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Abstract
To date, little research has been conducted on the landscape-scale distribu-
tion of soil microbial communities and the factors driving their community
structures in the drylands of Africa. We investigated the influence of land-
scape-scale variables on microbial community structure and diversity
across different ecological zones in Botswana. We used amplicon sequenc-
ing of bacterial 16S rRNA gene and fungal internal transcribed spacers
(ITS) and a suite of environmental parameters to determine drivers of micro-
bial community structure. Bacterial communities were dominated by Actino-
mycetota (21.1%), Pseudomonadota (15.9%), and Acidobacteriota (10.9%).
The dominant fungal communities were Ascomycota (57.3%) and Basidio-
mycota (7.5%). Soil pH, mean annual precipitation, total organic carbon,
and soil ions (calcium and magnesium) were the major predictors of micro-
bial community diversity and structure. The co-occurrence patterns of bacte-
rial and fungal communities were influenced by soil pH, with network-
specific fungi–bacteria interactions observed. Potential keystone taxa were
identified for communities in the different networks. Most of these interac-
tions were between microbial families potentially involved in carbon cycling,
suggesting functional redundancy in these soils. Our findings highlight the
significance of soil pH in determining the landscape-scale structure of micro-
bial communities in Botswana’s dryland soils.

INTRODUCTION

Drylands, which cover 41% of the world’s land surface,
include hyper-arid, arid, semi-arid and dry sub-humid
areas (Feng & Fu, 2013). According to model simula-
tions, aridity is increasing significantly globally due to
climate change and is leading to the expansion of
global drylands (Feng & Fu, 2013; Huang et al., 2016).
In addition, climate change is predicted to accelerate
transitions from semi-arid to arid ecosystems, inevitably
impacting the interconnected structural and functional
attributes of terrestrial ecosystems (Maestre et
al., 2016). These ecosystem transformations may result

in the loss of vegetation cover, a sharp decline in soil
nutrients (carbon (C) and nitrogen (N) and a vegetation
shift from grasslands and savannahs to shrublands
(Berdugo et al., 2020; Delgado-Baquerizo et al., 2013).
Prolonged exposure to the adverse conditions in these
ecosystems reduces microbial cellular and metabolic
activity (Leung et al., 2020), invariably causing poten-
tially detrimental changes to the soil microbiome
(Maestre et al., 2015; Neilson et al., 2017). Soil micro-
organisms play important roles in ecosystem functions
by participating in biogeochemical cycling (Fierer,
2017), improving plant health and productivity (Nadeem
et al., 2014) and maintaining soil structure (Leifheit et
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al., 2014). As a result, alterations in these ecosystems
may reduce the capacity of drylands to provide key
ecosystem services.

Prevailing environmental conditions, including biotic
and abiotic factors, determine microbial community
structural and functional diversity (Bardgett & Van Der
Putten, 2014; Fierer, 2017). A considerable body of
research has highlighted the importance of edaphic, flo-
ristic and climatic variables in influencing soil microbial
community composition and structure (Andrew et
al., 2012; Bahram et al., 2018; Cowan et al., 2022;
Egidi et al., 2019b; Lauber et al., 2008). The findings of
these studies indicate that drivers of microbial commu-
nity structure may differ with the spatial scale of the
experiment and habitats (Bardgett & Van Der Put-
ten, 2014). Indeed, one limitation of fine-scale studies
is the failure to incorporate cross-biome effects (Del-
gado-Baquerizo & Eldridge, 2019). Furthermore, the
influence of some environmental variables is more evi-
dent at larger spatial scales (Bardgett & Van Der
Putten, 2014).

