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ABSTRACT: Mercury (Hg) researchers have made progress in under-
standing atmospheric Hg, especially with respect to oxidized Hg (HgII) that
can represent 2 to 20% of Hg in the atmosphere. Knowledge developed over
the past ∼10 years has pointed to existing challenges with current methods
for measuring atmospheric Hg concentrations and the chemical composition
of HgII compounds. Because of these challenges, atmospheric Hg experts
met to discuss limitations of current methods and paths to overcome them
considering ongoing research. Major conclusions included that current
methods to measure gaseous oxidized and particulate-bound Hg have
limitations, and new methods need to be developed to make these
measurements more accurate. Developing analytical methods for measure-
ment of HgII chemistry is challenging. While the ultimate goal is the
development of ultrasensitive methods for online detection of HgII directly
from ambient air, in the meantime, new surfaces are needed on which HgII can be quantitatively collected and from which it can be
reversibly desorbed to determine HgII chemistry. Discussion and identification of current limitations, described here, provide a basis
for paths forward. Since the atmosphere is the means by which Hg is globally distributed, accurately calibrated measurements are
critical to understanding the Hg biogeochemical cycle.
KEYWORDS: calibration, dual-channel systems, mass spectrometry, monitoring networks, reactive mercury active system

■ INTRODUCTION
The atmosphere is the primary pathway for the global
transport of mercury (Hg).1 The chemical form of Hg in the
atmosphere determines how quickly it is removed through wet
or dry deposition.2,3 Deposition of atmospheric Hg results in
contamination of surface waters and ecosystems,4 and can have
adverse effects on human and wildlife health.5 To monitor and
mitigate future effects of global Hg contamination, the
Minamata Convention was ratified by 147 countries and
entered into force in 2017, with the objective of “protecting
human health and the environment from the adverse effects of
mercury”.6

For scientific understanding and modeling, and to meet the
needs of the Convention, it is critical to accurately quantify
concentrations of the three main forms of atmospheric Hg:
gaseous elemental Hg (GEM, Hg0); gaseous oxidized Hg
(GOM, also denoted HgII, because it is believed to be almost
entirely in the +2 oxidation state);7 and particulate-bound Hg
(PBM, also believed to be in the +2 oxidation state). Reactive
Hg, referred to here as HgII, is operationally defined as the sum
of PBM and GOM.

GEM is taken up by plants through their stomata,
assimilated by oxidation, and translocated to the annual
growth rings in trees,8 resulting in litter and tree fall being a
means of GEM deposition to ecosystems.9 Isotopic studies
showed that some of the HgII bound on leaves is re-emitted as
GEM after photoreduction before leaf fall.10 GEM is also
deposited directly to surfaces, but is readily re-emitted,
promoted by sunlight, precipitation, temperature, and
interaction of atmospheric ozone with surfaces.11−16 GOM
and PBM are dry deposited to surfaces, and are removed from
the atmosphere in wet deposition. When deposited to foliage,
HgII can also be washed off surfaces to enter ecosystems.17

When deposited to substrates, HgII can be methylated in situ,
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and directly or indirectly deposited to water bodies where it
can be converted to methylmercury, the Hg form that
bioaccumulates in food webs.18 In addition, knowledge of
HgII chemical makeup is crucial, because this controls the
competition between (photo)reduction back to Hg(0) and
HgII dry/wet deposition. Thus, it is important to accurately
quantify HgII concentrations and characterize the chemistry of
the compounds and processes responsible for forming them.

The commercial Tekran 2537/1130/1135 instrument
(graphical abstract) has been used to obtain a large amount
of data on the different forms of atmospheric Hg in the past
two decades. However, over the past ∼10 years it has become
apparent that surfaces in this instrument have artifacts (i.e., the
KCl-coated denuder used to collect GOM does not capture all
HgII).19−26 Recent research, discussed below, by Allen et al.27

demonstrated that the filter used to collect PBM in the 1135
unit also collects GOM, if not removed by the denuder. GOM
and PBM measurements have almost always been uncalibrated,
and GEM concentrations measured by co-located instruments
occasionally exhibit bias as well,19,20 perhaps because of
inadequate calibration in the ambient range. To address some
of the limitations, new methods have been developed to
measure GOM and PBM, and each method has its own
strengths and weaknesses.

In October 2023, a National Science Foundation-sponsored
workshop, “Measurement of atmospheric mercury: Assessment
of new measurement and calibration methods, and develop-
ment of a path forward”, was held at the University of Nevada,
Reno, USA. This event brought together atmospheric Hg
experts to discuss what is known about current measurement
methods, gaps in current technologies, needs for future
measurements, and suggestions for improvements. During
this workshop, 26 presentations were given on new and
evolving atmospheric Hg measurement methods and monitor-
ing network needs; discussion groups were tasked with
summarizing limitations associated with different atmospheric
mercury measurements, and brainstorming how to improve
measurements. This is a summary of the discussions at the
workshop and the collective recommendations for a path
forward. There have been some recent review papers on
atmospheric Hg;28−30 however, this manuscript has a different
focus in that it is a critical assessment of atmospheric Hg
measurement methods.

