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Understanding the relationships between crop yields, soil properties, weather patterns and input applications is
important for optimizing agricultural production. Data variation analysis using statistical and machine learning
(ML) approaches can help identify and understand the practices that optimize yield. The objectives of this study
were (i) to evaluate the predictive accuracy of selected ML models for estimating grain yields in on-farm maize
(Zea mays L.) trials with different combinations of seeding and fertilizer rates in a commercial field, and (ii) to
investigate the ability of ML models to assist in identifying yield-limiting factors in the same field. Multiple linear
regression, multilayer perceptron, decision tree, and random forest (RF) ML models were trained and tested using
crop management and soil from a data-intensive farm management (DIFM) trial and remotely sensed data. The
dataset consisted of multiple subplot treatment observations of crop management, soil properties and normalized
difference vegetation index (NDVI), linked to final grain yield for the 2019/2020 and 2020/2021 seasons. The RF
had the best combination of high correlation (R2 = 0.69 and 0.80) and low error (MAPE = 5.4 and 8.4% and
RMSE = 0.69 and 0.95 t ha~!) when compared to other models for both seasons. Feature importance analysis
revealed that urea application was consistently the most critical variable and explained yield variations to the
greatest extent, whereas soil phosphorus (P), plant population, and sodium in 2020, and soil P, soil pH, clay
content, and plant population in 2021 emerged as the most influential factors for explaining yields. This study
concluded that the RF model was the best for spatial yield predictions using DIFM trial datasets. There was also
variability between seasons in yield limiting factors resulting from temporal variations in growing conditions. To
effectively apply insights from yield prediction models, it is crucial that the variables incorporated into these
models have a significant connection to yield and the findings can be translated into actionable management
decisions. The DIFM trials combined with ML can play an important role in advancing the field of precision
agriculture by providing valuable insights into the complex interactions between crops, soils, and management
practices, and identifying new opportunities for improving crop yields and environmental sustainability.

1. Introduction

Yield prediction research is essential in current agricultural systems
since it serves as a key point of reference for farm management during
planning, agrotechnological investment intervention, and preharvest
procedures. Optimizing crop yields in every part of the field is a key
objective of precision agriculture (PA). The ability to predict crop yield
is a valuable tool for making informed management decisions and
implementing PA (Taylor et al., 2007, Bishop et al., 2015). However,
providing reliable predictions and recommendations can be challenging
due to the multitude of factors that influence the required inputs for a
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field during a given growing season. To achieve maximum yield through
PA management practices (Kaspar et al., 2004), it is imperative to first
recognize the dominant spatial factors and comprehend their interde-
pendent connections. Although the influence of weather conditions,
such as precipitation, on crop yield can be more simply determined, the
impact of spatial factors, such as soil and terrain diversity, is often more
challenging to pinpoint and quantify (Kravchenko and Bullock, 2000,
Jones et al., 2022).

One viable solution to this challenge entails conducting a thorough
and targeted analysis of data sourced from on-farm research trials. The
advent of advanced technologies, such as variable-rate planters and

Received 10 November 2023; Received in revised form 19 April 2024; Accepted 19 April 2024

Available online 27 April 2024

1161-0301/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).



S. Maseko et al.

applicators, has made site-specific data acquisition more cost-effective
and has opened up avenues for the development of new decision sup-
port systems that can handle more intricate and data-intensive tasks
than the conventional systems currently in use (Nyéki et al., 2017). The
last two decades have seen a rapid expansion of on-farm research,
especially in developing countries, owing to the increased adoption and
use of PA technologies (Kyveryga, 2019). On-farm precision experi-
mentation is a type of on-farm experimentation (OFE) that enables the
collection of large amounts of crop and soil data in a relatively short
period of time, and can be of special interest to large-scale farmers
aiming to improve site-specific crop input management (Bullock et al.,
2019). A multidisciplinary research project initiative called
data-intensive farm management (DIFM) (Bullock et al., 2019) enables
researchers to develop data-intensive, site-specific input management
advice and collaborate with farmers to provide guidance on how to
make OFE systems maximise their return on investment. This data
collection may result in increased cost-effectiveness, and if adequately
analyzed, can have a huge potential to refine the current knowledge of
agricultural systems.

To fully utilize big data analytics in the field of agriculture, it is
necessary to advance scientific methodologies. Thus, the application of
artificial intelligence (AI), particularly machine learning (ML) tech-
niques, is highly relevant. As the amount of large geo-referenced on-
farm data becomes increasingly available, there is a need for analytical
Al frameworks that can provide crop management recommendations
and yield predictions. With the help of large datasets, it is now possible
to conduct inductive research methodologies and investigate the com-
plex interactions between crop management practices, environmental
factors, and yield. This approach offers a practical and effective method
to conduct large-scale agronomic research (Silva et al., 2020). By
leveraging Al-powered data analysis, forecasting, and prediction tech-
niques such as those outlined by Basso et al. (2016), farmers can make
informed decisions that increase productivity and ensure the success of
their crops.