Several recent studies demonstrate the importance
of environmental factors and dispersal limitation in
determining the structure and diversity of microbial
communities in drylands at a landscape scale (Maestre
et al., 2015; McHugh et al., 2017; Wang et al., 2017).
Drylands are characterized by low and generally unpre-
dictable precipitation levels, and high daily temperature
fluctuations with intense solar radiation (Huang et
al., 2016; Makhalanyane et al., 2015). Therefore, it is
unsurprising that climatic variables are widely acknowl-
edged as drivers of soil microbial structure and function
in drylands. Aridity, mean annual temperature (MAT)
and mean annual precipitation (MAP) have been identi-
fied as important variables negatively influencing micro-
bial diversity, taxa distribution and relative abundance
in dryland soils (Maestre et al., 2015; McHugh et
al., 2017; V�asquez-Dean et al., 2020). Moisture defi-
ciencies in drylands directly influence microbial activi-
ties such as growth and respiration (Meisner et
al., 2015), resulting in reduced physiological functioning
and metabolic rates (Schimel, 2018). These factors
indirectly influence microbial diversity by impacting soil
pH, organic carbon content, and bulk density (Maestre
et al., 2015; Yang et al., 2021). A growing body of
research also emphasizes the importance of edaphic
factors such as pH, organic carbon and total nitrogen in
causing shifts in microbial community structure and
diversity (Maestre et al., 2015; McHugh et al., 2017;
Zeng et al., 2019).

Strong relationships are also observed between the
microbial community structure and geographic distance
(Wang et al., 2015, 2017; Zeng et al., 2019). Distance-
decay relationships indicate that the community compo-
sition of sites becomes less similar as geographic dis-
tance increases (Wang et al., 2015, 2017). These
studies show that environmental filtering and dispersal
limitations congruently influence soil microbial diversity.

However, the relative importance of these two pro-
cesses on microbial β-diversity patterns varies depend-
ing on geographic scale, habitat, and taxa type (Chen
et al., 2017; Wang et al., 2015, 2017). Furthermore, the
importance of geographic distance on prokaryotic com-
munities is indirect through the influence of soil proper-
ties and climate (McHugh et al., 2017).

While extensive research on soil microbial diversity
has been carried out in many drylands of the world, dry-
lands regions in Africa remain relatively unexplored
(V�asquez-Dean et al., 2020: Cowan et al., 2022). In
Southern Africa, dryland expansion projections indicate
an increase in the arid climate over most of Namibia
and Botswana (Huang et al., 2017). Therefore, an
improved understanding of biogeography and the
drivers of microbial community structure in these areas
will facilitate predictions of the possible alterations in
ecosystem functioning due to desertification and may
assist in the design of effective management strategies.
To investigate microbial diversity and the effect of land-
scape variables on microbial community structure and
diversity, we carried out a field survey across different
ecological zones in Botswana. Botswana is classified
as semi-arid to arid (Batisani & Yarnal, 2010; Nkeme-
lang et al., 2018) and is subject to high inter-annual cli-
mate variability and periodic drought (Chipanshi et
al., 2003). There are two major ecological zones in the
country; the Sandveld and the Hardveld. The Sandveld
covers 80% of the landmass (Winterbach et al., 2014)
and is dominated by the arid Kalahari Desert in the
country’s southwestern region. The northern part of the
Sandveld is further identified as the Wet-sandveld (Atl-
hopheng et al., 2022; Sianga & Fynn, 2021). The mean
annual precipitation of this ecological zone ranges from
less than 200 mm in southwestern Botswana to
500 mm in the north (Thomas & Shaw, 1991). The
Sandveld vegetation cover is predominantly semi-arid
savanna shrub-woodland. The wetter northern parts
are characterised by Colophosphermum mopane,
whereas the southern area is predominated by various
acacia species (Dougill et al., 2016; Ringrose et
al., 2003). Land use in the Sandveld and Wet-sandveld
is predominantly communal and commercial livestock
grazing, designated wildlife conservation areas and
some small-scale farming (Dougill et al., 2016; Winter-
bach et al., 2014). The semi-arid Hardveld is mainly
found in the eastern part of the country (Mphale et
al., 2018). This ecological zone features rocky hill
ranges, nutrient-rich loamy, savannah grasslands,
woodlands and patches of forest (Ringrose et al., 2002;
Winterbach et al., 2014). Rainfall ranges from 350 to
650 mm per annum. It is therefore more suitable for
agricultural activities and tends to have a high popula-
tion density. Most of the land is used for crop produc-
tion and livestock grazing (Ringrose et al., 2002).
Previous studies on soil microbiology carried out in the
country were conducted on a local scale (Elliott et
al., 2014; Mhete et al., 2020), assessed a single
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taxonomic group (Law et al., 2007), or only detailed the
physiological capabilities of soil microorganisms (Pule-
Meulenberg & Dakota, 2009).