■ MEASUREMENTS OF GEM AND TGM
Current Methods. Active and passive methods are used to

measure GEM and TGM. The most common active method to
measure atmospheric Hg is by pulling air through a gold
cartridge, then Hg is desorbed from the cartridge into a cold
vapor atomic fluorescence spectrometer (CVAFS) or cold
vapor atomic absorption spectrophotometer (CVAAS). The
Tekran 2537, the leading unit for measurement, relies on two
matched gold cartridges that allow for collection and
measurement every 2.5 or 5 min. The estimated uncertainty
is 16% for the Tekran 2537B series.31 There is no published
uncertainty for the 2537X unit. The Lumex instrument,
utilizing Zeeman background correction in its CVAAS
configuration, can continuously measure GEM at ambient
levels without preconcentration. However, an uncertainty
analysis has not been published for this instrument. To
measure ambient concentrations, this instrument requires
additional low-level calibration (e.g., ref 32.). These two
instruments have been the primary methods for measuring

atmospheric Hg since 2000. Additionally, measurements of
GEM or total gaseous Hg (TGM) using gold cartridges in
nonautomated active sampling systems have also been used
(cf., ref 33.). With this method, ambient air is first pulled
through filters, then directly through a gold cartridge using a
small vacuum pump.

Development of passive systems for measurements of GEM
or TGM has been investigated in a number of studies (cf., refs
34−36.). Currently, the most commonly applied method
consists of a radial symmetry diffusive sampler with the one of
choice being the Radiello sampler filled with sulfur-
impregnated activated carbon.35−39 This method, commercial-
ized as the MerPAS (Tekran Instruments Corp.), has
demonstrated that concentrations measured in the Northern
Hemisphere were greater than in the Southern Hemisphere,
and has recorded gradients in Hg concentrations around
contaminated areas.39 Field comparisons of three different
passive air samplers demonstrated that the MerPAS performed
best, with a precision of 5%.37 Comparison of active and
passive samplers across a range of concentrations has shown
good comparability.37

New Information and Recommendations. Two major
limitations associated with gold cartridge Hg capture is that
gold is expensive and becomes passivated over time (Table 1).
Gold cartridges are considered consumables in CVAFS Hg
instruments, as indicated by technical documents detailing how
to clean and replace passivated cartridges. In addition, gold
cartridges must be calibrated frequently and rigorously. The
importance of calibration cannot be overstated, for two
colocated Tekran 2537 units have been reported in some
cases to differ by as much as 30%,19,20 though variation
between instruments is typically on the order of 5 to 10%. In
the Tekran 2537 instruments, gold cartridges are calibrated
using a one-point calibration at an unrealistically high
concentration for ambient air sampling, and the default peak
integration method uses peak area, though there has been
evidence that using peak height may be more accurate.40,41 It
was recommended by the workshop participants that there be
multiple calibration points for the instrument, including points
at concentrations relevant to ambient air, to better calibrate the
low range of the instrument. Experiments using a permeation
calibrator investigated these concerns.42 Automated calibration
systems for GEM that can achieve ambient air concentrations
and are field-deployable are being developed (see below). The
Tekran 2505 (GEM calibration source) is used for GEM
calibration, but requires a stable temperature environment to
operate properly.

Recent tests using gold cartridges demonstrated efficient
collection of HgBr2, a proxy for GOM compounds, though
only 80% was thermally desorbed.42 This has also been shown
in the past.43 New measurement methods have demonstrated
that GOM concentrations can be 2 to 20% of total ambient air
Hg concentrations, up to 100% during Hg depletion events,
and high concentrations are in the upper Troposphere-lower
Stratosphere.19,20,44−47 It is recommended, for now, that to
measure GEM a cation exchange membrane (CEM) be placed
upstream of the gold cartridge for removal of HgII from the
sampling stream. For TGM measurements, a thermal converter
at >700 °C should be placed at the front of the sampling line
with a particulate filter in front to convert all gaseous Hg
compounds to GEM.42 It is important that the GOM
reduction efficiency of thermal converter designs be tested
prior to deployment.42 Given limitations associated with the
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particulate filters discussed below, with no particulate filter the
thermolyzer-based measurement will provide a total atmos-
pheric Hg concentration that includes both PBM and GOM.

Concentrations measured using CEM and nylon membranes
from different manufacturers vary significantly in collection
efficiency, and particle loading can result in retention of GOM
on particulate filters. For example, Allen et al.27 showed with
tests using a permeation tube-based calibrator that polytetra-
fluoroethylene (PTFE) membranes upstream of GEM
measurements collected ∼4% GOM, while VWR borosilicate
glass filters and Whatman borosilicate glass microfiber
membranes retained 92 and 62%, respectively. However,
PTFE filters preloaded with ambient particles collected 50% of
permeated GOM. Thus, currently CEMs are useful for
placement in front of gold traps if GEM quantification is the
goal, as CEMs do not take up GEM.48 When loading CEM
with GOM in the laboratory, all GOM is captured, while in the
field, breakthrough is typically on the order of 10% (cf., refs 27,
44, 48). Limited data suggest when there is PBM on the CEM,
the CEM does not take up GEM.49