Over the last decade, ML approaches have become increasingly
prevalent in agriculture because of their ability to effectively address
complex agricultural problems and nonlinear relationships leading to
more accurate results (Pantazi et al., 2016, Tantalaki et al., 2019). One
area that has seen particular growth is the use of ML to forecast crop
yields, although the research community still debates the most effective
techniques for various data types and situations (Ransom et al., 2019,
Van Klompenburg et al., 2020). Precision agriculture data, combined
with ML techniques has proven to be particularly helpful in estimating
crop biomass and yield (Nasi et al., 2018, Li et al., 2020), thanks to the
ability of ML to handle large datasets with numerous variables, such as
those created using PA equipment with data collection capabilities (Li
et al., 2022). The advancement of Al applications has led to a broad
range of applications for ML in agriculture, benefiting data gathering
and selection to improve agricultural practices (Nawar et al., 2017).

Studies that have examined the predictive accuracy of regression and
ML models have primarily focused on meteorological and farm man-
agement attributes (Basso and Liu, 2019, Nayak et al., 2022), soil nu-
trients, and topographic data (Burdett and Wellen, 2022). It has been
found that the creation of a yield prediction model using regression
models can be complicated by the complex interactions between maize
yields and spatially variable soil and management parameters as pre-
dictive variables (Jaynes and Colvin, 1997, Jones et al., 2022). The AI
applications in the agricultural sector are still in the developmental
stage, and the challenges and implications of different ML methods
remain unclear (Lassoued et al., 2021).

The continued success of agricultural production relies heavily on
farmers implementing advanced techniques at every level of crop pro-
duction to increase yield per unit area. To aid in this endeavor, farmers
can be assisted by an accurate model for crop yield prediction, which
enables them to make informed decisions regarding when and how to
produce certain crops. By predicting the yield of a specific site, farmers
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can also adjust the application of farm inputs, such as fertilizers, based
on anticipated crop and soil needs. The objectives of this study were to
use ML algorithms to: (i) assess the predictive ability of ML models using
DIFM datasets and determine the best-performing ML model, and (ii)
investigate the potential of ML models to identify optimal input rates
and limiting factors in a spatially variable field. We hypothesized that
the performance of ML models in spatial predictions would be enhanced
by utilizing spatially representative DIFM datasets for training and
testing. The findings of this study will significantly contribute to the
understanding of the predictive capabilities of various ML models and
the importance of soil and agronomic management attributes in pre-
dicting maize yields.

2. Materials and Methods
2.1. Experimental site

The study was conducted in Henneman, in the Free State province of
South Africa (2751°16”S, 2701°15”E, 1 412 m.a.s.l.). This region is
characterized by commercial medium- to large-scale farming of crops
and livestock. It has a cold semi-arid climate, with hot and wet summer
days, cooler, dry winters, an average temperature of approximately
18°C, and an annual average rainfall of approximately 600 mm yr—_.
Seasonal rainfall usually starts in October and ends in April, with more
than 80% of rainfall occurring from December to March.

2.2. Trial design and management

This study was based on datasets collected in a DIFM maize field trial
conducted in the 2019/2020 and 2020/2021 growing seasons. The
DIFM trials are designed to generate data for localized crop responses to
site-specific input factors (Bullock et al., 2019). The experiment had two
management input factors: seeding rate (S) and nitrogen fertilizer
application rate (urea). The treatments were set up in a completely
randomized factorial design, with nine seeding rate factors (10 000, 15
000, 18 000, 21 500, 27 000, 32 000, 38 000, 44 000 and 50 000 seeds
ha™1) for each of the two seasons. There were eight levels of urea fer-
tilizer rates (90, 120, 150, 170, 200, 225, 250, and 270 kg ha~! urea in
2019/2020, and 105, 120, 150, 170, 200, 225, 250, 270, and
300 kg ha ™! urea in 2020,/2021) assigned randomly throughout the field
in each of the two seasons (Fig. 1). The procedure used for fertilizer
application was an initial uniform 200 kg ha! 15.10.6 (31) NPK
mixture applied throughout the field at planting. The N variation
treatments were then implemented by applying different urea rates,
banded 15 cm offset to the row and 10 cm deep. The standard practice of
the farmer was to apply 18 000 seeds ha ™! and 224 kg ha™! of urea. The
plots were designed to be 15 m wide and 73 m long. The plot width is
typically determined by the width of the planter used, such that every
plot hosted one pass of the planter and one pass of the fertilizer appli-
cator, the 73 m length was determined by the distance it takes for the
planter to change input application rates as determined by the trial
design. All treatments were implemented in the field using
variable-rate-enabled seed planters and fertilizer applicators. A
medium-season cultivar from the seed company Dekalb (DKC 78-77 BR)
was used consistently throughout the field over the two seasons. A rate
of 18 000 seeds ha™! was assigned to a buffer zone around the perimeter
of the trial, and observations from the buffer zone were not included in
the subsequent analysis.

2.3. Data collection and processing

Before the input application from the precision planter and yield data
from the yield monitor were used for training the ML algorithms, data-
cleaning procedures as described below were applied to the raw data.
The final dataset used consisted of maize grain yield (20% moisture
content) as a dependent variable and 24 georeferenced management,
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Fig. 1. The maize (Zea mays L.) field in which the study was conducted, located in Henneman, Free State province, South Africa. The figure illustrates the various

seeding rate treatments used in the experiment.

soil, and remotely sensed data as independent variables (see Table 1 for
all list). The data were processed to represent multiple small plots across
the field, with each plot having a unique yield value linked to man-
agement, soil, and remotely sensed data.

2.3.1. Yield data

The yield data were collected using a calibrated yield-monitoring
system mounted on the combined harvester, which recorded the yield
data every two seconds during the harvesting process. The farmer uti-
lized a strategic harvesting technique in which, during every other pass,
the combined harvester traversed through the center of the plot. As a
result, yield data were gathered solely from the middle 50% of each plot.

