a canonical ensemble for
S : any typical probability distribution for S+B is suffi-
cient. Of course, it is a minor challenge to find particu-
lar probability distributions on the energy shell ωS+B(E)
that do not yield a canonical distribution for S. A simple
example is given by a probability distribution with one
state k with pk = 1 and the remaining states in the energy
shell with zero probability. However, such cases can be
regarded as atypical in view of the uniform distribution in
probability space given by eq. (6). In fact, the quantum-
mechanical case “suffers” from the same “problem”. It
is indeed easy to find particular pure states for S+B,
belonging to the energy shell, that do not lead to a canon-
ical marginal density matrix for S. But again, these states
can be considered atypical.
Here we discussed the typical features of classical prob-

ability distributions for the composite S+B constrained
by a fixed total energy. The recent analysis reported in [5]
yields a stronger result for the quantum case as it applies
for arbitrary constraints. That analysis is based on Levy’s

lemma which implies that the typical values adopted by
a smooth function defined on a high-dimensional hyper-
sphere are very close to the function’s average value. One
may indeed apply Levy’s lemma to the uniform distrib-
ution (6) in the classical probability space in order to
generalize our present arguments to scenarios involving
arbitrary constraints. However, a discussion of this issue
is beyond the scope of this letter.
Interestingly, in the classical as well as in the quantum-

mechanical case a “typical” probability distribution for
the composite S+B yields a canonical distribution for
the system S. While in the classical case a probabilistic,
i.e. not fully determined, description of S+B is needed,
in the quantum case even a maximally determined state
of S+B, i.e. a pure state, leads to a canonical density
matrix for S. However, the pure state for S+B implicitly
involves probabilistic features too. The analogy between
the classical and the quantum-mechanical versions of the
high degree of typicality of the canonical ensemble may be
regarded as one more instance (along with many others,
such as the classical analogues of the quantum no-cloning
theorem [15,16]; see [14] for a detailed list) of probabilistic
or information-related features of quantum mechanics
admitting classical counterparts that may be relevant
for an eventual clarification of the ontic vs. epistemic
debate on the basic meaning of the quantum-mechanical
formalism.
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