Concerns regarding the MerPAS method include the low
time resolution (>1 month), thus short-term (<2 to 4 week
and diel) variability will not be captured. It is unlikely that the
low time resolution can be improved due to the method and
the analytical detection limit. That said, the MerPAS is
designed for long-term monitoring. Factors that are known to
affect the sampling rate include temperature, wind speed, and
sampler geometry. One uncertainty is whether the published
meteorological correction is suitable for all environments, as it
was primarily developed using midlatitude data.50 Isotopic
characterization has demonstrated only GEM is collected on
the carbon in the passive samplers.51 A consensus was not
reached regarding whether the MerPAS has the accuracy
needed to measure subtle changes in atmospheric Hg
concentrations with emission reductions associated with the
Minamata Convention, though it is capable of detecting
whether major emission sources are eliminated (i.e., artisanal
gold mining; cf. ref 39.).

For the Lumex instrument, the detector can only detect
GEM, but interferences caused by conversion of GOM and
PBM to GEM after deposition to inlet filters and other surfaces
upstream of the detector, similar to the Tekran 2537 unit, is a
possibility. Recent enhancements in sensitivity and tailored
calibration settings underscore its capacity for precise low-level
measurements.32

■ MEASUREMENTS OF GOM AND PBM
Current Methods. KCl-Coated Denuders. KCl-coated

denuders have been the predominant method since the
1990s to measure GOM using glass tubes or an annular
denuder that induces laminar flow. Captured GOM is then
extracted into a solution and directly analyzed or thermally
desorbed in to a CVAFS detector, respectively.52,53 The
Tekran 2537/1130/1135 system (graphical abstract) is
designed to sample ambient air and collect GOM (1130
unit) on a KCl-coated denuder, followed by collection of PBM
on a particulate filter (1135 unit), while measuring GEM
(2537 unit) that passes through both the denuder and filter.
Then, during a 30 min period, while the system samples Hg-
free air, the denuder and particulate filter are sequentially
heated, and released Hg goes through a pyrolyzer, then enters
the Tekran 2537 unit where Hg0 concentrations are
determined. KCl-coated denuders in the Tekran system have

been demonstrated to be biased low by up to 50%, due to
reactions with ozone that reduce GOM, collection of different
Hg compounds with unequal efficiency, passivation due to
water vapor, and decreased efficiency over time.24,25,54−57

Repetative heating decreases the collection efficiency, there-
fore, denuders should not be used for long periods without
recoating.52 It is important to consider that the denuder
performance will vary according to location. For example, in
areas where the air is dry with limited ozone and primarily
halogenated HgII compounds, such as Mauna Loa, USA, and
Alert, Canada, measured concentrations will better represent
actual concentrations (cf. ref 46, 58.). Since different HgII

chemistry and environmental conditions will be present at
different locations, bias and collection efficiencies will vary
across measurement sites and temporally at individual
locations.
Dual-Channel Systems. Dual-channel systems (DCS) in

current operation are designed to measure GEM and GOM by
filtering out PBM at the inlet (graphical abstract).20 These
instruments measure GOM or GOM + PBM based on the
principle of alternate sampling of two channels upstream of an
instrument that detects GEM (i.e., one or two Tekran 2537s or
a Lumex).59,60

The typical DCS makes a GEM measurement with one
channel by passing air through a CEM, effectively removing
HgII from air and allowing only GEM to pass to the detector,
and the second channel uses a thermal converter to transform
all compounds to GEM, allowing for a TGM measurement.
GOM or HgII concentrations (depending on the inlet
configuration) are calculated as the difference between the
measurements in the two channels.20 A dual-channel instru-
ment developed at Utah State University has ten-minute time
resolution with a 1-h average detection limit of about 10 pg
m−3,61 and measurement accuracy has been verified with a
permeation calibrator using HgBr2.

61−63 Efficiency has not
been tested for other compounds. In addition, the effects of
relative humidity and reactive gases, like O3, have not been
thoroughly tested and an uncertainty analysis is needed for
these measurements. Tang et al.49 developed a DCS that
consisted of the Tekran 2537/1130/1135 system as one
channel, and a CEM that was analyzed and Hg0 that was
measured by the Tekran 2537 as the second channel. The
Tekran HgII concentrations were 20 ± 22 pg m−3, while the
CEM concentrations were 454 ± 349 pg m−3.

It was noted at the workshop that there did not need to be a
standard design for the DCS, for this will promote creativity in
application of this method. It is, however, necessary to
demonstrate that the DCS makes accurate measurements
under given operating conditions that are traceable to
standards.
Reactive Mercury Active System. The Reactive Mercury

Active System (RMAS) uses membranes to measure HgII,
GOM, and PBM concentrations, depending on the config-
uration of membranes inside the filter cartridge (graphical
abstract). With only CEM or nylon membranes in-line, HgII is
measured. It was thought that by placing a PTFE membrane in
front of the nylon or CEM that PBM and GOM could be
differentiated. We now know this is not entirely true. CEM are
digested and analyzed using a modified EPA method 1631 to
determine concentrations, while nylon membranes are
thermally desorbed to estimate the chemical composition of
HgII compounds through comparison with desorption profiles
developed from pure HgII compounds.64 Recent work has
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demonstrated that CEM and nylon membranes can be stored
at −20 °C without degradation or transformation of collected
GOM for nine months65 and up to a year (data not shown).