Table 1
The agronomic management, soil and remotely sensed variables used in model
development.

Variable name Description Units
Agronomic Plant_pop Plant population seeds ha™!
Urea Urea application kg ha™!
Soil pH_top Soil pH in topsoil -
Bray_top Phosphorus in topsoil mg kg™!
K_top Potassium in topsoil mg kg ™!
Mg_top Magnesium in topsoil mg kg ™!
Na_top Sodium in topsoil mg kg~!
S_top Sulphur in topsoil mg kg™!
Clay_top Clay content in topsoil %
Bray_sub Phosphorus in sub soil mg kg ™!
K_sub Potassium in sub soil mg kg™!
Mg_sub Magnesium in sub soil mg kg ™!
Na_sub Sodium in sub soil mg kg !
S_sub Sulphur in sub soil mg kg™!
Clay_sub Clay content in sub soil %
Soil_d soil depth m
Remotely sensed 11DAE _ndvi NDVI at 11 DAE
25DAE _ndvi NDVI at 25 DAE
60DAE _ndvi NDVI at 60 DAE
85DAE _ndvi NDVI at 85 DAE unitless

100DAE _ndvi
110DAE_ndvi
120DAE _ndvi
135DAE _ndvi

NDVI at 100 DAE
NDVI at 110 DAE
NDVI at 120 DAE
NDVI at 135 DAE

The data cleaning procedures for maize yield in a DIFM trial executed in
this study were discussed in detail by Bullock et al. (2019). Briefly, raw
‘as applied’ and harvest data were retrieved directly from the variable
rate applicators and yield monitors. Raw data were cleaned to remove
observations with extreme yields or applied rates (‘outliers’). Addi-
tionally, data points were excluded from the headlands due to varying
sun exposure, fluctuations in machinery driving speed, and the possi-
bility of application overlaps, which made the data less reliable. The
DIFM strategy also involved the placement of about 10 m ‘transitional
buffer zones’ at the end of each plot where the planter could be changing
from one application rate to another. The distance between points,
swath width, and headings recorded in the raw yield data were used to
create yield polygons, and subplots were created by combining yield
polygons with similar N rates into groups (yield polygons combined to
form subplots approximately 12 m in length). The average value of all
the yield points within each subplot was calculated and used in the
analysis as a single observational unit. After data cleaning, 5 748 and 3
409 observational units were analyzed for the respective seasons. The
first season yielded more data points than the second due to more het-
erogeneous yields throughout the field in the 2020/2021 season, and
some plots had yields that were too low for meaningful analysis in the
second.

2.3.2. Soil data

Data on the soil physical and chemical properties were collected by
the Omnia fertilizer company for soil analysis, which was conducted on-
site before the start of each planting season. The variables measured at
each location for both the topsoil (0-0.3 m) and subsoil (0.3-0.6 m)
included physical properties such as clay percentage and soil depth as
well as chemical properties such as soil pH, potassium (K), Bray P, cal-
cium (Ca), magnesium (Mg), and sodium (Na). The soil was sampled at
62 locations across the field on a 100 m grid (Fig. 2), and five samples
were taken at each sampling point approximately 3 m apart. Of the 24
variables used for yield predictions, 14 were primarily focused on the
physical and chemical properties of both topsoil and subsoil.

2.3.3. Remotely sensed data
The normalized difference vegetation index (NDVI), which provides
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» Soil sampling points

Fig. 2. A map illustrating the locations of the soil sampling points used in the
maize (Zea mays L.) trial study conducted in Henneman in the Free State
province of South Africa.

an indication of canopy development and health, is a highly effective
tool for assessing crop yield potential. To incorporate real-time data into
our model training and testing, NDVI data were used to track crop
growth at various stages during the growing season. NDVI values were
calculated using Sentinel 2 A images with a 10 m resolution in QGIS,
creating raster files from which the NDVI was calculated for each pixel.
These images were captured between 1 November 2019 and 30 April
2020 as well as 20 November 2020 and 30 April 2021, and downloaded
through the Corpernicus hub (https://scihub.copernicus.eu). The cen-
troids for each plot from the yield data shapefile were used to sample the
NDVI values. The NDVI data were extracted at seven different intervals,
beginning 11 days after emergence (DAE) and continuing until the crop
reached physiological maturity (135 DAE). The images were carefully
selected to focus on the area of interest (the maize field), and only those
with less than 5% cloud cover were included in the analysis. Finally, the
raster files were sampled using centroids from each yield polygon to
extract the NDVI time series for the corresponding yield points from
emergence to harvest.

2.4. Machine learning maize yield predictions

The ML models were built using Python Keras libraries in a Google
Colaboratory cloud computing environment. The ML algorithms were
implemented using a multistep process. The data file included attributes
of the soil, agronomic management practices, and remotely sensed data
as independent variables, with maize yield as the dependent variable.
The processed data were utilized for both model training and testing
purposes. The data used for model training and testing were from 2019/
2020, 2020/2021, and a merged dataset of the two seasons. The data
points used for model training and testing were 4 025, 2 387 and 6 410
observational units for the 2019/2020, 2020/2021 and merged datasets
for both seasons, respectively. An 80/20 ratio data split was used for
model training and testing for each of the four ML models.

