

Genomic Evaluation of Multidrug-Resistant Extended-Spectrum β -Lactamase (ESBL)-Producing *Escherichia coli* from Irrigation Water and Fresh Produce in South Africa: A Cross-Sectional Analysis

Loandi Richter, Stacey Duvenage, Erika Margarete du Plessis, Thabang Msimango, Manana Dlangalala, Muneiwa Tshidino Mathavha, Tintswalo Molelekoa, Degracious Moloko Kgoale, and Lise Korsten*

The six ST10 (serotype O101:H9) isolates carried the most resistance genes, spanning eight antibiotic classes. Overall, 95.1% of the isolates carried resistance genes from three or more classes. The $bla_{CTX-M-1}$, $bla_{CTX-M-14}$, and $bla_{CTX-M-15}$ ESBL genes were associated with mobile genetic elements, and all of the *E. coli* isolates showed a >90% predicted probability of being a human pathogen. This study provided novel genomic information on environmental multidrug-resistant ESBL-producing *E. coli* from fresh produce and irrigation water, highlighting the environment as a reservoir for multidrug-resistant strains and emphasizing the need for ongoing pathogen surveillance within a One Health context.

KEYWORDS: one health, antimicrobial resistance, AMR, whole genome sequencing, WGS, food safety, environmental surveillance, ExPEC

INTRODUCTION

Escherichia coli, a gram-negative bacteria, is one of the most intensively studied microorganisms.¹ As a commensal organism, it is among the first colonizing bacteria in the gastrointestinal tracts of humans and animals naturally occurring in the environment (water, soil, plants).^{2,3} Additionally, at least 11 pathotypes causing disease in humans and animals have been described and are classified into two categories: intestinal pathogenic (IPEC) and extraintestinal pathogenic (ExPEC) E. coli.^{4,5} The pathotype differentiation is based on the presence of specific virulence factors, mechanisms of infection, and interactions with host cells.⁵ Furthermore, E. coli strains belong to different phylogenetic groups, which are intertwined with virulence factors and the genetic substructures associated with different phylogeny, phenotypic, and genotypic traits.^{6,7} The most recent phylogenetic grouping of E. coli describes eight phylogroups (A, B1, B2, C, D, E, F, and G) based on the presence or absence of four genes (ChuA, yjaA, TspE4.C2, and arpA), with specific lifestyles and/or hosts attributed to each.^{8–10} Typically, *E. coli* infections among humans are associated with phylogroups B2 and, to a lesser extent, D, while phylogroups A and B1 are often associated with commensal *E. coli*.^{8,11}

The IPEC pathotypes causing disease in humans and animals include enteropathogenic *E. coli* (EPEC), enterohemorrhagic/Shiga toxin-producing *E. coli* (EHEC/STEC), enterotoxigenic *E. coli* (ETEC), enteroaggregative *E. coli* (EAEC), diffusely adherent *E. coli* (DAEC), enteroinvasive *E. coli* (EIEC), and adherent invasive *E. coli* (AIEC).¹² Generally, foodborne disease outbreaks have been associated with IPEC pathotypes, particularly EHEC/STEC.¹³ The characteristic virulence factors responsible for associated clinical symptoms of IPEC easily distinguish them from commensal *E. coli*;

Received:March 8, 2024Revised:July 1, 2024Accepted:July 1, 2024Published:August 5, 2024

© 2024 The Authors. Published by American Chemical Society

Table 1. Summary of 61 Environmental *E. coli* Strains Previously Reported in South African Point-Prevalence Studies for which the Short-Read Sequences were Retrieved from the National Center for Biotechnology Information (NCBI) Database for Metadata Whole Genome Sequence Analysis

isolate ID code	accession number	isolation source	reported phenotypic antibiotic resistance profile
UPMP 588	SAMN19374594	water	A10C-AP10C-CPM-30C-GM10C-CTX30C-CAZ30C-CPD10C-C10C-NE10C
UPMP 589	SAMN19374573	water	A10C-AP10C-CPM-30C-GM10C-CTX30C-CAZ30C-CPD10C-C10C-NE10C
UPMP 615	SAMN19374548	water	A10C-AP10C-TS25C-FOX30C-CPM30C-AUG30C-NE10C
UPMP 1773	SAMN16339888	water	A10C-AP10C-TS25C-CPM30C-T30C-C30C-CTX30C-CAZ30C-CPD10C-NE10C
UPMP 1774	SAMN16339889	water	A10C-AP10C-TS25C-CPM30C-T30C-T30C-GM10C-CTX30C-CAZ30C-CPD10C-AUG30C-NE10C
UPMP 1995	SAMN24818876	water	A10C-AP10C-TS25C-T30C-C30C-CTX30C-CPD10C-NE10C
UPMP 1996	SAMN24818877	water	A10C-AP10C-TS25C-T30C-CTX30C-CAZ30C-CPD10C-AUG30C-NE10C
UPMP 1997	SAMN19374561	water	A10C-AP10C-TS25C-T30C-CTX30C-CAZ30C-CPD10C-NE10C
UPMP 2004	SAMN19374584	water	A10C-AP10C-CTX30C-CAZ30C-CPD10C-AUG30C-NE10C
UPMP 2005	SAMN24818878	water	A10C-AP10C-FOX30C-C30C-CTX30C-CAZ30C-CPD10C-AUG30C-NE10C
UPMP 2006	SAMN24818879	water	A10C-AP10C-TS25C-T30C-C30C-CTX30C-CAZ30C-CPD10C-NE10C
UPMP 2007	SAMN19374572	water	A10C-AP10C-TS25C-FOX30C-C30C-CTX30C-CAZ30C-CPD10C-NE10C
UPMP 2010	SAMN19374579	water	A10C-AP10C-TS25C-FOX30C-T30C-C30C-CTX30C-CAZ30C-CPD10C-NE10C
UPMP 2045	SAMN19374575	water	not tested for phenotypic resistance
UPMP 2062	SAMN19374562	water	not tested for phenotypic resistance
UPMP 2066	SAMN24818881	water	not tested for phenotypic resistance
UPMP 2087	SAMN24818882	water	not tested for phenotypic resistance
UPMP 2097	SAMN24818883	water	not tested for phenotypic resistance
UPMP 1722	SAMN24818887	water	A10C-AP10C-TS25C-CPM30C-T30C-GM10C-CTX30C-CAZ30C-CPD10C-AUG30C-NE10C
UPMP 1725	SAMN24818888	water	A10C-AP10C-TS25C-CPM30C-T30C-CTX30C-CAZ30C-CPD10C-AUG30C-NE10C
UPMP 1727	SAMN19374590	water	A10C-AP10C-TS25C-CPM30C-T30C-CTX30C-CAZ30C-CPD10C-AUG30C-NE10C
UPMP 1745	SAMN24818908	water	A10C-AP10C-TS25C-CPM30C-T30C-CTX30C-CAZ30C-CPD10C-AUG30C-NE10C
UPMP 1749	SAMN19374589	water	A10C-AP10C-TS25C-CPM30C-T30C-CTX30C-CAZ30C-CPD10C-AUG30C-NE10C
UPMP 1761	SAMN19374598	water	A10C-AP10C-TS25C-CPM30C-IMI10C-T30C-GM10C-C30C-CTX30C-CAZ30C-CPD10C-AUG30C- NE10C
UPMP 1772	SAMN24818890	water	A10C-AP10C-TS25C-CPM30C-T30C-C30C-CTX30C-CAZ30C-CPD10C-AUG30C-NE10C
UPMP 1785	SAMN16339893	water	A10C-AP10C-TS25C-CPM30C-T30C-GM10C-C30C-CTX30C-CAZ30C-CPD10C-AUG30C-NE10C
UPMP 1787	SAMN24818891	water	A10C-AP10C-TS25C-CPM30C-T30C-C30C-CTX30C-CAZ30C-CPD10C-AUG30C-NE10C
UPMP 1797	SAMN24818892	water	A10C-AP10C-TS25C-CPM30C-T30C-C30C-CTX30C-CAZ30C-CPD10C-AUG30C-NE10C
UPMP 1798	SAMN16339898	water	A10C-AP10C-TS25C-CPM30C-T30C-GM10C-C30C-CTX30C-CAZ30C-CPD10C-AUG30C-NE10C
UPMP 2117	SAMN15421725	water	A10C-AP10C-FOX30C-CPM30C-T30C-GM10C-CTX30C-CAZ30C-CPD10C-AUG30C-C10C-N310C
UPMP 2130	SAMN15421738	water	A10C-AP10C-TS25C-CPM30C-IMI10C-T30C-C10C-NE10C
UPMP 609	SAMN19374555	fresh produce	A10C-AP10C-T30C-GM10C-AUG30C-NE10C
UPMP 720	SAMN19374549	fresh produce	A10C-AP10C-CPM10C-CTX30C-CAZ30C-CPD10C-AUG30C-C10C

Table 1. continued

isolate ID code	accession number	isolation source	reported phenotypic antibiotic resistance profile
UPMP 723	SAMN24818884	fresh produce	A10C-AP10C-CPM30C-CTX30C-CAZ30C-CPD10C-AUG30C-C10C-NE10C
UPMP 767	SAMN24818885	fresh produce	A10C-AP10C-TS25C-CPM30C-CTX30C-CAZ30C-CPD10C-AUG30C-C10C-NE10C
UPMP 768	SAMN19374597	fresh produce	A10C-AP10C-TS25C-CPM30C-T30C-CTX30C-CAZ30C-CPD10C-AUG30C-NE10C
UPMP 784	SAMN19374592	fresh produce	A10C-AP10C-TS25C-CPM30C-T30C-CTX30C-CAZ30C-CPD10C-AUG30C-C10C-NE10C
UPMP 788	SAMN19374554	fresh produce	A10C-AP10C-TS25C-CPM30C-T30C-GM10C-CTX30C-CAZ30C-CPD10C-C10CNE10C
UPMP 790	SAMN24818886	fresh produce	A10C-AP10C-FOX30C-CPM30C-IMI10C-T30C-GM10C-CTX30C-CAZ30C-CPD10C-C10C-NE10C
UPMP 809	SAMN19374564	fresh produce	A10C-AP10C-FOX30C-CPM30C-CTX30C-CAZ30C-CPD10C-AUG30C-C10C-NE10C
UPMP 812	SAMN19374550	fresh produce	A10C-AP10C-TS25C-FOX30C-CPM30C-IMI10C-T30C-GM10C-CTX30C-CPD10C-AUG30C-C10C- NE10C
UPMP 818	SAMN19374567	fresh produce	A10C-AP10C-FOX30C-CPM30C-IMI10C-T30C-CTX30C-CAZ30C-CPD10C-AUG30C-C10C-NE10C
UPMP 819	SAMN19374565	fresh produce	A10C-AP10C-TS25C-FOX30C-CPM30C-T30C-CTX30C-CAZ30C-CPD10C-AUG30C-C10C-N310C
UPMP 1126	SAMN19374556	fresh produce	A10C-AP10C-TS25C-FOX30C-CPM30C-T30C-GM10C-C30C-CIP5C-S10C-NA30C-CTX30C-CAZ30C- CPD10C-AUG30C-NE10C-KF30C-N300C
UPMP 1129	SAMN19374544	fresh produce	A10C-AP10C-TS25C-FOX30C-CPM30C-T30C-GM10C-C30C-CIP5C-S10C-NA30C-CTX30C-CAZ30C- CPD10C-AUG30C-NE10C-KF30C-N300C
UPMP 1131	SAMN19374545	fresh produce	A10C-AP10C-TS25C-FOX30C-CPM30C-T30C-GM10C-CIP5C-S10C-NA30C-CTX30C-CAZ30C- CPD10C-AUG30C-NE10C-KF30C-N300C
UPMP 1515	SAMN19374559	fresh produce	T30C-GM10C-CIP5C-NA30C-KF30C
UPMP 1524	SAMN24818870	fresh produce	A10C-AP10C-TS25C-T30C-GM10C-C30C-CIP5C-S10C-N3C-CTX30C-KF30C-N300C
UPMP 1531	SAMN19374553	fresh produce	A10C-AP10C-TS25C-T30C-C30C-CIP5C-S10C-NA30C-CTX30C-KF30C-N300C
UPMP 1542	SAMN24818872	fresh produce	A10C-AP10C-TS25C-T30C-C30C-CIP5C-S10C-NA30C-CTX30C-KF30C-N300C
UPMP 1545	SAMN24818873	fresh produce	A10C-AP10C-TS25C-T30C-C30C-CIP5C-NA30C-CTX30C-KF30C-N300C
UPMP 1547	SAMN24818874	fresh produce	A10C-AP10C-TS25C-T30C-C30C-CIP5C-S10C-NA30C-CTX30C-KF30C-N300C
UPMP 1548	SAMN19374576	fresh produce	A10C-AP10C-TS25C-T30C-GM10C-C30C-S10C-NA30C-CTX30C-KF30C-N300C
UPMP 1549	SAMN24818871	fresh produce	A10C-AP10C-TS25C-T30C-GM10C-C30C-S10C-NA30C-CTX30C-KF30C-N300C
UPMP 1551	SAMN24818875	fresh produce	A10C-AP10C-TS25C-T30C-C30C-S10C-NA30C-CTX30C-KF30C-N300C
UPMP 1716	SAMN15905474	fresh produce	A10C-AP10C-CPM30C-IMI10C-T30C-CTX30C-CAZ30C-CPD10C-AUG30C-NE10C
UPMP 1991	SAMN19374581	fresh produce	A10C-AP10C-TS25C-T30C-C30C-CTX30C-CAZ30C-CPD10C-NE10C
UPMP 1993	SAMN19374586	fresh produce	A10C-AP10C-FOX30C-CTX30C-CAZ30C-CPD10C-NE10C
UPMP 2011	SAMN24818880	fresh produce	A10C-AP10C-T30C-C30C-CTX30C-CAZ30C-CPD10C-AUG30C-NE10C
UPMP 2050	SAMN19374582	fresh produce	not tested for phenotypic resistance
UPMP 2120	SAMN15421728	fresh produce	A10C-AP10C-TS25C-FOX30C-CPM30C-IMI10C-CTX30C-CAZ30C-CPD10C-C10C-NE10C