The RMAS is cost-effective, can be deployed easily, is more
accurate than KCl-coated denuders,20 and is currently the only
available method that gives information about possible
ambient air Hg compound chemistry. This system has
provided a step forward in better understanding actual HgII

concentrations by demonstrating that KCl denuder measure-
ments were biased low. Similar to other measurement
methods, an uncertainty analysis is needed.
PBM Measurement Systems. PBM is typically collected on

filters, such as quartz fiber and polytetrafluoroethylene
(PTFE). PBM measurements have been made with instru-
ments that include equipment such as filter cartridges, cascade
impactors, and high-volume samplers (cf., 66−68). The latter
two allow for size-distributed measurements.
Limitations and Recommendations (Table 1). KCl-

Coated Denuders. KCl denuder performance generally
depends on the chemical forms of HgII present, and ambient
atmospheric chemistry.56,57 The low bias can be up to 50%, but
varies with location and environmental conditions.58 A
correction factor could be used to determine how much
measured concentrations should be adjusted at different
locations based upon site-specific factors, such as the colocated
wet deposition measurement and the degree of scavenging of
the atmosphere.69 Also, the measurements could be co-located
with the RMAS or DCS, which could provide a means of
determining the low bias for a specific location.20

It was recommended by the workshop participants that
alternative methods should be developed, and the use of the
KCl denuder should be phased out for ambient air Hg
measurements. Some participants suggested that the observa-
tions made by the 1130/1135 units may still be useful for
determining temporal trends or to determine emissions from
sources. If KCl-coated denuders are to be used, it is important
to carefully assess uncertainties, particularly those related to
recovery. Including recovery considerations in uncertainty
evaluations may lead to disproportionately large uncertainties.
This could be detrimental for time and spatial trend analyses,
as excessively high uncertainties may compromise the
reliability of the data. Therefore, a balanced approach is
needed to ensure that uncertainties are appropriately managed,
avoiding potential challenges in meaningful time and spatial
trend assessments. It is important to understand the factors
that cause reduced KCl-coated denuder efficiency when
developing alternate methods.
Dual-Channel Systems. If an atmospheric Hg analyzer is

available, sample introduction at the front end of the DCS
system can be configured to provide individual Hg fractions
(i.e., GEM and TGM). However, this requires comparability
and traceability of calibration. Sampling lines should be short
and heated. The thermal converter should be standardized and
the efficiency of GOM to GEM reduction, together with the
temperature used in the thermolyzer, should be verified and
monitored regularly. This system must be frequently
calibrated.20

Several challenges need to be overcome to facilitate wider
adoption of DCS. First, the sensitivity of these systems
depends on the sensitivity of the GEM instrument. Different
Tekran 2537 units used with the same DCS can have different
detection limits.62 Careful maintenance of GEM instrumenta-
tion and selection of stable instruments are both important.

Also, for systems that measure the two channels sequentially,
rapid changes in GEM can confound determination of GOM
or GOM+PBM, decreasing sensitivity and sometimes resulting
in negative calculated concentrations.20 Use of a Lumex
analyzer with rapid channel switching and extensive averaging,
rather than a gold cartridge/CVAFS may overcome both of
these challenges. Alternatively, new data processing schemes
could be developed that detect and correct for the effects of
rapid GEM changes. Ultimately, the expanded uncertainty of
each DCS needs to be thoroughly evaluated. Again, the GEM
measurement will affect the calculated HgII concentrations.
Elutriators. Elutriators at the inlets of sampling systems are

often used to remove coarse particles. For example, the Tekran
2537/1130/1135 system uses an elutriator with a cutoff of 2.5
μm, as does the Utah State University DCS. Work in the
marine boundary layer and Arctic has shown that coarse
particles can be an important component of atmospheric Hg
measurements,70,71 thus removal of coarse particles may affect
assessment of Hg concentrations. Measuring Hg in coarse
particles is important, because they are removed readily during
wet deposition,72 and are dry deposited quickly surrounding
emission sources and in regions where they are produced, such
as in polar regions or the open ocean.64−73 Because HgII

compounds are only semivolatile and chemically labile, design
of an inlet that quantitatively separates PBM of a given size
fraction from GOM is another challenge for DCS and other
HgII measurement methods (cf., ref 60 for further discussion).
Reactive Mercury Active System. CEM and Nylon

Membranes. The RMAS has limitations. First, the sampling
resolution of one- to two-weeks does not allow for under-
standing atmospheric processes, such as diel variations in
GOM formation rates. It has been demonstrated that
increasing the sampling flow rate from 1 to 2 L min−1 results
in loss of ambient air HgII from CEM membranes,27 thus
reducing sampling duration may not be possible for this
system. Sampling duration is determined by the ambient HgII

concentration and the volume of air needed to be sampled to
ensure sufficient mass of Hg on the membrane for downstream
quantification. In addition, no tests have been done to
determine whether losses occur at 1 L min−1. Plasma-
generated HgO has been demonstrated to be lost from the
CEM in clean air.54,74 It has been shown in lab studies that the
CEM collects all HgII when permeated. However, in field
studies, breakthrough occurs.