Four ML algorithms (MLR, MLP, DT, and RF) were investigated. The
MLR models the relationship between two or more explanatory variables
and a dependent variable, assuming a linear relationship. For predicting
crop yields, MLR has been a popular technique (Drummond et al., 2003,
Van Klompenburg et al., 2020). Multiple linear regression uses
least-squares optimization to determine the dependent variable that best
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fits each independent variable (measured yield). It assumes normality,
homoscedasticity, no multicollinearity, and the presence of a linear
relationship between the predictors and response variables (James et al.,
2013). The MLR model was developed according to Eq. (1).

yi = Bo + PiX1 + PoXo + + BuXn + & (€]

where y; is the grain yield, fy represents bias, ; — 8, are the co-
efficients of regression, X; —X, are the input variables, and ¢; is the error
associated with the ith observation. Multicollinearity was evaluated in
the training and testing of the MLR model, which refers to a situation in
which two or more explanatory variables in the regression model were
highly linearly related. This was evaluated using the variance inflation
factor (VIF). A commonly used rule is that if the VIF is less than 5, there
is low multicollinearity; between 5 and 10, there is high multi-
collinearity; and more than 10, the multicollinearity is too high (Kutner
et al., 2005). The explanatory variables with the highest VIF were
deleted, one at a time, and the model was refitted. This procedure was
repeated until all the VIFs were below 5.

The MLP model was created using Keras, a deep learning application
programming interface (API) implemented in Python. Because the
models in Keras are described as a series of layers, a sequential model
was initially created, and then four additional layers were added using
the Rectified Linear Unit (ReLu) activation function. An Adams gradient
descent optimizer was chosen with default hyperparameters, as tests
have shown that this is a good optimizer when used with adaptive
learning rates (Ruder, 2016). We implemented a mean squared error
(MSE) loss function and a maximum of 500 epochs.

The decision tree (DT) is a supervised learning model that can be
used for both classification and regression tasks. It can select an outcome
from a tree of potential decisions (Maimon and Rokach, 2014,
Perez-Alonso et al., 2017). The tree structure resembles a flowchart and
is used to evaluate issues by considering numerous features and attri-
butes. In this study, the Scikit-learn Python module “DecisionTreeRe-
gressor” class was applied, with a maximum depth of 30 trees.

Random Forest is a tree-based ensemble model built on the concept
of bagging, which averages final predictions from different training
subsets made by sample training data with replacement in an effort to
reduce prediction variation (Breiman, 2001). Random forest adds a new
feature to bagging by randomly selecting a set of features, building a tree
with those features, repeating this process numerous times, and then
averaging all the predictions made by the trees (Shahhosseini et al.,
2021). The Gini index was used to identify the key characteristics that
significantly influenced yield based on various independent variables.
This feature selection process is crucial for identifying significant vari-
ables that explain yields and could highlight limiting factors in agro-
nomic terms.

2.5. Model evaluation

Performance evaluation measures were used to assess the accuracy of
each prediction model and to select the most suitable algorithm for su-
pervised learning regression exercises. To evaluate our ML models, we
used the root mean square error (RMSE) and mean absolute error per-
centage (MAPE). The degree of correlation between predicted and actual
values was determined using the coefficient of determination R?).
These metrics can be used for both regression and classification tasks
(Naser and Alavi, 2020). It is generally accepted that the model with the
smallest estimation error is the best.
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where y; is the measured value, y represents the predicted values, y mean
value of y;, and n represents the number of observations.

4

3. Results
3.1. Descriptive statistics

The descriptive statistics of seeding rates, urea application, and grain
yield during the 2019/2020 and 2020/2021 seasons are presented in
Table 2. Yields varied from 6.8-12.4 t ha™! and 2-13.7 t ha™! in the
2019/2020 and 2020/2021 seasons, respectively. The 2019/2020 sea-
son had a higher average yield (9.7 t ha~1) and lower standard deviation
(1.2 t ha™ 1) than the 2020,/2021 season (8.6 t ha™! average yield and
2.1t ha! standard deviation). Table 2 also shows the descriptive sta-
tistics for the soil physical and chemical properties over the two seasons.
The pH, K, and Mg levels in the soil were slightly higher during the
2020/2021 season, whereas the P, Na, and S levels were lower than
those in the 2019/2020 season. Although these small changes were
noticeable, they were statistically insignificant. The chemical properties
of the subsoil remained consistent and did not vary between the 2019/
2020 and 2020/2021 seasons.

The two seasons were also characterized by differences in the total
rainfall received from planting to harvesting, which was 674 mm and
439 mm for the 2019/2020 and 2020/2021 seasons, respectively
(Fig. 3). There was a high incidence of tillering in the planted cultivar in
various treatments, especially in the combination of low plant pop-
ulations and high fertilizer rate treatments.