however, distinguishing ExPEC is difficult.¹⁴ Variants within the ExPEC group are classified according to the host and site of infection as uropathogenic *E. coli* (UPEC), neonatal meningitis *E. coli* (NMEC), avian pathogenic *E. coli* (APEC), and septicemia-associated *E. coli* (SEPEC).^{11,12} The virulence factors of ExPEC may be present in various combinations and can be divided into five main categories, namely, ironsequestering systems (*iucD*, *irp2*, and *chuA*), adhesins (*papC*, *F10papA*, *sfaDE*, *afaBC III*, *iha*, *fimH*, *clpG*, *tsh*, and *hra*), invasin (*ibe10*), protectins (*TraT*, *OmpA*, and the capsular antigen K), and toxins (*ompT*, *ehxA*, *espP*, *hlyA*, *hlyD*, *vat*, *sat*, and *cnf* 1).^{12,13} ExPEC infections are being recognized as an emerging serious public health threat due to the increased acquisition of new and troubling antibiotic-resistance genes, leading to ineffective treatment options.¹³ *E. coli* is globally reported as one of the leading pathogens responsible for human deaths associated with antimicrobial resistance.^{15,16}

As *E. coli*, both commensal and pathogenic, can colonize and persist in various niches, it is often used as an indicator of fecal contamination in water and food safety system monitoring.¹⁷

Article

Figure 1. cgMLST-based minimum spanning tree of 61 *E. coli* isolates recovered from water and fresh produce from formal and informal fresh produce production systems in South Africa. Isolates belonging to the same dominant sequence types (ST) are circled and labeled, and the isolation source is shown in different colors.

More recently, it is also an indicator of antimicrobial resistance dynamics in a One Health context due to its genomic plasticity and frequent exposure to antimicrobial pressure.^{18,19} Indeed, the One Health paradigm implies that human and animal health and the environment are interdependent.¹⁸ Potential reservoirs for ExPEC include nonhuman reservoirs such as surface water, food animals, fresh produce, soil, sewage, and wastewater effluent.^{15,20} The ubiquity of *E. coli* renders it a One Health problem involving the water-plant-animal-food-public health interface; therefore, standardizing surveillance methodology across all reservoirs becomes important to be able to produce reliable, comparable data of the circulating genomic background.²¹

Whole genome sequencing (WGS) has become the tool of choice in laboratory-based outbreak investigations, particularly in public health.^{21,22} In addition to public health surveillance, within a food safety context, many high-income countries have successfully adopted WGS in routine food surveillance/ monitoring systems.^{21,23} Higher accuracy insight into isolate relationships is provided with WGS analysis, making it possible to track trends associated with pathogen virulence and antimicrobial resistance. This can support risk assessment when combined with available metadata across all One Health domains.²¹ However, Richter et al.²⁴ recently reported that the use of WGS in environmental surveillance studies in low-and middle-income countries (LMICs) remains low.

It is well documented that potential microbial contamination arises along many points throughout fresh produce production and supply systems.²⁵ In South Africa, the dualistic fresh produce production system consists of highly regulated formal systems with commercial farms as well as the informal system, where predominantly small-scale farmers often have limited resources and infrastructure.²⁶ However, across all fresh produce production in South Africa (both formal and informal), agricultural irrigation water sources predominantly include surface water (rivers, streams, dams, and canals) as well as borehole water.^{28–30} Typically, water used for irrigation will either be directly applied to the field from the specific water source or pumped into a holding dam or water reservoir until use.^{30,31} The current study aimed to evaluate the circulating antimicrobial resistance genes, virulence factors, and serotypes of 61 historically isolated multidrug-resistant ESBL-producing *E. coli* (2016–2019) from water and fresh produce samples in South Africa,^{26–33} using WGS. Furthermore, to establish baseline genomic information on the predicted pathogenicity of environmental isolates comparable to existing clinical data.

MATERIALS AND METHODS

Multidrug-Resistant ESBL-Producing *E. coli* Selected for Whole Genome Sequence Analysis. Sequences of 61 multidrug-resistant ESBL-producing environmental *E. coli* isolates were retrieved from the National Center for Biotechnology Information (NCBI) GenBank database under the BioProject accession number PRJNA642017 for in-depth genomic characterization (Table 1). The de novo assembly metrics of all sequences are shown in the Supporting Information Table 1. The contigs were subsequently submitted to the Galaxy platform (https://usegalaxy.eu/), Center for Genomic Epidemiology (CGE) platform (https://cge.cbs.dtu. dk/services/), and Technical University of Denmark (DTU) for bioinformatics analysis.

Phylogenetic Screening. All genomes were annotated using Prokka (Galaxy Version 1.14.6 + galaxy1),³⁴ and the *E. coli* core genome alignments were constructed using Roary (Galaxy Version 3.13.0 + galaxy2)³⁵ based on the genome annotation files (gff3 file). The default parameters (95% identity for blastp and 99% of isolates a gene must be in to be core) were used in Roary to classify the core/unique genes. Subsequently, the "core gene alignment" Roary results were used to construct a phylogenetic tree using Fasttree (Galaxy Version 2.1.10 + galaxy1) and visualized using iTOL.³⁶ A core

Figure 2. cgMLST-based phylogenetic tree showing the distribution of virulence genes by the phylogroup, sequence type (ST), serogroup, and isolation source (water, blue and fresh produce, green) of *E. coli*. The colored circles indicate the presence (filled) or absence (open circle) of the different virulence genes with Adhesins, Iron uptake genes, Protectins, and Toxins typically associated with ExPEC.

genome MLST (cgMLST) analysis was additionally performed with the default settings using cgMLSTFinder-1.2 on the CGE platform^{37,38} and visualized in iTOL. The minimum spanning tree from the *E. coli* isolates based on the MLST scheme was generated using SeqSphere+.³⁹ The different phylogroups of the *E. coli* isolates were determined using *in silico* ClermonTyping.⁹

Gene Screening. Using the CGE platform (https://cge. cbs.dtu.dk/services/), the sequence types, serotypes based on lipopolysaccharide (O-antigen) and capsular flagella (protein; H-antigen), and virulence genes were determined with Multilocus Sequence Typing (MLST; version 2.2), SeroType-Finder (version 2.0), and VirulenceFinder (version 2.0), respectively.40-42 Default parameters were considered for all of the software used unless otherwise indicated. With ABRicate (https://github.com/tseemann/abricate), the AMR gene presence was corroborated using the Comprehensive Antibiotic Resistance Database (CARD), ARG-ANNOT, Res-Finder, NCBI AMRFinder Plus, and MEGA Res databases,43-48 while the presence of metal resistance genes was determined with BacMet version 2.0.49 Furthermore, mobile genetic elements and their association with virulence and antimicrobial resistance genes were determined with MobileElementFinder (Version 1.0.3),⁵⁰ and the presence of integrons with IntegronFinder version 2.0,⁵¹ while PathogenFinder version 1.1 was used to predict the pathogenicity of the E. coli isolates toward human hosts.⁵²

RESULTS

Phylogroups, Sequence Types, and Serotypes of the *E. coli* **Isolates.** The phylogenetic grouping showed that *E. coli* belonging to phylogroups A, B1, C, D, E, F, and G were recovered from water samples, and *E. coli* that belonged to phylogroups A, B1, B2, D, E, and G were recovered from fresh produce samples. Of the 61 *E. coli* isolates, phylogroups A (31.15%) and B1 (27.87%) were the most common in the environmental samples. The B2 isolates (3.28%) were recovered from fresh produce samples only, while isolates belonging to phylogroups D (6.56%) and E (14.75%) were recovered from water and fresh produce samples. Interestingly, four isolates (6.56%) from both water and fresh produce samples belonged to phylogroup G, which is closely related to phylogroup B2.¹⁰

A total of 19 known MLST groups were detected among the 61 isolates (Figure 1 and Tables 3–5). ST58 (*n* = 10, 16.39%), belonging to phylogroup B1, and ST9583 (n = 8, 13.11%), belonging to phylogroup E, were the most common E. coli sequence types associated with the environmental (water and fresh produce) samples. Within phylogroup B1 isolates, other STs found included ST162, ST602, and ST847. The ST10 (n = 6, 11.48%) isolates were restricted to the water samples and detected only in isolates belonging to phylogroup A (Figure 1). Other STs associated with phylogroup A were ST48, ST93, ST226, ST681, ST752, and ST1585. ST1193 was detected in phylogroup B2 and ST117 in phylogroup G. Four isolates (6.56%) within phylogroups B1, E, and F belonged to unknown STs, while most of the other MLST groups were detected to a limited extent (Figure 2). Using Enterobase,⁵³ the unknown STs were identified within the MLST-Enterobase (ST210d7d18a802c59df81880a978149a02c49a6021b, STc75-778699e0a2b1faca8b5d6f9051eb7d9defca4, and ST85e7b10eb1371e1fae7d8bf12c0066e6a995add0) and MLST-Pasteur (STb0618816d6163930f5c1952a39b99044904119f5, ST782-9ecb9c01fd0f5134a9452e5ded95cdbc670dc, and STcddffc61-67c10ddd07704ddd888c485cedb717d2) databases.

Figure 3. cgMLST-based phylogenetic tree showing the distribution of antimicrobial resistance genes by the phylogroup, sequence type (ST), serogroup, and isolation source (water: blue and fresh produce: green) of *E. coli*. The colored circles indicate the presence (filled) or absence (open circle) of the different genes within the different antibiotic classes.

No distinct pattern was observed among the MLST groups, phylogroups, and serotypes (i.e., O- and H-typing). A total of 14 (22.95%) isolates had an untypeable O-type, while the H-types for these isolates varied between H19, H2, H21, H37, and H39. One isolate from fresh produce belonging to phylogroup A was determined to contain two O-types on the same contig (Figure 2). Eight isolates (ST10, ST753, or ST1585) with the O101 serogroups had either H9 or H10 types and belonged predominantly to phylogroup A (Figure 2). In total, a diversity of 27 serotypes were detected across the complete collection (Figure 2).