Nylon membrane HgII concentrations are typically lower
than those obtained with the CEM, and they do not collect all
compounds with equal efficiency.44 There is no quantifiable
Hg left on the nylon membrane after desorption. Interferences
due to atmospheric conditions and ambient air chemistry, such
as relative humidity, temperature, and atmospheric oxidants
have not been adequately tested.

Comparison between the Pall CEM and those available from
Cole-Parmer and Sartorius showed the former was the best
material for collecting HgII.27 The effectiveness of the CEM to
retain GOM needs to be definitively established, for it has been
demonstrated that use of this membrane in direct sampling
systems collects less GOM than that measured with DCS.20

One consideration is that the current CEM digestion method
may not be adequate.50

To improve this method, new surfaces are needed that
capture all GOM compounds efficiently and can be thermally
desorbed to release compounds into an instrument capable of
measuring the chemical composition of the compounds.
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Ideally, these surfaces do not capture GEM, have no HgII-
altering chemistry, quantitatively retain the compounds, allow
for collection at higher flow rates to reduce sampling duration,
and release all HgII compounds to enable material/surface
reusability. New materials must be calibrated in both
laboratory and field settings. Because the RMAS is simple to
deploy (consisting of measuring flows, deploying and
collecting membranes, then shipping to an analytical
laboratory) compared to automated instruments, it might be
useful for measurement networks.
PBM Measurements. In the RMAS, it was thought that by

adding a PTFE membrane upstream of the other membranes,
GOM and PBM could be differentiated; however, when
particles are loaded on the PTFE membrane, GOM (as HgBr2)
has been found to be captured on active surface area provided
by the particles,27 biasing both the PBM and GOM
measurements. HgX2 compounds are Lewis acids that readily
bind to electron-rich surfaces/materials. Thus, we currently
have no membrane-based method for separation of GOM and
PBM. There was a consensus among workshop participants
that a method is needed to collect and accurately quantify
PBM without collecting GOM and/or GEM on particles.
Overall Needs. The methods discussed above have vastly

different time resolutions. For example, the Tekran system
resolution for GEM is 5 min and for HgII is 1 to 2 h, the DCS
has a 10 min resolution, while for the RMAS it is one- to two-
week resolution, the Lumex measurements are averaged over 1
to 10 min,75 and the MerPAS is greater than a month. Varied
sampling durations complicates comparisons of the different
methods. In addition, high time resolution analyzers will
provide information on processes and short-term variability,
while longer duration measurements may be more useful for
general monitoring and long-term trends. Despite the long
time resolution for the RMAS, this method allows for a
qualitative estimate of the HgII chemistry. This method also
requires laboratory analyses, as does the MerPAS. The Lumex
only allows for measurement of GEM, and the DCS,
depending on the configuration, measures GOM + some
PBM. Specific methods will be needed to address research
objectives.

For surfaces used to collect and analyze GOM and/or PBM,
it is critical that they are laboratory- and field-tested, compared
against other traceable methods, and calibrated. GOM sorption
occurs (1) at sampler inlets, and on impactors and tubing, (2)
on particle collection filters, and (3) on particles on filters.
GOM sorption to filters will bias PBM samples high, while
PBM captured appropriately on filters may volatilize into
GOM or be reduced to GEM during sampling, biasing PBM
concentrations low. Because PBM and GOM behave differ-
ently in the environment, more work is needed to develop a
method that quantitatively separates PBM and GOM with
improved time resolution.

■ GOM CALIBRATION METHODS
Current Methods. An ideal calibration system should be

traceable to metrological standards, have stable, continuous
flow, be field deployable, and be able to add GOM spikes to
analyzers during ambient air sampling. Several methods are
being developed for calibration at ambient concentrations of
GOM, including a temperature-controlled box holding
permeation tubes,58 a method to oxidize GEM into GOM
with custom ligands (i.e., Br−, Cl−, O2−) in nonthermal
plasma,26,76,77 and a gas-phase generator developed by LGC

Group, United Kingdom. The Tekran system is calibrated
using GEM injections from an internal permeation tube;
internal calibrations of this system can be checked using
manual injections. For the Tekran system, if there is a bias in
the GEM measurement, it will be reflected in the other
measurements, thus making accurate GEM measurements is
critical for the accuracy of concentrations for all Hg forms.
New Information and Recommendations. The devel-

opment of a field-deployable National Institute of Standards
and Technology (NIST)-traceable GOM calibrator will be
critical for the atmospheric Hg measurement community.
NIST-traceable calibration of GOM is now possible,78 as
demonstrated by nonthermal plasma generation of GOM
(traceable to NIST 3133).76 However, the field application of
plasma calibration strategy comes with certain challenges, as it
is currently developed as a discrete method that requires
periodic calibrations during continuous GOM measurements
(Table 1). The permeation tube-based calibrator is the only
system that has been used routinely in real field conditions.
GOM-emitting permeation tubes (e.g., HgBr2 and HgCl2)
used in available calibration systems emit some GEM (<10% of
total Hg). The permeation tube emission speciation has been
characterized by gas chromatography−mass spectrometry
(GC-MS), but this method is not currently NIST-trace-
able.78,79 Permeation tubes were recently compared to NIST-
traceable GOM created using cold plasma, while the calibrator
was at the Jozěf Stefan Institute.78