3.2. Correlation analysis

The Pearson correlation analysis results for all the datasets are pre-
sented in Fig. 4. The results indicated that the extent of the relationship
between yield and individual yield-influencing attributes varied be-
tween the seasons. Despite seasonal variations, a positive correlation
between crop yield and agronomic management, as well as NDVI at all
stages of growth, was evident in both seasons. Urea application had a
stronger relationship with yield than the plant population for the two
individual seasons and when the two seasons were merged. Plant pop-
ulation and urea application both helped explain the yield differences
between the two seasons, with urea application having a higher corre-
lation with yields in the 2020/2021 season than in the 2019/2020
season, whereas the opposite was observed for the plant population,

Table 2
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with a higher correlation in the 2019/2020 season than in the 2020/
2021 season. The NDVI at 110 and 85 DAE had the highest correlation
with yield in the 2019/2020 and 2020/2021 seasons, respectively.
Further analysis of the results showed that during the 2019/2020 sea-
son, neither Na_sub nor Clay_sub was significant in explaining the yield
variation, and the same was true for Plant pop, K _top, Mg _sub, and
Na_sub during the 2020/2021 season (P > 0.05). However, all other
attributes were found to be significant (P < 0.05) in explaining yields in
each of the two seasons. The extent to which some soil attributes were
related to yield could be negative (pH_top, and S_sub), positive (Bray.-
top, Bray_sub, K top, K sub and clay_sub), or both (Mg_top, Mg_sub,
clay_top and Na_sub) over the two seasons. There were no clear positive
or negative interpretations of these variables and yields, suggesting that
the relationships were nonlinear or that there was no relationship.

After merging the data from both seasons into a single dataset and
incorporating monthly rainfall as variables, the results indicated that
urea application was more influential than plant population in
explaining the yield. Other significant factors contributing to yield were
S_top, Bray_top, and pH_top, which demonstrated a negative correlation.
Meanwhile, S_sub and Na_sub showed the weakest correlation with the
yield. Only Na_sub did not significantly explain the yield variation (P >
0.05); all other attributes significantly explained the yield variation (P <
0.05) when the two seasons were combined into one dataset.

3.3. Evaluation of ML algorithms for spatial maize yield predictions

The initial model training and testing on data with NDVI included 24
explanatory variables for all four models. However, Bray_sub,
100DAE _ndvi, and 120DAE _ndvi were dropped from the MLR model
training in the VIF evaluation step to correct the effects of multi-
collinearity. There was no variable removed for MLR training and
testing without NDVI because all VIF values were below 10. The R?
values between the actual and predicted yields for the four ML models
using datasets with and without NDVI are shown in Fig. 5. An analysis of
the overall trend revealed that when NDVI data were factored into the
ML models, improved predictive accuracy was achieved in both seasons.
The incorporation of NDVI strengthened the linear associations between
the yield and yield prediction attributes within the dataset, which were
effectively captured by the models in most cases. In contrast, when
comparing model performance with data without NDVI, the MLR, DT,
and RF exhibited either increased or equal prediction accuracy from the
2019/2020-2020/2021 seasons, while MLP showed a decline in pre-
diction accuracy from the same period when trained and tested without
NDVI data. The results of the model predictions using NDVI data showed
that MLP had a higher prediction accuracy than MLR in the first season

The descriptive statistics of input application, maize yields, top and subsoil physical and chemical properties for 2019/2020 and 2020/2021 seasons.

2019/2020 season

2020/2021 season

Variable std min mean max std min mean max
Seeding rate seeds ha™! 10527 5613 30434 49881 9594 13676 28862 49381
Urea rate kg ha™! 55 94 181 276 62 104 204 308
Yields tha™’ 1.2 6.8 9.7 12.4 2.1 2 8.6 13.7
pH_top - 0 4 4 6 0 4 6 7
Bray_top mg kg~! 11 25 48 100 10 25 44 92
K_top 29 95 217 360 43 170 277 373
Mg_top 12 43 80 151 10 57 94 127
Na_top 2 4 9 23 4 4 7 36
S_top 3 1 12 31 1 1 2 7
Clay_top % 2 15 19 25 2 15 19 29
Bray_sub mg kg™t 8 5 16 39 11 5 16 39
K_sub 25 103 155 247 44 103 154 248
Mg_sub 37 84 141 274 54 84 143 274
Na_sub 1 4 6 12 2 4 6 12
S_sub 4 2 16 26 6 2 16 26
Clay_sub % 2 20 28 35 3 20 28 35

std: standard deviation, min: minimum, max: maximum



S. Maseko et al.

= Season 2019/2020

Rainfall (mm)

November December

January

European Journal of Agronomy 157 (2024) 127193

® Season 2020/2021

80
60
40
I i
0

February March

Month

April

Fig. 3. Rainfall distribution for the two seasons (2019/20 and 2020/21) covering the period from planting to harvesting.

(R% = 0.47 and 0.5 for MLR and MLP), but lower accuracy in the second
season (R? = 0.71 and 0.65 for MLR and MLP) and when the two sea-
sons’ data were combined (R = 0.65 and 0.62 for MLR and MLP).

The model performance was further evaluated using the MAPE and
RMSE, as shown in Table 3. Similar to the R? analysis, the inclusion of
NDVI reduced the error of the ML predictions, as indicated by the low
MAPE and RMSE values with NDVI. The MAPE and RMSE accuracy
trends displayed inconsistencies during the 2019/2020 season, with
lower values observed for the MLP and RF models without the NDVI.
Although model accuracy varied depending on the ML model and
dataset used, DT was the least accurate model, with MLP and MLR
scoring reasonable accuracies, and RF was the most accurate model
when NDVI was included in the training and testing data. The MLR was
the least accurate, DT and MLP were reasonably accurate, and RF was
the most accurate ML model without NDVI data included in the training
and testing datasets.

3.3.1. The important factors for maize yield predictions

The RF model was utilized not only to assess the predictive abilities
of the models but also to evaluate the interaction between seeding and
fertilizer rate combinations and various attributes within each plot to
ascertain the most influential attributes for yield prediction (Fig. 6). As
the RF model has emerged as the top performer, this section delves into
the implications of the important variables extracted from that model.
Although the relative impact of a solitary variable cannot be measured
independently of other variables, a measure for assessing the relative
importance of factors on prediction outcomes was provided.