Characteristics of Virulence Factors among the E. coli Isolates. The virulence genes detected belonged to the adhesins, nutritional/metabolic, biofilm, invasion, and effector delivery systems virulence factor categories.⁵⁴ The distribution of the different virulence genes mostly depended on the phylogroups and sequence types (Figure 2). No distinct difference was seen in virulence-associated genes detected in E. coli isolated from water compared to those isolated from fresh produce samples. The most frequent virulence genes identified within the adhesin category were the UPEC-associated *fimH*, followed by the APEC-associated *ipfA*. Within the nutritional/ metabolic category, the iron uptake virulence genes were predominant in isolates that belonged to phylogroup G (Figure 2). Furthermore, the *chuA* virulence factor was the only gene that regulated iron uptake detected in isolates belonging to phylogroup E. The UPEC-associated traT protectin virulence factor was present in 81.97% (n = 50) of the isolates. Except for one phylogroup A isolate where espA, espB, and espF were found, the toxin category genes (*ompT*, n = 2 and *vat*, n = 4)

were exclusively present in isolates from phylogroups B2 and G, respectively (Figure 2).

Antimicrobial Resistance Genes. Only 95.1% of the 61 isolates presented a potentially multidrug-resistant genotype with resistant genes in three or more antibiotic classes present (Figure 3). Overall, 60.66% of the *E. coli* isolates had aminoglycoside resistance genes present. The most common aminoglycoside-modifying enzyme encoding genes were *aph*-(6)-*Id* followed by *ant*(3")-*Ia*, *aadA2*, and *aph*(3")-*Ib*. The phenotypic antimicrobial resistance patterns of the *E. coli* isolates from the individual cross-sectional studies^{26,27,30–33} showed that at least 55 of the *E. coli* isolates exhibited a phenotypic multidrug resistance profile, with resistance to different antibiotics in at least three different antibiotic classes (Table 2).

The dominant ESBL-encoding genes in the confirmed ESBL-producing *E. coli* were $bla_{CTX-M-14}$ (n = 24, 39, 34%), $bla_{\text{CTX-M-15}}$ (n = 17, 27, 87%), and $bla_{\text{CTX-M-1}}$ (n = 14; 22, 95%), found in isolates belonging to all of the different phylogenetic groups (Figure 3). Other β -lactamase genes present predominantly in phylogroups A, B1, and C include bla_{CTX-M-55}, bla_{SHV-187}, bla_{TEM-1B}, bla_{TEM-141}, and hugA. Additionally, in selected isolates belonging to phylogroups A-B2, the $bla_{CTX-M-27}$ ESBL gene was present (Figure 3). Overall, a higher percentage of water E. coli isolates showed resistance against third-generation cephalosporins (cefpodoxime, cefotaxime, ceftazidime, and cefepime) than E. coli isolates from fresh produce (Table 1). Although the phylogroup G isolates harbored fewer resistance genes compared to isolates from other phylogroups (Figure 3), the WGS-predicted phenotype and phenotypic antimicrobial resistance profiles presented as

Table 2. Antimicrobial Resistance Results of *E. coli* Isolates from Water and Fresh Produce Samples in Formal and Informal Production Systems in South Africa

		number (%) of isolate	f resistant s
antibiotic class	antibiotic	fresh produce $(n = 29)$	water $(n = 26)$
penicillin	ampicillin	28 (97)	26 (100)
	amoxicillin	28 (97)	25 (96)
	augmentin	14 (48)	19 (73)
sulfonamide	trimethoprim- sulfamethoxazole	19 (66)	20 (77)
carbapenem	imipenem	5 (17)	3 (12)
tetracycline	tetracycline	22 (76)	21 (81)
aminoglycoside	neomycin	19 (66)	25 (96)
	gentamicin	12 (41)	7 (27)
	nitrofurantoin	11 (38)	
	streptomycin	10 (34)	
chloramphenicol	chloramphenicol	24 (83)	15 (58)
quinolone	nalidixic acid	12 (41)	
fluoroquinolones	ciprofloxacin	11 (38)	
cephalosporin	cephalothin	12 (41)	
	cefoxitin	10 (34)	5 (19)
	cefpodoxime	18 (62)	23 (88)
	cefotaxime	26 (90)	24 (92)
	ceftazidime	19 (66)	22 (85)
	cefepime	17 (59)	18 (69)

multidrug-resistant. The phylogroup B2 isolates harbored β lactam and macrolide resistance genes; however, the phenotypic profiles only showed expression of β -lactamase enzymes. Interestingly, the one phylogroup F isolate was the only one to harbor the catA1 resistance gene. The chloramphenicol exporter resistance genes (*cmlA1* and *floR*) were identified in 24.6% (n = 15) and 4.9% (n = 3) of the isolates, respectively, all belonging to phylogroups A (n = 9cmlA, n = 2 floR), B1 (n = 4 cmlA, n = 1 floR), and C (n = 2*cmlA*). Out of the 55 isolates tested for antimicrobial resistance susceptibility, 71% were resistant against chloramphenicol (Table 2). Within the sulfonamide class, the sul2 resistance gene was mostly present (28/61), followed by sul3 (15/61) (Figure 3). Additionally, the *dfrA1* gene encoding trimethoprim resistance was present (11/61), and phenotypic resistance against trimethoprim-sulfamethoxazole was observed in 39 of the 55 isolates (Table 2). Only 27 isolates harbored fosfomycin resistance genes, with fosA3 present in 25 of these isolates. Of all of the isolates, the six ST10 (serotype O101:H9) isolates carried the most resistance genes, with genes from eight different antibiotic classes present (Figure 3). These isolates all had similar multidrug-resistant phenotypes with resistance against antibiotics within the penicillin, sulfonamide, tetracycline, aminoglycoside, and cephalosporin antibiotic classes. Interestingly, no hits were found for predicted or experimentally confirmed metal resistance genes in any of the isolates.

Mobile Genetic Elements. Mobile genetic elements associated with similar virulence and antimicrobial resistance genes were present in *E. coli* isolates from water and fresh produce samples (Table 3). Interestingly, only water sample *E. coli* isolates had Inc.FII and Inc.FII(pRSB107) plasmids associated with aminoglycoside, tetracycline, and chloramphenicol antimicrobial resistance genes (Table 4), while *E. coli* from water and fresh produce samples carried the same

plasmids (Inc.FII and Inc.FII(pRSB107)) with associated virulence factors. The ESBL-encoding genes associated with mobile genetic elements were $bla_{\text{CTX-M-1}}$ (associated with ISEc9 and Inc.1), bla_{CTX-M-14} (associated with IS26), bla_{CTX-M-15} (associated with ISEc9 and ISKpn19), and bla_{CTX-27} (associated with IS102) (Tables 3-5). In total, 31/61 isolates did not contain integrons, while three types of elements (complete integron, In0, and CALIN) were identified in the remaining isolates. IntegronFinder distinguishes a complete integron as an integron with an integron integrase nearby *attC* sites. From the current study, three isolates from leafy green vegetables and 12 isolates from river, borehole, or dam water contained complete Class 1 integrons. An InO element is distinguished as an integron integrase only, without any attC site nearby, and three isolates from cucumber, spinach, and canal water carried In0 elements. CALIN elements are described as clusters of attC sites lacking integrase nearby or a degraded integron. In the current study, nine isolates from dam water, cabbage, spinach, and apple samples carried CALIN elements. Overall, all of the E. coli isolates showed a > 90% predicted probability of being a human pathogen. This follows as the PathogenFinder tool provides a fast estimation of the pathogenic potential of bacteria based on the identification of gene families that correlate with pathogenicity in known and unknown strains.⁵²

DISCUSSION

To the authors' knowledge, this is the first study presenting genomic information on environmental multidrug-resistant ESBL-producing E. coli isolates from fresh produce and irrigation water sources in South Africa. In total, 59% of the multidrug-resistant ESBL-producing E. coli were considered commensal based on the phylogroups. It is well known that E. coli is ubiquitous and forms part of the natural flora of the gastrointestinal system of humans and animals. Apart from the traditional virulence factors and toxins that define pathogenicity, molecular features such as the ability to evade the host's immune system or a group of genes to activate other genes also contribute toward bacterial pathogenesis.52 In the current study, PathogenFinder was used to predict the probability of environmental E. coli being a human pathogen. The pipeline matched the genomic input against known pathogenic and nonpathogenic gene families as the presence of gene families containing proteins with unknown functions has also been reported to play an important role in pathogenicity,⁵² resulting in all isolates having a > 90% predicted probability of being a human pathogen. Commensal E. coli with no pathogenic features, as well as intestinal pathogenic strains, are most often observed in phylogroups A or B1.54 Correspondingly, most of the E. coli isolates from the current study belonged to phylogroups A and B1; however, no virulence genes associated with intestinal pathogenic strains were present.

Notably, ten *E. coli* ST58 strains belonging to phylogroup B1 were detected in the current study. However, the organisms' ability to acquire both resistant determinants and virulence factors results in harmless commensals becoming emerging human pathogens, capable of causing a broad spectrum of intestinal and extraintestinal disease.^{55,56} Previously, *E. coli* ST58 harboring multiple antimicrobial resistance and virulence genes have been reported in store-bought fresh produce as well as from pork sausage in Germany,^{57,58} similar to the results from the current study. Although limited information is available about the ST58 serotypes detected in the current

Table 3. Mobile Genetic Elements Associated with Virulence and Antimicrobial Resistance Genes in *E. coli* (Grouped According to Sequence Type) Isolated from Water and Fresh Produce Samples in South Africa

pubs.acs.org/est

			mobile genetic elements		genes associated with mobile genetic elements		
source	isolate ID code (UPMP-*)	accession number (SAMN*)	insertion sequence	plasmid	virulence	resistance	
				E. coli ST62			
river water	*2066	*24818881	ISCfr1 MITEEc1 IS100 MITEKpn1		nlpI; terC yehD; yehA; yehC; yehB fdeC	blaTEM-1B; aac(3)-Iid	
borehole water	*2087	*24818882	ISCfr1 IS100 MITEKpn1 MITEEc1		yehB; yehA; yehD; yehC (gad) (fdeC) nlpI; terC	aac(3)-Iid; bla _{TEM-1B}	
tomato	*809	*19374564	ISEc1	Inc.X1 Inc.FIB(AP001918)	hlyF; ompT (fdeC) (yehC; yehA;	aph(3')-11a	
			ISEc31 MITEEc1		yehB; yehB) hha (nlpI; terC) (terC; hra)		
	4- 4-			E. coli STIT/			
spinach	*/6/	*24818885	ISEc38 IS30	Inc.FII	traJ; traI; traJ; anr hha; fyuA; irp2 mchB; mchF; mchC; papC		
water reservoir	*2117	*15421725	IS421 ISEc38	Inc.FII	ompT traJ; anr; traT; traJ hha		
water reservoir	*588	*19374594	ISEc17	Inc.FII	mchF; mchC; mchB traJ; traT; traJ; anr chiA; tia; chiA		
			ISEc38 MITEEc1		mchC; papC; mchF; mchB hha; fyuA; irp2 terC		
water reservoir	*589	*19374573	IS421 IS629 IS30		ompT tia; shiA; shiA mchB; papC; mchC; mchF		
			MITEEc1 ISEc38 IS421	E seli ST266	tra1; traj; anr; traj terC fyuA; hha; irp2 ompT		
borehole water	*2045	*19374575		Inc.FII(29)	anr		
chinensis	*2050	*19374582	IS609	Inc.FII(29)	anr fimH		
canal water	*1745	*24818908	ISEc9	2		bla _{TEM-IB} ; qnrS1; aph(6)-Id; aph(3")- Ib; sul2; bla _{CTX-M-IS}	
			MITEEc1		(terC) (yehC; yehA; yehD; yehB)		
			ISEc46 ISEc1		irp2; fyuA ompT		
river water	*2007	*19374572	ISEc9 IS6100 IS5		irp2; fyuA vehD: vehC: vehA: vehR	bla _{CTX-M-15} dfrA14; mph(A)	
river water	*2010	*19374579	ISKpn24 IS6100		terC	mph(A); qacE; dfrA17; sul1; aadA5	
			IS102 MITEEc1		yehA; yehD; yehC; yehB	bla _{CTX-M-27}	
			18640 ISEc10		papA_F43 kpsMII; kpsE		