A laboratory-based GOM standard is needed for calibration.
Calibrated permeation tubes should be used in GOM
calibrators. A chemical ionization mass spectrometry-based
method that has recently been developed,80 even if it is not
capable of directly detecting ambient GOM, can serve as a
primary calibration method that can be deployed both in the
lab and in the field if sufficient power and infrastructure are
available. Furthermore, the sensitivity of this method can be
improved similar to what is done for gaseous sulfuric acid (e.g.,
refs 81−83.), to achieve direct detection of GOM in ambient
air.

Commercialization of a calibration system would allow for
more routine calibration of GOM measurements, particularly
for networks. The methods in development are promising, but
they still suffer from significant challenges. For example, the
permeation tube-based system is not yet fully NIST-traceable,
while the nonthermal plasma-based system currently only
allows for loading GOM onto collection surfaces and cannot
be used to calibrate a continuous sampling instrument, such as
a DCS. GOM compounds are only slightly volatile, readily sorb
to surfaces, and easily decompose to GEM; thus, development
of systems that can quantitatively transport GOM through
valves or tubing, and into an analyzer is a unique challenge.60

■ DETERMINING THE CHEMICAL COMPOSITION OF
HGII COMPOUNDS
Current Methods. Currently, the only method applied for

understanding the ambient chemistry of HgII compounds is the
collection of HgII or GOM on nylon membranes in the field
followed by thermal desorption and the comparison of ambient
air profiles with those developed using relatively pure
commercial HgII compounds. Some workshop participants
were skeptical of this method. This method is not ideal, as the
membranes do not collect all compounds with equal efficiency
and concentrations are lower than those measured with
simultaneously deployed CEM (Table 1). In addition, the
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standard thermal desorption profiles are developed from pure
compounds that may not adequately represent Hg chemistry in
air. Thermal desorption profiles could be deconvoluted in
different ways (e.g., with peak temperature fixed or unfixed).
The uncertainties in the profile deconvolution process need to
be evaluated.

Despite these limitations, data developed with this method
showed consistent trends.44,58 For example, a summary of data
collected from 13 locations found, in general, that N, S, and
organic HgII compounds were associated with city and forest
locations, halogenated compounds were derived from the
marine boundary layer, and O compounds were associated
with long-range transport.58 Despite the limitations, this
method has allowed for demonstrating there are multiple
forms of atmospheric HgII, an important finding that could
eventually inform understanding of atmospheric Hg chemical
mechanisms for global models.
New Information and Recommendations. Direct

methods for measurement of GOM and PBM concentrations,
and for the chemistry of HgII compounds, are needed.
Atmospheric pressure chemical ionization mass spectrometry
(APCI-MS) may be able to achieve the extremely low
detection limits needed for ambient detection, improving on
the existing APCI-MS.80 GC-MS identification is a possibility,
although the method requires preconcentration, and methods
for volatilization of captured GOM compounds currently lead
to unacceptably high decomposition to HgII compounds.79 If
the issue of sample introduction to the instrument could be
solved, GC-MS presents a viable option for HgII measure-
ments. However, neither GC-MS nor APCI-MS are techniques
that can be easily adaptable to remote field locations nor can
be readily utilized by many research groups. Collection of
GOM on a surface that releases the compounds quantitatively
into a GC-MS or APCI-MS would be ideal, similar to
approaches used for chemical analyses of particles (cf., refs
81−85.). Information regarding HgII bonding to membranes
and particles would be useful for determining viable surfaces
and particles that are important for retaining HgII. One way to
identify potential surfaces is to investigate whether compounds
are bound by physio- or chemi-sorption. Experiments such as
those done by Mao et al.86 and Khalizov et al.87 are a start for
investigation of HgII binding to materials.

A global, field-based, chemically resolved, direct measure-
ment of ambient HgII compounds is the goal. Before a method
can be developed that is capable of these measurement, further
comprehensive laboratory experiments need to be performed
to better understand atmospheric Hg chemical reactions so
methods can be tuned and optimized for Hg compounds that
exist in the atmosphere. Such experiments could be performed
in a large smog chamber or in an urban tunnel, helping to
decipher the GOM-PBM connections. Hg stable isotope
measurements can also be used in concert with the
measurements described here to understand atmospheric
processes and chemistry.88 Such experiments will help improve
description of gas-particle and in-particle interaction mecha-
nisms in Hg models in conjunction with recent model
developments that account for solid-vs-liquid-vs-viscous
particles.88 However, an instrumental method(s) for quantita-
tive separation of GOM and PBM is also needed.