The variable importance generated from the RF model on data
without NDVI indicated that urea application and plant population,
which are variables that the farmer can most easily control, explained
24, 40 and 27% of the yield variation in the first, second, and combined
seasons, respectively. The inclusion of NDVI data in model training
resulted in urea application and plant population explaining 15, 13 and
14% of the yield variation, respectively, for the three datasets used.
Despite the changes in the variables (with and without NDVI) used for
model development, soil pH and clay content in the topsoil consistently
explained 5-6% and 2-3% of the yield variation, respectively. The NDVI
variables had a stronger impact on maize yield predictions than the soil
and management variables. This explains the improved model perfor-
mance when NDVI data were included, as indicated by the higher pre-
diction accuracies in all ML models used. Specific NDVI measurements
on different days after emergence demonstrated a significant

explanatory power. For example, NDVI at 110 DAE in the 2019/2020
season explained 38% of the yield variation, whereas NDVI at 85 DAE in
both the 2020/2021 season and the combined seasons explained 55%
and 45% of the yield variation, respectively. The feature importance
showed that urea application, plant population, soil pH, and clay con-
tent in the topsoil were agronomic management and soil attributes that
led to larger information gains on yield variability, whereas subsoil
chemical properties explained yield variability the least in the low
rainfall season or combined season analysis. In the wet season, however,
urea application, plant population, and subsoil properties (subsoil P, Na,
K, and clay) explained the yield variability the most. The overall feature
importance showed that topsoil attributes dominated the first half, while
the subsoil attributes dominated the latter when the two-season dataset
was merged.

4. Discussion

This study focused on comparing ML techniques to define the rela-
tionship between soil, agronomic management, and remotely sensed
data for spatial maize yield predictions, and the identification of influ-
ential attributes explaining yields. Gaining insights from data through
the application of statistical techniques is important for effectively
training ML algorithms. The descriptive statistics of the measured yield
revealed that there was a variation in the sub-plot yields both within a
single season and across the two seasons. Although the rich dataset
presented a wide range of yield values, the spatial structure of the
variability was still unclear. A yield distribution heterogeneity similar to
that of this field has been reported in other DIFM fields (Trevisan et al.,
2021). Bullock et al. (2019) stated that crop yields are a product of
natural processes influenced by input management choices (x), field
characteristics (c), and weather (z), which can be represented mathe-
matically as y = f(x, ¢, z). The yield variation between the two seasons
can be explained by the differences in the total rainfall received and the
overall rainfall distribution from planting to harvesting. The precipita-
tion pattern during the 2019/2020 season was more favourable than
that of the 2020/2021 season, with a higher total amount and
better-distributed precipitation from planting to harvest. Most months in
2019/2020 recorded higher monthly rainfall, except for February. This
discrepancy in February rainfall explains the negative correlation be-
tween February rainfall and the crop yield.

While it is relatively simple to determine the effect of weather factors
such as precipitation, on crop yield, it is more difficult to accurately



S. Maseko et al. European Journal of Agronomy 157 (2024) 127193

Correlation with yields in 2019/2020 season

Plant_population -
Urea

pH_top
Bray_top -
K_top 1
Mg_top -
Na_top
S_top A
Clay_top 1
Bray_sub -
K_sub -
Mg_sub A
Na_sub
S_sub A
Clay_sub -
Soil_d A
11DAE_ndvi 1
25DAE_ndvi
60DAE_ndvi
85DAE_ndvi
100DAE_ndvi
110DAE_ndvi -
120DAE_ndvi |
135DAE_ndvi A

Independent variables

)
o
-
o
=}
=}
I

0.2 0.3
Correlation Coefficient

o
»H
o
w
=
o

0.7

Correlation with yields 2020/2021 season

Plant_population -
Urea -

pH_top 1
Bray_top
K_top 1
Mg_top -
Na_top -
S_top
Clay_top A
Bray_sub 4
K_sub
Mg_sub -
Na_sub A
S_sub
Clay_sub 4
Soil_d
11DAE_ndvi 1
25DAE_ndvi
60DAE_ndvi
85DAE_ndvi -
100DAE_ndvi
110DAE_ndvi -
120DAE_ndvi
135DAE_ndvi A

Independent variables

0.2 0.4
Correlation Coefficient

|
o
N
o
o
o
o
o
©

Correlation with yields for combined 2019/2020 and 2020/2021 seasons

Plant_population
Urea
pH_top
Bray_top
K top
Mg_top
Na_top
S_top 1
Clay_top -
Bray_sub -
K_sub -
Mg_sub -
Na_sub -

11DAE_ndvi
25DAE_ndvi
60DAE_ndvi
85DAE_ndvi
100DAE_ndvi
110DAE_ndvi -
120DAE_ndvi
135DAE_ndvi
Rain_nov -
Rain_dec
Rain_jan
Rain_feb
Rain_mar -
Rain_apr