Article

Article

Table 3. continued

			mobile genetic elements		genes associated with mobile genetic elements		
source	isolate ID code (UPMP-*)	accession number (SAMN*)	insertion sequence	plasmid	virulence	resistance	
			ISEc1		ompT		
spinach	*2011	*24818880	IS6100			qacE; dfrA17; mph(A); sul1; aadA5	
			IS102			bla _{CTX-M-27}	
			MITEEc1		yehD; yehB; yehA; yehC		
			ISEc10		kpsE; kpsMII		
			IS640		papA F43		
				E. coli ST9583			
canal water	*1722	*24818887	MITEEc1		terC		
			IS609		vehB		
canal water	*1725	*24818888	MITEEc1		terC		
dam water	*1727	*19374590	MITEEc1		ter C		
unii water	1/2/	1757 1570	15609		ueh B		
eninach	*773	*24818884	15007	Inc HI2, Inc HI2A	yenD terC	anh(3'') Ib: $anh(6)$ Id: $anh(3'')$ Ib	
spinaen	723	24010004	15600	me.1112, me.1112/	uch B	upn(3)-10, upn(0)-10, upn(3)-10	
			13009		yenD		
. 1	*010	*10054575	MITEECI		terC		
spinach	*818	*193/456/	MITEECI		terC	11 (12	
onions	*812	*19374550	1826			bla _{CTX-M-14} ; fosA3	
			MITEEc1		terC		
			IS609		yehB		
green	*819	*19374565	MITEEc1		terC		
beans	*1524	*24010070		T T1	-1	((()) 12	
tomato	*1524	*24818870	107.0	Inc.11	сів	tet(A); sul2	
			ISEc9			bla _{CTX-M-1}	
			MITEEc1	(terC		
				Inc.FIB(AP001918)	ompT		
				E. coli ST58			
canal water	*1749	*19374589	IS102			bla _{CTX-M-27}	
borehole	*2097	*24818883	IS26			sul2	
water			ISSbo1			tet(A)	
			ISEc9			bla _{CTX-M-1}	
			ISEc60		yehC; yehB; yehA; yehD		
				Inc.FII(29)	anr		
dam water	*1774	*16339889	ISKpn19			tet(A); qnrS1	
			ISKox3		sitA; iucC; iutA	sitABCD	
				Inc.FII(pCoo)	traJ; traT; anr		
				Inc.B/O/K/Z	traT		
			IS100		iha		
			MITEEc1		(vehD: vehC) (terC)		
					(terC) (iss)		
			IS30		hha		
apple	*1548	*19374576		Inc.I1	cib	tet(A); sul2	
			ISEc9			bla _{CTX-M-1}	
			ISEc60		yehB; yehA; yehD; yehC		
			ISEc31		terC		
apple	*1549	*24818871		Inc.I1		tet(A)	
11			ISVsa3		cib	sul2	
			ISEc9			hla america	
			MITEEc1		(terC) (fdeC)	e merz-m-r	
cabbage	*1547	*24818874	ISSbo1		(11,0) (11,0)	tet(A)	
cubbuge	1017	21010071	ISVer3			sul?	
			ISE c0			bla	
			ISEC9		tauC	DiaCTX-M-1	
			ISECSI				
			MITEECI		(JaeC) (yenA; yehC; vehB: vehD)		
carrots	*1545	*74818873		Inc I1	cih	tet(A). hla come a constant	
	1010	210100/0	ISEc60		vehD. vehC. vehA. vehR	(1.), 0(1.X-M-1) 02	
			MITEE-1		fdeC		
			ICE -21		juce taxC		
au au 1-	*1716	*16006474	15EC51		urt	h_{1} $m_{1}(\ell)$ $t = t_{1}(\ell)$ $t_{1}(2^{n})$	
cucumber	1/10	139034/4	1550/5			<i>Ib; sul2</i>	

Table 3. continued

			mobile genetic elements		genes associated with mobile genetic elements		
source	isolate ID code (UPMP-*)	accession number (SAMN*)	insertion sequence	plasmid	virulence	resistance	
			ISKpn19			qnrS1; bla _{CTX-M-15}	
			MITEEc1		(terC) (nlpI)		
spinach	*1542	*24818872	ISVsa3			sul2	
				Inc.I1		tet(A)	
			ISEc9			bla _{CTX-M-1}	
			ISEc60		yehC; yehA; yehD; yehB		
			ISEc1		fdeC		
			MITEEc1		terC		
spinach	*2120	*15421728	ISKpn19			qnrS1; bla _{CTX-M-15}	
			ISEc31		terC		
			IS629		csgA; hlyE		
			IS609		gad		
			MITEEc1		nlpI		
spinach	*609	*19374555	ISKpn19			qnrS1; bla _{CTX-M-15}	
			MITEEc1		terC		
			IS629		csgA; hlyE		

study, it is well documented that ST58 *E. coli* strains have caused human extraintestinal infections, including sepsis, and are reported as one of the main ESBL-producing *E. coli* circulating in the human–animal–environment.⁵⁹ In food-producing environments, *E. coli* is often used to indicate fecal contamination as it appears at low background levels in the environment but has high survival rates.⁶⁰ Furthermore, the WHO reported that ESBL-producing *E. coli* should be used as an indicator in monitoring programs to facilitate the establishment of integrated multisectoral antimicrobial resistance surveillance in One Health.¹⁹ Interestingly, in four isolates (two phylogroup A ST93 and two phylogroup B1 ST847 and ST58 *E. coli* isolates) combinations of *KpsMII_K5*, *iutA*, and *papC* virulence factors, among others, were present.

According to Johnson et al.,⁶¹ for isolates to be classified as ExPEC, two or more of the *papAH*, and/or *papC* (P-fimbriae), sfa-focDE (S- and F1C-fimbriae), afa-draBC (Dr-binding adhesins), iutA (aerobactin siderophore system), and kpsMII (group 2 capsules) virulence factors need to be present. Other strains from the current study that also harbored two or more virulence factors for the acknowledged molecular definition of ExPEC belonged to phylogroups D (from water and fresh produce samples) and B2 (from fresh produce samples). Moreover, four strains from water and fresh produce samples from the current study belonged to phylogroup G. Clermont et al.¹⁰ reported that phylogroup G strains are highly virulent with antibiotic-resistance potential and are closely related to phylogroup B2. These strains represent around 1% of E. coli in humans and, although uncommon, have previously been isolated from livestock, poultry, and poultry meat in the East of England and Northern Europe.¹¹

In the current study, all phylogroup G strains belonged to the ST117 lineage, previously reported as the most prevalent lineage in phylogroup G and reported as a poultry-associated lineage with the ability to also establish in humans and cause severe extraintestinal diseases.¹⁰ From the current study, the phylogroup G ST117 isolates were obtained from irrigation water and fresh produce samples, and all four strains harbored the ExPEC determining virulence factors. Typically, *E. coli* strains responsible for extraintestinal infections belong to phylogroup B2, D, and F.^{61,62} The phylogroup D isolates from this study all belonged to ST69 lineages. Recently, ExPEC ST69 has been reported among the major lineages globally ("top 20 commonest ExPEC sequence types")^{63,64} and has been isolated from raw vegetables in South Korea⁶⁵ as well as from poultry and humans in Zambia.⁶⁶

In contrast to previous studies, the four E. coli ST69 strains from the current study had different serotypes and did not harbor plasmids associated with antimicrobial resistance genes. Other common lineages among ExPEC include ST10, and in the current study, six of the phylogroup A E. coli isolates were characterized as the O101:H-ST10 strains. Globally, ST10 is found in different hosts, including environmental and animal sources, among others, and is considered a high-risk emerging pandemic lineage.⁶⁶⁻⁶⁸ Typically, serotype O101 is detected among pathogenic E. coli, associated with animal and human disease, with serotype O101:H9 predominantly reported in Shiga toxin-producing E. coli (STEC). Interestingly, the O101:H9-ST10 strains from the current study did not harbor any stx1, stx2, eaeA, or ehxA virulence genes usually associated with STEC;⁵ however, antimicrobial resistance genes from at least eight different classes were present among these strains.

Although limited studies have focused on the surveillance of nonpathogenic bacteria, the significance of commensals as reservoirs of antimicrobial resistance in the environment and food chains is gaining more attention.^{15,69} As an example, Gekenidis et al.⁷⁰ reported on the occurrence of antibiotic-resistant environmental *E. coli* from drain water and irrigated chive plants through a complete irrigation chain with resistance determinants for up to six different antibiotic classes present. Although no clear distinction was seen between the resistance profiles of *E. coli* from irrigation water versus those of *E. coli* from fresh produce in the current study, the phylogroup E and G strains generally harbored fewer resistance genes than isolates that belonged to the other phylogenetic groups.

From the current study, 95.10% of the environmental strains showed a potential for multidrug resistance based on the genomic profile, with multidrug resistance defined as non-susceptibility to at least one agent in three or more antimicrobial categories.⁷¹ This contrasts with results from a study in Uganda, where the commensal *E. coli* isolates from food animals, characterized using WGS, harbored a limited

Table 4. Mobile Genetic Elements Associated with Virulence and Antimicrobial Resistance Genes in *E. coli* (Grouped According to the Sequence Type) Isolated from Water Samples only in South Africa

pubs.acs.org/est

			mobile	genetic elements	ts genes associated with mobile genetic elements		
source	isolate ID code (UPMP-*)	accession number (SAMN*)	insertion sequence	plasmid	virulence	resistance	
				E. coli ST10			
dam water	*1761	*19374598	ISEc9	Inc.FIB(AP001918) Inc.FII(pRSB107)	irp2; fyuA hlyF; etsC; ompT traT	bla _{CTX-M-15}	
			ISKox3 IS30		hlyE hha		
	*1772	*24818890	ISEc9 ISKox3		irp2; fyuA hlvE	bla _{CTX-M-15}	
	*1773	*16339888		Inc.FIB(AP001918) Inc.FII(pRSB107)	hlyF; ompT; etsC traT	tet(A): aadA2b: cmlA1	
			Tn5403 IS5075	(1		qnrB1 aph(6)-Id; aph(3")-Ib; sul2	
			15EC9	Inc.FIB(AP001918) Inc.I1	ompT; hlyF; etsC cib	DLa _{CTX-M-15}	
			ISKox3 IS30		hlyE hha		
	*1785	*16339893	ISEc9	Inc.FII(pRSB107)	traT irn2: fwuA	aadA2b; tet(A); cmlA1	
			ISKor3	Inc.FIB(AP001918)	etsC; ompT; hlyF	omc1x-m-15	
			IS30	Inc I1	hha cib		
	*1787	*24818891	ISEc9 ISSbol	ment	fyuA; irp2	$bla_{CTX-M-15}$	
			ISKox3	$I_{\rm DC} EIB(AD001018)$	hlyE hlyE: etsC: omnT	et(11), uuu120, emu11	
				Inc.FII(pRSB107) Inc.I1	traT cib		
	*1798	*16339898	IS30	Inc.FII(pRSB107)	hha traT	aadA2b; tet(A); cmlA1	
			ISEc9	Inc.FIB(AP001918)	fyuA; irp2 etsC; ompT; hlyF	bla _{CTX-M-15}	
			ISKox3	Inc.I1	cib hlyE		
			IS30		hha		
	*2130	*15421738	ISEc9 IS6100			bla _{CTX-M-14} dfrA14	
				Inc.FII(pRSB107) <i>E. coli</i> ST90	anr		
river water	*615	*19374548	ISVsa3	Inc.FII	cib	sul2 tet(A)	
			ISEc9 MITEEc1		yehD; yehA; yehB; yehC	bla _{CTX-M-1}	
			MITEEc1	Inc.FIB(AP001918)	nlpI; terC; terC ompT; hlyF		
			MITEEc1 MITEEc1		fdeC iss		
				E. coli ST93			
dam water	*1995	*24818876	ISEc9	Inc.I1		tet(A) bla _{CTX-M-1}	
			IS100	· · · · · · · · · · · · · · · · · · ·	mchB; kpsE; kpsMII_K5; mchC; mcmA; mchF		
			MITEEc1	Inc.FIB(AP001918)	hlyF; ompT hra traT: auro tral. tral		
			ISEc31	1110.711	shiA smnT		