Direct detection of Hg compounds does not completely
address the issue of understanding the chemistry involved in
atmospheric Hg reactions. Gas particle partitioning used in
models is based on KCl-coated denuder measurements, using

information from Hg depletion events. Recently, laboratory
experiments have reported on kinetics of gas-particle
partitioning of HgCl2 with surfaces composed of environ-
mentally atmospherically relevant inorganic86 and organic87

chemicals. Further measurements are needed in different well-
characterized environments to build models that more
accurately represent atmospheric Hg reactions and behavior
to support the objectives of the Minamata Convention.

■ NETWORK CONSIDERATIONS
Each network has its priorities, such as testing whether air Hg
concentrations are declining to meet the goals of the Minamata
Convention, or measuring/estimating atmospheric Hg depo-
sition (e.g., National Atmospheric Deposition Program
objective). Thus, one measurement solution may not be the
best approach for all; rather, the methods used should meet the
network-specific objective(s). For sampling methods to be
applicable for network applications, they need to be simple to
deploy and cost-effective. It is also important to point out here
that the Mercury Deposition Network precipitation measure-
ments do not suffer from the biases and limitations discussed
here.

Currently, PBM and GOM measurement methods using
membranes are not adequate for networks, but CEM
measurements alone may be useful. As new methods are
being developed to differentiate between PBM and GOM, the
use of a PTFE in front of a CEM provides a qualitative
estimate. The CEM and nylon membranes in the RMAS have
provided new information on concentrations and potential
chemical composition of HgII compounds. This method serves
as a stopgap until new methods/surfaces are developed.

Alternate methods will need to be applied, and thus standard
operating procedures for networks will need to undergo a
revision. Changes should consider the ongoing discourse
concerning GEM and TGM measurements. Attention must be
devoted to development of methods employed for the
measurement of GOM and PBM, as all methodologies exhibit
biases that contribute to uncertainties in measurements.
Moreover, for a valid and reliable comparison of atmospheric
Hg measurements, it is important to report not only the
measured values, but also the measurement uncertainties
following metrological standards. This ensures a clear under-
standing of the accuracy and reliability of the data, enabling
proper comparisons between different measurement results.

There are different ways that Hg is deposited to ecosystems,
such as foliar uptake of GEM, wet deposition, and dry
deposition. Foliar uptake and wet deposition are measured in
National Atmospheric Deposition Program networks, but dry
deposition of HgII is not adequately measured. Since wet and
dry deposition are important inputs of HgII into ecosystems,
methods are needed that accurately measure concentrations of
HgII under field conditions to estimate deposition or direct
methods need to be applied. Selected methods need to be cost-
effective, easily deployable, and to provide accurate measure-
ments of concentrations for calculating deposition. High-time
resolution methods provide a framework for understanding
processes. Calibrated, traceable GEM and GOM measure-
ments are essential for all network locations, and high quality
GOM and PBM measurements are needed in representative
locations.
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■ PARTING COMMENTS
During the workshop, several main themes and concerns
emerged. First, eliminating the preconcentration step in
ambient Hg sampling is preferred, since this step can result
in changes in the chemistry of the compounds on the
collection surface, and collection efficiency can be influenced
by Hg compounds and ambient air chemistry. However,
without preconcentration, it is currently not possible to
determine the chemical composition of HgII compounds.
Second, all methods must be calibrated and traceable to a
metrological standard, which is not currently the case. Third,
wall losses are important; therefore, sample introduction lines
should be as short as possible and heated to above ambient
temperatures so that the chemical makeup does not change
due to gas-surface partitioning. Higher flow rates and inert
coatings may help to reduce wall losses of HgII compounds.
When measuring HgII, lines need to be “seasoned”, or
saturated, prior to quantitative measurements, and it must be
recognized that if conditions change, Hg can be released from
surfaces. For example, if relative humidity changes, this could
result in GEM production and release from the sampling
lines.20 Fourth, new collection surface materials for GOM
measurements are needed. These should have high specific
area, be selective for GOM only, and ideally not collect GEM
nor allow for alteration of the chemistry of the sorbed HgII

compounds.
In addition, method development is limited by the chemical

compounds that are available for making permeation tubes and
developing thermal desorption profiles. Currently, HgBr2 and
HgCl2 are being used in permeation systems, and HgO, HgBr2,
and HgCl2 are synthesized in situ in nonthermal plasma
calibrations. It is unclear if these are the most representative
chemical compounds for calibration to test methods, as the
actual composition of HgII compounds in the atmosphere is
largely unknown and based primarily on quantum calcu-
lations.7,89−91 Regardless, whatever methods are developed,
each must be thoroughly validated under a range of conditions
and calibrated with multiple compounds that are traceable to
international standards.

A reference method that is officially recognized or declared
as a standard must be developed. Methods developed need to
be traceable to standard units established by the International
System of Units. Accuracy, precision, and traceability must be
ensured.