-0.4 -0.2

Independent variables
g
Q
A

il

o
o
=}
N
o
>
o
o

Correlation Coefficient

Fig. 4. Pearson correlation analysis for the relationship between agronomic management, soil, remotely sensed, and weather data and maize yields for the 2019/
2020 and 2020/2021 seasons, and combined data for the seasons. (Plant_pop: plant population, Urea: urea application, ph_top: soil pH in topsoil, bray_top: phos-
phorus in topsoil, K_top: potassium in topsoil, Mg_top: magnesium in topsoil, Na_top: sodium in topsoil, S_top: sulphur in topsoil, Clay_top: clay content in topsoil,
Bray_sub: phosphorus in sub soil, K_sub: potassium in sub soil, Mg_sub: magnesium in sub soil, Na_sub: sodium in sub soil, S_sub: Sulphur in sub soil, Clay_sub: Clay
content in sub soil, Soil_d: soil depth).
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Fig. 5. Comparison of the performance of machine learning algorithms for season 1 (2019/2020) and season 2 (2020/2021) and combining the data from the two
seasons with and without NDVI (MLR: multiple linear regression, MLP: multilayer perceptron, DT: decision tree, RF: random forest).

Table 3

Statistical analysis comparison of machine learning regression models on the
DIFM trial maize field for 2019/2020, 2020/201, and the combined dataset with
and without NDVI evaluated using the 80/20 training and testing analysis
(MAPE: mean absolute percentage error, RMSE: root mean square error).

Season ML algorithm MAPE (%) RMSE (t ha 1)

With NDVI data

2019/2020 MLR 7.3 0.89
MLP 6.5 0.85
DT 7.4 0.96
RF 5.4 0.69

2020/2021 MLR 9.8 1.08
MLP 10.5 1.22
DT 12.0 1.35
RF 8.4 0.95

Combined seasons MLR 8.4 0.95
MLP 7.7 0.93
DT 8.7 1.10
RF 6.6 0.81

Without NDVI data

2019/2020 MLR 8.4 1.01
MLP 6.2 0.79
DT 7.4 0.97
RF 5.3 0.66

2020/2021 MLR 14.4 1.59
MLP 12.4 1.40
DT 13.3 1.65
RF 10.0 1.14

Combined seasons MLR 11.6 1.36
MLP 7.9 0.98
DT 8.9 1.21
RF 7.0 0.89

identify and quantify the influence of spatial elements, such as soil at-
tributes (Kravchenko and Bullock, 2000, Jones et al., 2022). Through
correlation analysis, it was evident that there was a complex relationship
between maize yield and different yield attributes during and between
the seasons. Urea application had a stronger relationship with yield than
the plant population for each of the two seasons and when seasonal data
were combined. The varying correlations between yield and
yield-influencing attributes across seasons reflect the complexity of the
agricultural systems. Crop yield is a function of the interaction between
spatial and temporal changes in variables (Bullock et al., 2019), and
crop yield prediction is affected by several of these variables. Varying
weather conditions and the interaction between multiple
yield-influencing variables can contribute to varying correlations, such

as for soil properties, which may have a more positive effect on yield in a
wet season than in a subsequent drier season. Site-specific spatial soil
and environmental variability has been reported to contribute towards
yield variability in previous studies (Ma and Herath, 2016, Wen et al.,
2021). The negative correlation between soil pH and yield indicates
that, in this field, there may be a compounding effect of other
yield-influencing factors associated with an increase in soil pH, which
results in certain parts of the field having lower yields at higher soil pH.

4.1. Comparative analysis of ML algorithms for spatial maize yield
predictions

Several studies have compared the predictive capabilities of regres-
sion and ML models, focusing primarily on climatic factors, farm man-
agement, soil nutrients, and topographic attributes (Gonzalez-Sanchez
et al., 2014, Burdett and Wellen, 2022). However, the integration of
DIFM, leading to thousands of unique data points, with ML algorithms
for spatial yield predictions has not been well explored to date. The
results of this study indicate that although varying ML techniques are
applicable for spatial maize yield predictions, the accuracy of these
models can be influenced by the specific datasets used and may vary
with temporal changes between successive seasons. The lower accuracy
of the MLR model in predicting spatial yields without NDVI data sug-
gests the complexity of capturing the intricate and nonlinear connec-
tions present in the dataset or that there may not be a direct relationship.
Previous studies have suggested that linear regression analysis is less
effective in agronomic studies, because yield data are a result of multiple
interacting factors (Kitchen et al., 2003). The integration of NDVI data
boosted the initially low prediction accuracy of the MLR model more
than that of the other models, suggesting that NDVI data can improve
the predictive capability of the MLR model. This was likely a result of the
higher correlation between NDVI and yield, as indicated in the
descriptive statistics, being able to capture more linear relationships
between NDVI and yields in the MLR model, whereas the MLP also
considered the nonlinear relationships that lowered the prediction ac-
curacy. For the same dataset without NDVI, the MLP outperformed MLR
and DT in terms of prediction accuracy because of its superior capability
to effectively manage nonlinear relationships. The MLP architecture is
comprised of multiple hidden layers and employs nonlinear activation
functions that are adept at handling nonlinear relationships. Although
DT can also manage nonlinear relationships, it struggles with irregular
patterns and is prone to overfitting (Bramer, 2002).