Article

Article

Table 4. continued

			mobile genetic elements		genes associated with mobile genetic elements		
source	isolate ID code (UPMP-*)	accession number (SAMN*)	insertion sequence	plasmid	virulence	resistance	
	*1997	*19374561		Inc.I1		tet(A); bla _{CTX-M-1}	
			IS100		kpsE; mchC; kpsMII_K5; mchB; mcmA; mchF		
				Inc.FIB(AP001918)	hlyF; etsC; etsC; ompT		
				Inc.FII	traT; traJ; anr; traJ		
			ISEc31		shiA		
			ISEc1		ompT		
	*2006	*24818879		Inc.I1		tet(A)	
			ISEc9			bla _{CTX-M-1}	
			ISEc31		shiA		
				Inc.FIB(AP001918)	etsC; ompT; hlyF; etsC		
				Inc.FII	traT; traJ; anr; traJ		
			IS100		mcmA; kpsE; kpsMII_K5; mchB; mchC; mchF		
			ISEc1		ompT		
			MITEEc1		hra		
				E. coli ST602			
river water	*2004	*19374584		Inc.FII		aph(3")-Ib; aph(3")-Ib; aph(3")-Ib; aph(3")-Ib; aph(6)-Id	
				Inc.FIB(AP001918)	iroN; iss; etsC; ompT; etsC; hlyF		
			MITEEc1		fdeC		
			ISKpn24		cia; cvaC; mchF		
				E. coli ST681			
river	*2062	*19374562		Inc.FII(29)	anr		
water			IS609		fimH		
				E. coli ST752			
dam	*1797	*24818892		Inc.FIB(AP001918)	ompT; hlyF		
water			ISEc1		fdeC		
			ISEic2		astA		
				Inc.FII(pSEII)	anr		
1	*1006	*24010077	166100	E. coli \$184/		f(A) = F(A)	
dam water	*1996	*248188//	150100			ajrA1/; qacE; mpn(A); su11; aaaAS	
			15102 MITTEE -1		1 T	bla _{CTX-M-27}	
			MITEECI IS20		mpi		
			MITEE 1		pupC		
			ISEc1		yenD; yenA; yenD; yenC		
			MITEE 1		tarC		
			F coli STRSe	7h10eh1371e1f2e7d8h	f12c0066e6a995add0		
river water	*2005	*24818878	ISVsa3	./ 0100013/ 1011a0/ 400	112000000a775auu0	sul2	
muter							

number of antimicrobial resistance genes.¹⁵ Notably, none of the isolates in the current study harbored the plasmidmediated colistin resistance gene (mcr) or carbapenemase resistance genes (bla_{NDM} , bla_{KPC} , bla_{VIM} , and bla_{OXA-48}). This contrasts with previous similar studies in China, Brazil, Bangladesh, and Germany, where clinically relevant ESBLproducing E. coli harbored these genes conferring resistance to the last resort drugs for the treatment of infections isolated from water and fresh produce samples.⁷²⁻⁷⁵ However, multidrug-resistant E. coli isolates harboring clinically significant bla_{CTX-M} genetic determinants, among others, have previously been reported in water⁷⁶ and fresh produce⁷⁰ samples, which correspond to the results from the current study. Currently, the most prevalent ESBL globally reported in clinical isolates, human and animal fecal matter, and the aquatic environment is $bla_{\text{CTX-M-15}}$.^{71,77} The predominant β lactamase resistance genes detected in the current study were

 $bla_{\text{CTX-M-14}}$ (CTX-M Group 9) followed by $bla_{\text{CTX-M-15}}$ (CTX-M Group 1), and in selected isolates, these genes were associated with insertion sequences.

Specifically, in two isolates, $bla_{CTX-M-15}$ was carried on the insertion sequence ISEc9, which corresponds to a previous study where *E. coli* was isolated from hospital patients in Nigeria.⁷⁸ Moreover, the cocarriage of the quinolone resistance gene *qnrS1* and $bla_{CTX-M-15}$ in association with insertion sequence ISKpn19 from the current study corresponds to *E. coli* characterized from dairy farms in Québec, Canada.⁷⁹ The Inc.FII plasmid, known globally to contribute toward the spread of clinically relevant antimicrobial resistance genes,⁸⁰ was detected in association with certain virulence and antimicrobial resistance genes in isolates from water and fresh produce samples in the current study. Within a One Health context, these results emphasize the significance of monitoring food-producing environments, including water and

Table 5. Mobile Genetic Elements Associated with Virulence and Antimicrobial Resistance Genes in *E. coli* (Grouped According to the Sequence Type) Isolated from Fresh Produce Samples only in South Africa

pubs.acs.org/est

			mobile genetic elements		genes associated with mobile genetic elements	
source	isolate ID code (UPMP-*)	accession number (SAMN*)	insertion sequence	plasmid	virulence	resistance
				E. coli ST23		
cabbage	*1531	*19374553	ISVsa3			sul2
				Inc.I1		tet(A)
			ISEc9			bla _{CTX-M-1}
			MITEEc1		(yehC; yehA; yehB; yehD) (nlpI) (terC)	
1	*****	*2 4010055		Inc.FIB(AP001918)	etsC; hlyF; etsC; ompT	(.)
apple	*1551	*24818875		Inc.11		tet(A); bla _{CTY M 1}
			ISVsa3			sul2
			MITEEc1		(yehB; yehA; yehD; yehC) (terC) (nlpI)	
				Inc.FIB(AP001918)	etsC; ompT; etsC; hlyF	
			ISEc1		ompT	
				E. coli ST48		
lettuce	*1991	*19374581	ISEc9			bla _{CTX-M-15}
			IS5		tia	
			IS629		ireA	
	*= < 0	*****	105.0	Inc.FIB(AP001918)	hlyF; ompT	
spinach	*768	*19374597	ISEc9			bla _{CTX-M-15}
			18629		ireA tia	
			155	Inc $EIB(AD001018)$	uu omnTi hhiE	
			ISEc1	me.11D(11 001918)	omp1, my1 oad	
spinach	*784	*19374592	ISKpn8		oad	
1			1	E. coli ST162	0	
spinach	*1515	*19374559		Inc.I1		tet(A)
1				Inc.X1		aph(3')-IIa
				Inc.FIB(AP001918)	hlyF; ompT	-
			ISEc1		(hha; yehD; yehA; yehC; yehB) (fdeC)	
			MITEEc1		(nlpI; terC) (terC; hra)	
				E. coli ST1193		
lettuce	*1993	*19374586	MITEEc1		yehC; yehA; yfcV; yehB; yehD	
			ISEc31		iha	
• 1	*===	*10254540	18629		papA_F43; sat; iutA; iucC	11
spinach	*/20	*19374549	1526 MITEE - 1		(what im 2 with with a with	bla _{CTX-M-27}
			MITEECI		(yjcv; trp2; yenD; yenC; yenA; yenB; fyuA; trp2) (terC)	
			IS629		sat; iutA; papA_F43; iucC	
			ISEc31		iha	
				E. coli ST1585		
spinach	*788	*19374554		Inc.FIB(AP001918)	hlyF; ompT	
			MITEEc1		terC	
tomato	*790	*24818886		Inc.FIB(AP001918)	ompT; hlyF	
			MITEEc1		terC	
		E. co	oli STc757786	99e0a2b1faca8b5d6f9051eb7d9	defca4	
spinach	*1126	*19374556	ISEc38		hha	
				Inc.FII($pSEII$) Inc.FII($pSEII$)	anr	
				(K); Inc.I1		
		E. co	li ST210d7d18	Ba802c59df81880a978149a02c4	9a6021	
spinach	*1129	*19374544		Inc.FII(pSE11)	traT; anr	
			MITEEc1		(yehC; yehA; yehD; yehB) (nlpI)	
				Inc.FIB(AP001918)	hlyF; ompT	
			IS629		terC; astA	
			ISEc38		fdeC	
lettuce	*1131	*19374545	MITEEc1		(yehD; yehC; yehB; yehA) (nlpI)	
			IS629		astA; terC	
			ISEc38		fdeC	
				Inc.FIB(AP001918)	ompT; hlyF	

Article

Article

Table 5. continued

			mobile genetic elements		genes associated with mobile ge	enetic elements
source	isolate ID code (UPMP-*)	accession number (SAMN*)	insertion sequence	plasmid	virulence	resistance
				Inc.FII(pSE11)	anr; traT	

fresh produce, in food safety and antimicrobial resistance surveillance programs.

Mbanga et al.,⁸¹ reported on environmental E. coli from wastewater treatment plants and receiving river water in Kwazulu-Natal (South Africa) that cocarried antimicrobial resistance, heavy metal (mercury and chromate), and disinfectant (quaternary ammonium compounds) genes. In contrast, isolates from the current study did not harbor any heavy metal resistance genes. However, the biocide resistance qacE gene as well as the sull antimicrobial resistance gene, which are typically found at the 3' conserved segment in a class 1 integron,⁸² was present in two isolates from the current study where complete integrons were identified. Similarly, E. coli isolates from wastewater treatment plants in South Africa,⁸¹ broiler chickens in the South of Iran,⁸³ and human, animal, and environmental samples from countries of the Andean Community⁸⁴ have been reported to carry complete class 1 integrons. Integrons carrying multiple antibiotic-resistance genes or virulence genes, embedded within mobile genetic elements, significantly contribute toward bacteria across different One Health sectors acquiring traits through the cotransfer of genes, which can increase pathogenicity.⁸

It is well documented that interconnected reservoirs of antimicrobial-resistant bacteria include animals, humans, and food, which allows rapid gene exchange through horizontal gene transfer within food systems.⁸⁶ From a food safety perspective, identifying microbial contaminants in the waterplant-food nexus is vital for hazard characterization. In African countries, including South Africa, the evidence of STEC O157:H7 occurrence in the environment and infection among animals and humans, in general, is not conclusive.⁸ Furthermore, the results from the current study correspond to previous South African studies showing a low prevalence of STEC O157:H7, usually associated with E. coli foodborne disease outbreaks, in fresh produce production systems.^{26,30–33,87} Although antimicrobial-resistant bacteria complicate food safety assurance,² building a genomic database of the virulence genes, antimicrobial resistance genes, and potential pathogenicity of environmental isolates, comparable to existing clinical data, is essential for the implementation of risk mitigation strategies. A limitation of the current study is the use of short sequencing reads, preventing complete plasmid assembly and establishing the role of the detected plasmids in gene transfer among environmental bacteria. A recommendation for future research is therefore to combine phenotypic and long- and short-read whole genome sequencing characterization along with gene transfer studies to be able to investigate the role that plasmids play in mediating resistance within foodproducing environments. To date, the genomic evaluation of antimicrobial resistance, virulence factors, and associated mobile genetic elements in nonclinical E. coli have not been extensively investigated.⁸⁶ The results from the current study highlighted the important role that the environment has as a reservoir of multidrug-resistant E. coli and, furthermore, the critical need for continuous potential pathogen surveillance

within a One Health context. Future studies should further explore surveillance of the One Health environment.

ASSOCIATED CONTENT

③ Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.4c02431.