Given the list of analytical needs detailed and summarized
above, accurate measurements of HgII are challenging due to
the low concentrations and the inherent “sticky” nature of the
compounds. As with the development of any new method and
knowledge on the cutting edge, this takes time. All currently
available methods have limitations. That said, new methods,
such as DCS and RMAS, have provided important information
regarding atmospheric Hg concentrations and the chemical
composition of HgII compounds, moving the Hg scientific
community forward. Work is ongoing regarding the develop-
ment of materials that could capture GOM compounds and
release them with equal efficiency and without interferences.
Development of these would allow for a system that could
accurately measure GOM and PBM. Modifying the Tekran
2537/1130/1135 system to do this could be cost-effective and
allow for ease of deployment, since monitoring sites are already
in place. DCS allow for measurement of concentrations of
GOM or GOM and a fraction of PBM, depending on the inlet

configuration. Calibration systems being developed and fine-
tuned will provide a means of verifying the accuracy of the
measurements. Automated systems require more attention
than filter- or cartridge-based systems. However, the former
have short time resolutions allowing for better understanding
processes. The filter-based system can provide preconcentra-
tion, allowing for estimations of HgII compound chemistry.
Better methods to do this are being developed. In addition, use
of Hg isotopes can aid in source determination and to better
understand atmospheric processes, and may play an important
role moving forward and should not be overlooked, but was
not a focus of this workshop discussion. These are all positive
steps toward more accurate atmospheric Hg measurements.

An important goal is to develop a global, field-based,
chemically resolved, direct measurement of ambient HgII

compounds in ambient air. In an effort to get there, given
our current understanding of HgII, priority future research
paths for quantifying and characterizing HgII include: develop-
ment of surfaces that allow for the collection and release of
HgII compounds without alterations to the initial HgII

compound(s); identification and improvement of analytical
methods for characterizing the chemistry of HgII compounds;
optimization of methods for calibration of field measurement
systems; development of systems that can measure chemistry
in real time; development of a method that allows for
differentiating between PBM and GOM; and performing
thorough uncertainty analyses for all methods.
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Ljubljana SI-1000, Slovenia

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.est.4c06011

Notes

The authors declare no competing financial interest.
●Emeritus.

Biography

Professor Mae Sexauer Gustin has been at the University of Nevada,
Reno, USA, for ∼30 years with her research primarily focused on
understanding the fate and transport of mercury (Hg) in the
environment. Much of her work has been centered on development of
methods for measuring Hg fluxes, atmospheric Hg deposition,
atmospheric Hg concentrations and chemistry, and the use of tree
rings as archives for atmospheric Hg concentrations; and application
of these methods for understanding Hg behavior in the environment.
She has worked on environmental issues associated with Hg
contamination in Nevada, meeting the University’s Land Grant
mission, and better understanding the role of vegetation in the Hg
biogeochemical cycle. She has measured atmospheric ozone across
Nevada, and written manuscripts regarding the behavior of and the
sources of this oxidant in the western United States. Her formal
educational trainings (B.S., M.S., and Ph.D.) were in Geosciences. She
was raised in eastern North Carolina, USA, by a weaver and a
printmaker.

■ ACKNOWLEDGMENTS
The authors would like to thank Nicole Choma (Gustin Lab
technician) for help with organizing the workshop, and
Morgan Yeager and Ryan Murphy (undergraduate workers)
for meeting support. Sophie Page (LGC, United Kingdom)
and Jason Gray AGS Scientific, Inc., USA) also participated in
the discussion. Thanks also to the three anonymous reviewers
whose comments helped improve the quality of this article.
This collaborative effort was made possible by a grant from the
National Science Foundation (grant 2303105) Conference on
Measurement of Atmospheric Mercury: Assessment of New
Measurement and Calibration Methods and Development of a
Path Forward; Reno, Nevada; October 11−13, 2023.
Contributions were also made to support this event by the
College of Agriculture Biotechnology and Natural Resources
and the Office of the Vice President for Research, University of
Nevada, Reno.

■ ABBREVIATIONS
APCI-MS Atmospheric Pressure Chemical Ionization Mass

Spectrometry
CEM Cation Exchange Membrane
CVAFS Cold Vapor Atomic Fluorescent Spectrometry
DCS Dual-Channel System
GEM Gaseous Elemental Mercury
GOM Gaseous Oxidized Mercury
MerPAS Mercury PASsive sampler
PBM Particulate-Bound Mercury
PTFE PolyTetraFluoroEthylene
RMAS Reactive Mercury Active System

■ REFERENCES
(1) UNEP, 2019 https://www.unep.org/resources/publication/

global-mercury-assessment-technical-background-report visited 12/
26/2023.
(2) Zhang, L.; Wright, L. P.; Blanchard, P. A review of current

knowledge concerning dry deposition of atmospheric mercury. Atmos.
Environ. 2009, 43, 5853−5864.
(3) Prestbo, E. M.; Gay, D. A. Wet deposition of mercury in the U.S.

and Canada, 1996−2005: Results and analysis of the NADP mercury
deposition network (MDN). Atmos. Environ. 2009, 43 (27), 4223−
4233.
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Horvat, M. Validating an evaporative calibrator for gaseous oxidized
mercury. Sensors. 2021, 21 (7), 2501.
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