Although incorporating NDVI data into the training and testing
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datasets led to improved model predictions and a decrease in prediction
errors for all models, the extent of these improvements varied among the
different models and datasets used. The performance of the RF model
surpassed that of the MLR, DT, and MLP models for spatial yield pre-
dictions, with and without the inclusion of NDVI. Therefore, the RF
model effectively captured the relationship between maize yield and
various factors representing soil, management, and remotely sensed
attributes. In several previous studies (Han et al., 2020, Burdett and
Wellen, 2022), RF also outperformed other ML models such as MLR, DT,
and MLP. The RF uses the single best variable when splitting responses
on each node and averages the predictions of different trees in the forest
to create a multi-dimensional function, which gives RF an advantage
over the other models when predictor variables are highly correlated.
The application of ML models in the two distinct seasons yielded
different prediction accuracy results for all models, although there was
consistency in the overall comparison between the models. This could be
an indication of a shift in the impact of temporal and spatial variables on
yield between seasons (Kravchenko and Bullock, 2000), and these in-
teractions are more important in rain-fed cropping systems.

4.2. Feature importance and identification of yield limiting factors

Before adopting a full input application strategy, feature importance
can help identify regions with a high possibility of success in modifying
management to a site-specific approach. This study showed that the
important features explaining yield variability differed between seasons
and were influenced by the inclusion of other variables in the dataset.
The interaction between soil and management variables makes it chal-
lenging to identify the main yield-limiting factors and the extent of the
impact of each variable on the final yield. Urea application was
consistently the most critical variable in all model training and testing
scenarios, although the degree of importance varied with the amount of
rainfall received during the season. The influence of N application on
yield variability was notably higher during the drier season than during
the wet season, thus emphasizing the significance of N availability and
adequate rainfall in achieving optimum yields. Additional factors,
including soil P, plant population and Na in 2020, as well as soil P, soil
pH, clay content, and plant population in 2021, emerged as the most
influential factors for explaining yields. Merging the two seasons dataset
indicated that topsoil properties explained yield variation more than
subsoil properties, highlighting the importance of adequate nutrient
availability in the topsoil for optimum yields.

The tillering abilities of the cultivar in low plant populations may
have resulted in more cobs and grains, which could be the reason why
the low plant population was not as influential as expected in explaining
yield variability. This could be important for applications of RF models
in evaluating varied input applications, indicating the importance of
investing in N fertilization for optimum yields, and possibly not as much
on seeding rates. The NDVI data explained yields to a higher degree than
did the soil and management variables. The addition of NDVI data can
only be crucial for improving the yield prediction accuracy of the
models, as this can be an attribute that farmers cannot control. Inte-
grating more within-season data sources, such as NDVI, rainfall distri-
bution in relation to plant growth stage, and the timing of split fertilizer
application, should be considered in future research because it can
potentially improve spatial yield predictions. Filippi et al. (2019) re-
ported an increase in model predictions in response to an increase in the
within-season data used for model predictions. Other studies have
highlighted the importance of other variables not included in this study,
such as available water content (Kravchenko and Bullock, 2000, Xu
etal., 2019, De Souza et al., 2023), soil organic matter (Xu et al., 2021)
and topography variables (Lacerda et al., 2022). The vapor pressure
deficit and temperature have also been found to be important factors in
model training, and testing includes multiple seasons (Xu et al., 2019).
Although the best ML model performance could be achieved using DIFM
and NDVI data, the feature importance revealed that the most accurate
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prediction could be achieved at 85-110 DAE, which could be too late for
a farmer to take meaningful remedial actions if required, such as
applying more fertilizer. It is also crucial that the variables included in
the yield prediction models are directly connected to yield and trans-
latable into management choices for the ML model’s insights to be
implemented effectively.

4.3. Uncertainties in the study

There are still some limitations and uncertainties regarding the use of
ML models in yield predictions. Machine learning models typically do
not incorporate mechanisms related to crop growth during the model
development process (Han et al., 2020), which may contribute to the
increased uncertainty in model performance. As a result, it can be
challenging to comprehend the reasoning behind these predictions. This
makes it challenging to identify and address errors, biases, and un-
certainties in a model. Machine learning models are often trained using
data from specific locations and times, which can limit their generaliz-
ability to other locations and times. This limitation arises because the
relationships between input variables and yield may differ depending on
factors, such as soil type, in-season weather patterns, and management
practices. Having a larger dataset with increased weather pattern ranges
included in the training dataset can improve the ML predictions, even
under extreme conditions. In future studies, it is recommended that the
trained models be retrained and validated on comparable commercial
farms from other locations with varying weather and soil conditions.

5. Conclusion

This study showed that despite differences in accuracy, all four ML
techniques could be effectively trained and tested on DIFM data to
develop models that can be used to estimate spatial maize yields in a
highly heterogeneous field. This could be important for helping farmers
and agronomists estimate yield profit margins and determine the cost-
benefit of agronomic intervention. The RF model was the best for
spatial yield predictions using DIFM datasets and the inclusion of NDVI
data improved model performance. Although there was variability be-
tween seasons in the factors that strongly influenced yield, urea appli-
cation was consistently the most critical variable, along with other key
factors including soil P, plant population, and Na in 2020, as well as soil
P, soil pH, clay content, and plant population in 2021. Machine learning
models in agricultural systems require the consideration of variations in
weather, soil characteristics, and other environmental factors that can
vary in space and time. The DIFM trials can play an important role in
advancing the field of PA by providing valuable insights into the com-
plex interactions between crops, soils, weather, and management prac-
tices, and by identifying new opportunities for improving crop yields
and environmental sustainability. Although distinct zones were not
identified, the results, when combined with AI technologies, can aid
farmers in managing their fields more effectively. The approach used in
this study can be enhanced and modified for use in various agricultural
settings and incorporating additional vegetative indices that may be
associated with crop production.
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