The assembly metrics of the whole genome sequences of *E. coli* isolated from water and fresh produce samples in South Africa (XLSX)

AUTHOR INFORMATION

Corresponding Author

Lise Korsten – Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0001, South Africa; Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Bellville 7535, South Africa; orcid.org/0000-0003-0232-7659; Email: lise.korsten@up.ac.za

Authors

- Loandi Richter Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0001, South Africa; Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Bellville 7535, South Africa; orcid.org/0000-0003-1730-7781
- Stacey Duvenage Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0001, South Africa; Food and Markets Department, Natural Resources Institute, University of Greenwich, Chatham ME4 4TB, United Kingdom
- Erika Margarete du Plessis Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0001, South Africa
- Thabang Msimango Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0001, South Africa; Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Bellville 7535, South Africa
- Manana Dlangalala Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0001, South Africa
- **Muneiwa Tshidino Mathavha** Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0001, South Africa
- Tintswalo Molelekoa Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0001, South Africa
- **Degracious Moloko Kgoale** Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0001, South Africa; Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Bellville 7535, South Africa

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.est.4c02431

Author Contributions

L.R., S.D., E.D.P., and L.K. contributed to the conception and design of the study. L.R. and S.D. contributed to the screening

of isolates and the collection of metadata. L.R., T.M., M.D., M.M., T.M., and D.K. contributed equally toward the isolation and purification of *E. coli* isolates. L.R. contributed to the raw sequence processing, sequence analysis, and data visualization. L.R., S.D., and E.D.P. contributed to the interpretation. S.D., E.D.P., and L.K. were involved in student supervision and funding acquisition. All authors contributed to manuscript editing and approved the submitted version.

Funding

The research was funded by the Water Research Commission (WRC) project "Measurement of water pollution determining the sources and changes of microbial contamination and impact on food safety from farming to retail level for fresh vegetables" (WRC Project No K5/2706/4 and WRC Knowledge Review 2017/18) and the Partnerships for Enhanced Engagement in Research (PEER) a USAID/DST funded project "Characterizing and tracking of antimicrobial resistance in the water-plant-food public health interface" (Grant no. 48). Furthermore, the financial assistance of the Department of Science and Innovation (DSI)-National Research Foundation (NRF) Center of Excellence in Food Security funded this research under the Food Safety Program's "Safe Food for the Food Insecure" project (Project 160301 and 160302). This work is based on the research supported in part by the NRF of South Africa [Grant specific unique reference number (UID): 74426 and Grant Number: 120319]. Opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed to the NRF. Whole genome sequencing was funded by the UK Department of Health and Social Care, managed by the Fleming Fund, and performed under the auspices of the SEQAFRICA project. The Fleming Fund is a £265 million UK aid program supporting up to 24 low- and middle-income countries (LMICs) to generate, share, and use data on antimicrobial resistance, and works in partnership with Mott MacDonald, the Management Agent for the Country and Regional Grants and Fellowship Program.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors would like to acknowledge Miss Zama Zulu for MALDI-ToF analysis and also Prof Anthony Smith and the National Institute for Communicable Diseases (NICD) Core Sequencing Facility from the NICD for whole genome sequencing of the isolates. Additionally, the authors acknowledge Miss Cornél Hugo for the design of the cover art that was submitted to be considered for use on the journal's front cover.

REFERENCES

(1) Blount, Z. D. The Unexhausted Potential of *Escherichia coli. eLife* **2015**, 2015 (4), No. e05826, DOI: 10.7554/eLife.05826.001.

(2) Enciso-Martínez, Y.; González-Aguilar, G. A.; Martínez-Téllez, M. A.; González-Pérez, C. J.; Valencia-Rivera, D. E.; Barrios-Villa, E.; Ayala-Zavala, J. F. Relevance of Tracking the Diversity of *Escherichia coli* Pathotypes to Reinforce Food Safety. *Int. J. Food Microbiol.* **2022**, 374, No. 109736, DOI: 10.1016/j.ijfoodmicro.2022.109736.

(3) Pokharel, P.; Dhakal, S.; Dozois, C. M. The Diversity of *Escherichia coli* Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. *Microorganisms* **2023**, *11*, No. 344, DOI: 10.3390/microorganisms11020344.

(4) Braz, V. S.; Melchior, K.; Moreira, C. G. *Escherichia coli* as a Multifaceted Pathogenic and Versatile Bacterium. *Front. Cell. Infect. Microbiol.* **2020**, *10*, No. 548492, DOI: 10.3389/fcimb.2020.548492.

(5) Geurtsen, J.; de Been, M.; Weerdenburg, E.; Zomer, A.; McNally, A.; Poolman, J. Genomics and Pathotypes of the Many Faces of *Escherichia coli*. *FEMS Microbiol*. *Rev.* **2022**, *46*, No. fuac031, DOI: 10.1093/femsre/fuac031.

(6) Alfinete, N. W.; Bolukaoto, J. Y.; Heine, L.; Potgieter, N.; Barnard, T. G. Virulence and Phylogenetic Analysis of Enteric Pathogenic *Escherichia coli* Isolated from Children with Diarrhoea in South Africa. *Int. J. Infect. Dis.* **2022**, *114*, 226–232.

(7) Khairy, R. M.; Mohamed, E. S.; Ghany, H. M. A.; Abdelrahim, S. S. Phylogenic Classification and Virulence Genes Profiles of Uropathogenic *E. coli* and Diarrhegenic *E. coli* Strains Isolated from Community Acquired Infections. *PLoS One* **2019**, *14* (9), No. e0222441, DOI: 10.1371/journal.pone.0222441.

(8) Ahmed, H. A.; Elsohaby, I.; Elamin, A. M.; El-Ghafar, A. E. A.; Elsaid, G. A.; Elbarbary, M.; Mohsen, R. A.; El Feky, T. M.; El Bayomi, R. M. Extended-Spectrum β -Lactamase-Producing *E. coli* from Retail Meat and Workers: Genetic Diversity, Virulotyping, Pathotyping and the Antimicrobial Effect of Silver Nanoparticles. *BMC Microbiol.* **2023**, 23 (1), No. 212, DOI: 10.1186/s12866-023-02948-0.

(9) Beghain, J.; Bridier-Nahmias, A.; Le Nagard, H.; Denamur, E.; Clermont, O. ClermonTyping: An Easy-to-Use and Accurate in Silico Method for *Escherichia* Genus Strain Phylotyping. *Microb. Genomics* **2018**, 4 (7), No. e000192, DOI: 10.1099/mgen.0.000192.

(10) Clermont, O.; Dixit, O. V. A.; Vangchhia, B.; Condamine, B.; Dion, S.; Bridier-Nahmias, A.; Denamur, E.; Gordon, D. Characterization and Rapid Identification of Phylogroup G in *Escherichia coli*, a Lineage with High Virulence and Antibiotic Resistance Potential. *Environ. Microbiol.* **2019**, *21* (8), 3107–3117.

(11) Meena, P. R.; Priyanka, P.; Singh, A. P. Extraintestinal Pathogenic *Escherichia coli* (ExPEC) Reservoirs, and Antibiotics Resistance Trends: A One-Health Surveillance for Risk Analysis from "Farm-to-Fork. *Lett. Appl. Microbiol.* **2023**, *76*, No. ovac016, DOI: 10.1093/lambio/ovac016.

(12) Sora, V. M.; Meroni, G.; Martino, P. A.; Soggiu, A.; Bonizzi, L.; Zecconi, A. Extraintestinal Pathogenic *Escherichia coli*: Virulence Factors and Antibiotic Resistance. *Pathogens* **2021**, *10* (11), No. 1355, DOI: 10.3390/pathogens10111355.

(13) Ramos, S.; Silva, V.; de Lurdes Enes Dapkevicius, M.; Caniça, M.; Tejedor-Junco, M. T.; Igrejas, G.; Poeta, P. *Escherichia coli* as Commensal and Pathogenic Bacteria among Food-Producing Animals: Health Implications of Extended Spectrum β -Lactamase (ESBL) Production. *Animals* **2020**, *10* (12), No. 2239, DOI: 10.3390/ani10122239.

(14) Riley, L. W. Distinguishing Pathovars from Nonpathovars: *Escherichia coli Microbiol. Spectrum* 2020; Vol. 8 4 DOI: 10.1128/microbiolspec.ame-0014-2020.

(15) Byarugaba, D. K.; Wokorach, G.; Alafi, S.; Erima, B.; Najjuka, F.; Mworozi, E. A.; Kibuuka, H.; Wabwire-Mangen, F. Whole Genome Sequencing Reveals High Genetic Diversity, Diverse Repertoire of Virulence-Associated Genes and Limited Antibiotic Resistance Genes among Commensal *Escherichia coli* from Food Animals in Uganda. *Microorganisms* **2023**, *11* (8), No. 1868, DOI: 10.3390/microorganisms11081868.

(16) Murray, C. J. L.; Ikuta, K. S.; Sharara, F.; Swetschinski, L.; Aguilar, G. R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S. C.; Browne, A. J.; Chipeta, M. G.; Fell, F.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. *Lancet* **2022**, 399 (10325), 629–655, DOI: 10.1016/S0140-6736(21)02724-0.

(17) Holcomb, D. A.; Stewart, J. R. Microbial Indicators of Fecal Pollution: Recent Progress and Challenges in Assessing Water Quality. *Curr. Environ. Health Rep.* **2020**, *7*, 311–324, DOI: 10.1007/s40572-020-00278-1.

(18) Perestrelo, S.; Amaro, A.; Brouwer, M. S. M.; Clemente, L.; Duarte, A. S. R.; Kaesbohrer, A.; Karpíšková, R.; Lopez-Chavarrias, V.; Morris, D.; Prendergast, D.; Pista, A.; Silveira, L.; Skaržyńska, M.; Slowey, R.; Veldman, K. T.; Zając, M.; Burgess, C.; Alvarez, J. Building an International One Health Strain Level Database to Characterise the Epidemiology of AMR Threats: ESBL—AmpC Producing *E. coli* as An Example - Challenges and Perspectives. *Antibiotics* **2023**, *12*, No. 552, DOI: 10.3390/antibiotics12030552.

(19) World Health Organization. WHO Integrated Global Surveillance on ESBL-Producing E. coli Using a "One Health" Approach: Implementation and Opportunities; World Health Organization, 2021. https://iris.who.int/handle/10665/340079.

(20) Manges, A. R.; Johnson, J. R. Reservoirs of Extraintestinal Pathogenic *Escherichia coli Microbiol. Spectrum* 2015; Vol. 3 5 DOI: 10.1128/microbiolspec.uti-0006-2012.

(21) Nouws, S.; Verhaegen, B.; Denayer, S.; Crombé, F.; Piérard, D.; Bogaerts, B.; Vanneste, K.; Marchal, K.; Roosens, N. H. C.; De Keersmaecker, S. C. J. Transforming Shiga Toxin-Producing *Escherichia coli* Surveillance through Whole Genome Sequencing in Food Safety Practices. *Front. Microbiol.* **2023**, *14*, No. 1204630, DOI: 10.3389/fmicb.2023.1204630.

(22) Besser, J. M.; Carleton, H. A.; Trees, E.; Stroika, S. G.; Hise, K.; Wise, M.; Gerner-Smidt, P. Interpretation of Whole-Genome Sequencing for Enteric Disease Surveillance and Outbreak Investigation. *Foodborne Pathog. Dis.* **2019**, *16* (7), 504–512.

(23) World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis, World Health Organization, 2017. https://iris.who.int/handle/10665/311820.

(24) Richter, L.; Du Plessis, E. M.; Duvenage, S.; Korsten, L. Prevalence of Extended-Spectrum β -Lactamase Producing Enterobacterales in Africa's Water-Plant-Food Interface: A Meta-Analysis (2010–2022). Front Sustainable Food Syst. **2023**, 23, No. 1106082, DOI: 10.3389/fsufs.2023.1106082.

(25) Alegbeleye, O. O.; Singleton, I.; Sant'Ana, A. S. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. *Food Microbiol.* **2018**, *73*, 177–208, DOI: 10.1016/j.fm.2018.01.003.

(26) Richter, L.; du Plessis, E.; Duvenage, S.; Korsten, L. High Prevalence of Multidrug Resistant *Escherichia coli* Isolated from Fresh Vegetables Sold by Selected Formal and Informal Traders in the Most Densely Populated Province of South Africa. *J. Food Sci.* **2021**, *86* (1), 161–168.

(27) Dlangalala, M. Molecular Detection, Quantification and Characterisation of Extended Spectrum β -Lactamase and AmpC Encoding Genes in a Cucumber Agroecosystem. Ph.D.Thesis, University of Pretoria, 2021.

(28) du Plessis, E. M.; Duvenage, S.; Korsten, L.; Sigge, G. Measurement of Water Pollution Determining the Sources and Changes of Microbial Contamination and the Impact of Food Safety from Farming to Retail Level of Fresh Vegetables, 2021.

(29) Kgoale, D. M.; Duvenage, S.; Du Plessis, E. M.; Gokul, J. K.; Korsten, L. Serotype Distribution, Antimicrobial Resistance, Virulence Genes, and Genetic Diversity of *Salmonella* Spp. Isolated from Small-Scale Leafy Green Vegetable Supply Chains in South Africa. *J. Food Prot.* **2024**, 87 (1), No. 100195, DOI: 10.1016/j.jfp.2023.100195.

(30) Richter, L.; Du Plessis, E.; Duvenage, S.; Korsten, L. Microbiological Safety of Spinach throughout Commercial Supply Chains in Gauteng Province, South Africa and Characterisation of Isolated Multidrug Resistant *Escherichia coli. J. Appl. Microbiol.* **2022**, 32 (3), 2389–2409.

(31) Ratshilingano, M. T.; du Plessis, E. M.; Duvenage, S.; Korsten, L. Characterization of Multidrug-Resistant *Escherichia coli* Isolated from Two Commercial Lettuce and Spinach Supply Chains. *J. Food Prot.* **2022**, *85* (1), 122–132.

(32) Msimango, T. N. The Prevalence and Characterisation of Foodborne Pathogens Isolated from Food from School Feeding Programmes in South Africa; University of Pretoria: Pretoria, 2020.

(33) Baloyi, T.; Duvenage, S.; Du Plessis, E.; Villamizar-Rodríguez, G.; Korsten, L. Multidrug Resistant *Escherichia coli* from Fresh Produce Sold by Street Vendors in South African Informal Settlements. *Int. J. Environ. Health Res.* **2021**, *32*, 1513–1528.

(34) Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. *Bioinformatics* **2014**, 30 (14), 2068–2069.

(35) Page, A. J.; Cummins, C. A.; Hunt, M.; Wong, V. K.; Reuter, S.; Holden, M. T. G.; Fookes, M.; Falush, D.; Keane, J. A.; Parkhill, J. Roary: Rapid Large-Scale Prokaryote Pan Genome Analysis. *Bioinformatics* **2015**, *31* (22), 3691–3693.

pubs.acs.org/est

(36) Letunic, I.; Bork, P. Interactive Tree of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. *Nucleic Acids Res.* **2021**, *49* (W1), W293–W296.

(37) Neumann, B.; Prior, K.; Bender, J. K.; Harmsen, D.; Klare, I.; Fuchs, S.; Bethe, A.; Zühlke, D.; Göhler, A.; Schwarz, S.; Schaffer, K.; Riedel, K.; Wieler, L. H.; Werner, G. A Core Genome Multilocus Sequence Typing Scheme for Enterococcus Faecalis. *J. Clin. Microbiol.* **2019**, 57 (3), No. e01686-18, DOI: 10.1128/JCM.01686-18.

(38) Pietsch, M.; Irrgang, A.; Roschanski, N.; Michael, G. B.; Hamprecht, A.; Rieber, H.; Käsbohrer, A.; Schwarz, S.; Rösler, U.; Kreienbrock, L.; Pfeifer, Y.; Fuchs, S.; Werner, G.; Bühling, A.; Domurath, B.; Wendt, C.; Valenza, G.; Wahl, H. G.; Hellkamp, J.; Arvand, M.; Kresken, M.; Podschun, R.; Schneider, S.; Tobisch, S.; Witt, M.; Eckmanns, T.; Hachmann, U.; Bührlen, U.; von Salviati-Claudius, C.; Lu, H. M.; Laube, H.; Hering, J. Whole Genome Analyses of CMY-2-Producing *Escherichia coli* Isolates from Humans, Animals and Food in Germany. *BMC Genomics* **2018**, *19* (1), No. 601, DOI: 10.1186/s12864-018-4976-3.

(39) Jünemann, S.; Sedlazeck, F. J.; Prior, K.; Albersmeier, A.; John, U.; Kalinowski, J.; Mellmann, A.; Goesmann, A.; Von Haeseler, A.; Stoye, J.; Harmsen, D. Updating Benchtop Sequencing Performance Comparison. *Nat. Biotechnol.* **2013**, *31*, 294–296, DOI: 10.1038/ nbt.2522.

(40) Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T. L. BLAST+: Architecture and Applications. *BMC Bioinf.* **2009**, *10*, No. 421, DOI: 10.1186/1471-2105-10-421.

(41) Joensen, K. G.; Tetzschner, A. M. M.; Iguchi, A.; Aarestrup, F. M.; Scheutz, F. Rapid and Easy in Silico Serotyping of *Escherichia coli* Isolates by Use of Whole-Genome Sequencing Data. *J. Clin. Microbiol.* **2015**, 53 (8), 2410–2426.

(42) Maria, A.; Tetzschner, M.; Johnson, J. R.; Johnston, B. D.; Lund, O.; Scheutz, F. In Silico Genotyping of *Escherichia coli* Isolates for Extraintestinal Virulence Genes by Use of Whole-Genome Sequencing Data. *J. Clin. Microbiol.* **2020**, *58*, No. e01269-20, DOI: 10.1128/JCM.01269-20.

(43) Doster, E.; Lakin, S. M.; Dean, C. J.; Wolfe, C.; Young, J. G.; Boucher, C.; Belk, K. E.; Noyes, N. R.; Morley, P. S. MEGARes 2.0: A Database for Classification of Antimicrobial Drug, Biocide and Metal Resistance Determinants in Metagenomic Sequence Data. *Nucleic Acids Res.* **2020**, *48* (D1), D561–D569.

(44) Feldgarden, M.; Brover, V.; Haft, D. H.; Prasad, A. B.; Slotta, D. J.; Tolstoy, I.; Tyson, G. H.; Zhao, S.; Hsu, C. H.; McDermott, P. F.; Tadesse, D. A.; Morales, C.; Simmons, M.; Tillman, G.; Wasilenko, J.; Folster, J. P.; Klimke, W. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. *Antimicrob. Agents Chemother.* **2019**, *63*, No. e00483-19, DOI: 10.1128/AAC.00483-19.

(45) Gupta, S. K.; Padmanabhan, B. R.; Diene, S. M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J. M. ARG-Annot, a New Bioinformatic Tool to Discover Antibiotic Resistance Genes in Bacterial Genomes. *Antimicrob. Agents Chemother.* **2014**, *58* (1), 212–220.

(46) Jia, B.; Raphenya, A. R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K. K.; Lago, B. A.; Dave, B. M.; Pereira, S.; Sharma, N.; Doshi, S.; Courtot, M.; Lo, R.; Williams, L. E.; Frye, J. G.; Elsayegh, T.; Sardar, D.; Westman, E. L.; Pawlowski, A. C.; Johnson, T. A.; Brinkman, F. S. L.; Wright, G. D.; Mcarthur, A. G. CARD 2017: Expansion and Model-Centric Curation of the Comprehensive Antibiotic Resistance Database. *Nucleic Acids Res.* **2017**, *45*, 566– 573, DOI: 10.1093/nar/gkw1004.

(47) Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F. M.; Larsen, M. V. Identification of Acquired Antimicrobial Resistance Genes. J. Antimicrob. Chemother. 2012, 67 (11), 2640–2644.

(48) Jia, B.; Raphenya, A. R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K. K.; Lago, B. A.; Dave, B. M.; Pereira, S.; Sharma, A. N.; Doshi, S.; Courtot, M.; Lo, R.; Williams, L. E.; Frye, J. G.; Elsayegh, T.; Sardar, D.; Westman, E. L.; Pawlowski, A. C.; Johnson, T. A.; Brinkman, F. S. L.; Wright, G. D.; McArthur, A. G. CARD 2017: Expansion and Model-Centric Curation of the Comprehensive Antibiotic Resistance Database. *Nucleic Acids Res.* 2017, 45 (D1), D566–D573.

(49) Pal, C.; Bengtsson-Palme, J.; Rensing, C.; Kristiansson, E.; Larsson, D. G. J. BacMet: antibacterial biocide and metal resistance genes database. *Nucleic Acids Res.* **2014**, *42*, D737–D743.

(50) Johansson, M. H. K.; Bortolaia, V.; Tansirichaiya, S.; Aarestrup, F. M.; Roberts, A. P.; Petersen, T. N. Detection of Mobile Genetic Elements Associated with Antibiotic Resistance in Salmonella Enterica Using a Newly Developed Web Tool: MobileElementFinder. *J. Antimicrob. Chemother.* **2021**, *76* (1), 101–109.

(51) Néron, B.; Littner, E.; Haudiquet, M.; Perrin, A.; Cury, J.; Rocha, E. P. C. IntegronFinder 2.0: identification and analysis of integrons across Bacteria, with a focus on antibiotic resistance in Klebsiella *Biorxiv* 2022 DOI: 10.1101/2022.02.28.482270.

(52) Cosentino, S.; Larsen, M. V.; Aarestrup, F. M.; Lund, O. PathogenFinder - Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data. *PLoS One* **2013**, *8* (10), No. e77302, DOI: 10.1371/journal.pone.0077302.

(53) Zhou, Z.; Alikhan, N. F.; Mohamed, K.; Achtman, M.; The Agama Study Group. The EnteroBase user's guide, with case studies on *Salmonella* transmissions, *Yersinia pestis* phylogeny and *Escherichia* core genomic diversity. *Genome Res.* **2020**, *30*, 138–152, DOI: 10.1101/gr.251678.119.

(54) Liu, B.; Zheng, D.; Zhou, S.; Chen, L.; Yang, J. VFDB 2022: A General Classification Scheme for Bacterial Virulence Factors. *Nucleic Acids Res.* **2022**, *50* (D1), D912–D917.

(55) Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-Ploskonska, G.; Choroszy-Krol, I. Virulence Factors, Prevalence and Potential Transmission of Extraintestinal Pathogenic *Escherichia coli* Isolated from Different Sources: Recent Reports. *Gut Pathog.* **2019**, *11* (1), No. 10, DOI: 10.1186/s13099-019-0290-0.

(56) Pakbin, B.; Brück, W. M.; Rossen, J. W. A. Virulence Factors of Enteric Pathogenic *Escherichia coli*: A Review. *Int. J. Mol. Sci.* **2021**, *22*, No. 9922, DOI: 10.3390/ijms22189922.

(57) Eger, E.; Domke, M.; Heiden, S. E.; Paditz, M.; Balau, V.; Huxdorff, C.; Zimmermann, D.; Homeier-Bachmann, T.; Schaufler, K. Highly Virulent and Multidrug-Resistant *Escherichia coli* Sequence Type 58 from a Sausage in Germany. *Antibiotics* **2022**, *11* (8), No. 1006, DOI: 10.3390/antibiotics11081006.

(58) Reid, C. J.; Blau, K.; Jechalke, S.; Smalla, K.; Djordjevic, S. P. Whole Genome Sequencing of *Escherichia coli* From Store-Bought Produce. *Front. Microbiol.* **2020**, *10*, No. 3050, DOI: 10.3389/fmicb.2019.03050.

(59) Rojas-Jiménez, J.; Jiménez-Pearson, M. A.; Duarte-Martínez, F.; Brenes-Mora, E.; Arguedas, R.; Barquero-Calvo, E. First Report of a Multidrug-Resistant ST58 *Escherichia coli* Harboring Extended-Spectrum Beta-Lactamase of the CTX-M-1 Class in a Fecal Sample of a Captive Baird's Tapir (Tapirus Bairdii) in Costa Rica, Central America. *Microb. Drug Resist.* **2022**, *28* (1), 143–148.

(60) Anjum, M. F.; Schmitt, H.; Borjesson, S.; Berendonk, T. U.; Donner, E.; Stehling, E. G.; Boerlin, P.; Topp, E.; Jardine, C.; Li, X.; Li, B.; Dolejska, M.; Madec, J.-Y.; Dagot, C.; Guenther, S.; Walsh, F.; Villa, L.; Veldman, K.; Sunde, M.; Krzeminski, P.; Wasyl, D.; Popowska, M.; Jarhult, J.; Orn, S.; Mahjoub, O.; Mansour, W.; Nho Tha' i, D.; Elving, J.; Pedersen, K. The Potential of Using *E. coli* as an Indicator for the Surveillance of Antimicrobial Resistance in the Environment. *Curr. Opin. Microbiol.* **2021**, *64*, 152–158.

(61) Johnson, J. R.; Murray, A. C.; Gajewski, A.; Sullivan, M.; Snippes, P.; Kuskowski, M. A.; Smith, K. E. Isolation and Molecular Characterization of Nalidixic Acid-Resistant Extraintestinal Pathogenic Escherichia coli from Retail Chicken Products. Antimicrob. Agents Chemother. 2003, 47 (7), 2161–2168.

(62) Halaji, M.; Fayyazi, A.; Rajabnia, M.; Zare, D.; Pournajaf, A.; Ranjbar, R. Phylogenetic Group Distribution of Uropathogenic *Escherichia coli* and Related Antimicrobial Resistance Pattern: A Meta-Analysis and Systematic Review. *Front. Cell. Infect. Microbiol.* **2022**, *12*, No. 790184, DOI: 10.3389/fcimb.2022.790184.

(63) Lagerstrom, K. M.; Hadly, E. A. Under-Appreciated Phylogroup Diversity of *Escherichia coli* within and between Animals at the Urban-Wildland Interface. *Appl. Environ. Microbiol.* **2023**, *89* (6), No. e00142-23, DOI: 10.1128/aem.00142-23.

(64) Manges, A. R.; Geum, H. M.; Guo, A.; Edens, T. J.; Fibke, C. D.; Pitout, J. D. D. Global Extraintestinal Pathogenic *Escherichia coli* (Expec) Lineages. *Clin. Microbiol. Rev.* **2019**, 32 (3), No. e00135-18, DOI: 10.1128/CMR.00135-18.

(65) Song, J.; Oh, S. S.; Kim, J.; Shin, J. Extended-Spectrum β -Lactamase-Producing *Escherichia coli* Isolated from Raw Vegetables in South Korea. *Sci. Rep.* **2020**, *10* (1), No. 19721, DOI: 10.1038/s41598-020-76890-w.

(66) Shawa, M.; Furuta, Y.; Paudel, A.; Kabunda, O.; Mulenga, E.; Mubanga, M.; Kamboyi, H.; Zorigt, T.; Chambaro, H.; Simbotwe, M.; Hang'ombe, B.; Higashi, H. Clonal Relationship between Multidrug-Resistant *Escherichia coli* ST69 from Poultry and Humans in Lusaka, Zambia. *FEMS Microbiol Lett.* **2021**, 368 (21–24), No. fnac004, DOI: 10.1093/femsle/fnac004.

(67) Fuga, B.; Sellera, F. P.; Cerdeira, L.; Esposito, F.; Cardoso, B.; Fontana, H.; Moura, Q.; Cardenas-Arias, A.; Sano, E.; Ribas, R. M.; Carvalho, A. C.; Tognim, M. C. B.; de Morais, M. M. C.; Judith, G.; Quaresma, A. P.; Santana, Â. P.; Reis, J. N.; Pilonetto, M.; Vespero, E. C.; Bonelli, R. R.; Cerqueira, A. M. F.; Sincero, T. C. M.; Lincopan, N. WHO Critical Priority *Escherichia coli* as One Health Challenge for a Post-Pandemic Scenario: Genomic Surveillance and Analysis of Current Trends in Brazil. *Microbiol. Spectrum* **2023**, *10*, No. e0125621, DOI: 10.1128/spectrum.01256-21.

(68) He, W. Y.; Zhang, X. X.; Gao, G. L.; Gao, M. Y.; Zhong, F. G.; Lv, L. C.; Cai, Z. P.; Si, X. F.; Yang, J.; Liu, J. H. Clonal Spread of *Escherichia coli* O101:H9-St10 and O101:H9-St167 Strains Carrying Fosa3 and Blactx-m-14 among Diarrheal Calves in a Chinese Farm, with Australian Chroicocephalus as the Possible Origin of *E. coli* O101:H9-St10. *Zool. Res.* **2021**, *42* (4), 461–468.

(69) Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; Lindqvist, R.; Nauta, M.; Ru, G.; Simmons, M.; Skandamis, P.; Suffredini, E.; Argüello, H.; Berendonk, T.; Cavaco, L. M.; Gaze, W.; Schmitt, H.; Topp, E.; Guerra, B.; Liébana, E.; Stella, P.; Peixe, L. Role Played by the Environment in the Emergence and Spread of Antimicrobial Resistance (AMR) through the Food Chain. *EFSA J.* **2021**, *19* (6), No. e06651, DOI: 10.2903/j.efsa.2021.6651.

(70) Gekenidis, M.-T.; Schöner, U.; von Ah, U.; Schmelcher, M.; Walsh, F.; Drissner, D. Tracing Back Multidrug-Resistant Bacteria in Fresh Herb Production: From Chive to Source through the Irrigation Water Chain. *FEMS Microbiol. Ecol.* **2018**, *94* (11), No. fiy149, DOI: 10.1093/femsec/fiy149.

(71) Magiorakos, A. P.; Srinivasan, A.; Carey, R. B.; Carmeli, Y.; Falagas, M. E.; Giske, C. G.; Harbarth, S.; Hindler, J. F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D. L.; Rice, L. B.; Stelling, J.; Struelens, M. J.; Vatopoulos, A.; Weber, J. T.; Monnet, D. L. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. *Clin. Microbiol. Infect.* **2012**, *18* (3), 268–281.

(72) Waśko, I.; Kozińska, A.; Kotlarska, E.; Baraniak, A. Clinically Relevant β -Lactam Resistance Genes in Wastewater Treatment Plants. *Int. J. Environ. Res. Public Health* **2022**, *19*, No. 13829, DOI: 10.3390/ ijerph192113829.

(73) Falgenhauer, L.; Schwengers, O.; Schmiedel, J.; Baars, C.; Lambrecht, O.; Heß, S.; Berendonk, T. U.; Falgenhauer, J.; Chakraborty, T.; Imirzalioglu, C. Multidrug-Resistant and Clinically Relevant Gram-Negative Bacteria Are Present in German Surface Waters. Front. Microbiol. 2019, 10, No. 2779, DOI: 10.3389/fmicb.2019.02779.

(74) Fatema-Tuz, J.; Jarin, T.; Indrajeet, B.; Biswas, S. R.; Jubyda, F. T.; Sultana, M.; George, C. M.; Camilli, A.; Seed, K. D.; Ahmed, N.; Alam, M. Colistin-Resistant *Escherichia coli* Carrying Mcr-1 in Food, Water, Hand Rinse, and Healthy Human Gut in Bangladesh. *Gut Pathog.* **2020**, *12* (1), No. 5, DOI: 10.1186/s13099-020-0345-2.

(75) Liu, B. T.; Song, F. J. Emergence of Two *Escherichia coli* Strains Co-Harboring Mcr-1 and BlaNDM in Fresh Vegetables from China. *Infect Drug Resist.* **2019**, *12*, 2627–2635.

(76) Finton, M. D.; Meisal, R.; Porcellato, D.; Brandal, L. T.; Lindstedt, B. A. Whole Genome Sequencing and Characterization of Multidrug-Resistant (MDR) Bacterial Strains Isolated From a Norwegian University Campus Pond. *Front. Microbiol.* **2020**, *11*, No. 1273, DOI: 10.3389/fmicb.2020.01273.

(77) Habib, I.; Al-Rifai, R. H.; Mohamed, M. Y. I.; Ghazawi, A.; Abdalla, A.; Lakshmi, G.; Agamy, N.; Khan, M. Contamination Levels and Phenotypic and Genomic Characterization of Antimicrobial Resistance in *Escherichia coli* Isolated from Fresh Salad Vegetables in the United Arab Emirates. *Trop Med. Infect. Dis.* **2023**, *8* (6), No. 294, DOI: 10.3390/tropicalmed8060294.

(78) Medugu, N.; Tickler, I. A.; Duru, C.; Egah, R.; James, A. O.; Odili, V.; Hanga, F.; Olateju, E. K.; Jibir, B.; Ebruke, B. E.; Olanipekun, G.; Tenover, F. C.; Obaro, S. K. Phenotypic and molecular characterization of beta-lactam resistant Multidrug-resistant Enterobacterales isolated from patients attending six hospitals in Northern Nigeria. *Sci. Rep.* **2023**, *13* (1), No. 10306.

(79) Massé, J.; Vanier, G.; Fairbrother, J. M.; de Lagarde, M.; Arsenault, J.; Francoz, D.; Dufour, S.; Archambault, M. Description of Antimicrobial-Resistant *Escherichia coli* and Their Dissemination Mechanisms on Dairy Farms. *Vet. Sci.* **2023**, *10* (4), No. 242, DOI: 10.3390/vetsci10040242.

(80) Yang, Q.-E.; Sun, J.; Li, L.; Deng, H.; Liu, B.-T.; Fang, L..-X.; Liao, X.-P.; Liu, Y. H. IncF plasmid diversity in multi-drug resistant *Escherichia coli* strains from animals in China. *Front. Microbiol.* **2015**, *5*, No. 964, DOI: 10.3389/fmicb.2015.00964.

(81) Mbanga, J.; Amoako, D. G.; Abia, A. L. K.; Allam, M.; Ismail, A.; Essack, S. Y. Genomic Insights of Multidrug-Resistant *Escherichia coli* From Wastewater Sources and Their Association With Clinical Pathogens in South Africa. *Front. Microbiol.* **2021**, *8*, No. 636715, DOI: 10.3389/fvets.2021.636715.

(82) Deng, Y.; Bao, X.; Ji, L.; Chen, L.; Liu, J.; Miao, J.; Chen, D.; Bian, H.; Li, Y.; Yu, G. Resistance integrons: class 1, 2 and 3 integrons. *Ann. Clin. Microbiol. Antimicrob.* **2015**, *14*, No. 45, DOI: 10.1186/s12941-015-0100-6.

(83) Kalantari, M.; Sharifiyazdi, H.; Asasi, K.; Abdi-Hachesoo, B. High incidence of multidrug resistance and class 1 and 2 integrons in *Escherichia coli* isolated from broiler chickens in South of Iran. *Vet. Res. Forum* **2021**, *12* (1), 101–107.

(84) Solis, M. N.; Loaiza, K.; Torres-Elizalde, L.; Mina, I.; Šefcová, M. A.; Larrea-Álvarez, M. Detecting Class 1 Integrons and Their Variable Regions in *Escherichia coli* Whole-Genome Sequences Reported from Andean Community Countries. *Antibiotics* **2024**, *13*, No. 394, DOI: 10.3390/antibiotics13050394.

(85) Ghaly, T. M.; Geoghegan, J. L.; Tetu, S. G.; Gillings, M. R. The Peril and Promise of Integrons: Beyond Antibiotic Resistance. *Trends Microbiol.* **2020**, *28* (6), 455–464, DOI: 10.1016/j.tim.2019.12.002.

(86) Bengtsson-Palme, J.; Larsson, D. G. J. Antibiotic Resistance Genes in the Environment: Prioritizing Risks. *Nat. Rev. Microbiol* **2015**, *13* (6), No. 396, DOI: 10.1038/nrmicro3399-c1.

(87) Gambushe, S. M.; Zishiri, O. T.; El Zowalaty, M. E. Review of *Escherichia coli* O157:H7 Prevalence, Pathogenicity, Heavy Metal and Antimicrobial Resistance, African Perspective. *Infect. Drug Resist.* **2022**, 4645–4673, DOI: 10.2147/IDR.S365269.