We hypothesized that microbial communities found
in the different Botswana ecological zones will be differ-
ent and variations in microbial diversity will primarily be
driven by climatic variables. To test this hypothesis, we
used amplicon sequencing of bacterial 16S rRNA gene
and fungal internal transcribed spacer (ITS) region to
characterise microbial communities and assess the role
of environmental variables as drivers of microbial diver-
sity across the country. In doing so, we aimed to
answer the following questions: (i) What microbial taxa
dominate Botswana’s soils on a landscape scale? (ii)
How does soil microbial diversity and composition vary
across the different ecological zones? (iii) What cli-
matic, floristic, and edaphic factors best predict soil
microbial structure and diversity on a landscape scale?

EXPERIMENTAL PROCEDURES

Study sites and soil collections

To provide coverage of the country’s ecological and cli-
matic variability, 89 sampling sites (34 from Hardveld,

30 from Sandveld, and 25 from wet-sand veld) were
selected at approximately 50 km intervals along tran-
sects totalling some 5200 km (Figure 1). Soil samples
were collected in June 2018, and geographic coordi-
nates for each sampling site were recorded. At each
sampling location, a 100 m � 50 m plot was identified,
and four �200 g samples of 0–5 cm surface soil were
collected in sterile Whirlpak® bags from each plot after
the removal of surface plant litter. Samples were stored
on ice during sampling and transportation to the
Department of Environmental Science, University of
Botswana, where they were stored at 4�C before being
shipped to the Centre for Microbial Ecology and Geno-
mics, University of Pretoria, for storage at �80�C. All
samples were sieved (4 mm mesh) to remove plant
roots and other debris. Each sample was subsequently
divided into two parts: for soil physicochemical and
microbial phylogenetic analyses.

Climatic variables

Mean annual temperature (MAT) and annual precipita-
tion (MAP) were obtained from the WorldClim2 Global
Climate Database at a resolution of 30 arc-seconds
(Fick & Hijmans, 2017). The satellite-derived 2-band

F I GURE 1 Map of Botswana showing the 89 sampling sites obtained from the Hardveld, Sandveld, and Wet-sandveld ecological zones
(Winterbach et al., 2014). Diamond symbols represent the sampling sites.
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Enhanced Vegetation Index (EVI2) was used as a
proxy for net plant productivity (NPP) in the sampled
areas (Jiang et al., 2008; Pettorelli et al., 2005).
Enhanced Vegetation Index (EVI2) data for June
(2018) was obtained from the NASA EOSDIS Land
Processes DAAC at a resolution of 500 m (Didan &
Barreto, 2018). The aridity index (AI) was obtained from
the CGIAR-CSI GeoPortal (https://cgiarcsi.community)
(Trabucco & Zomer, 2018). Information collation was
based on the GPS location of each sampling site.

Soil physicochemical analysis

Soil properties were determined according to the
methods outlined in AgriLASA (2004). Fifteen soil phys-
icochemical parameters were analysed for all samples
(Table S1). Soil pH was measured using the slurry
method at a 1:2.5 soil/water ratio. The pH of the super-
natant was recorded with a calibrated benchtop pH
meter (Crison Basic, +20, Crison, Barcelona, Spain).
Soil total organic carbon (TOC) was determined
according to the Black (1934) method. The Mehlich 3
test was used to determine the concentrations of the
following extractable ions: sodium (Na), potassium (K),
calcium (Ca), magnesium (Mg), manganese (Mn),
phosphorus (P), iron (Fe), and aluminium (Al) (Meh-
lich, 1984). The extractable ion concentration was then
quantified using ICP-OES (inductively coupled plasma
optical emission spectrometry, Spectro Genesis,
SPECTRO Analytical Instruments GmbH & Co. KG,
Germany). Soil particle size distribution (% sand, clay,
and silt) was measured according to the Bouyoucos
method. 70 g air-dried and sieved soil samples were
treated with 40 mL of hydrogen peroxide (30%) on a
hot plate to remove organic matter. Hydrogen peroxide
was added slowly until no effervescence occurred.
Then 40 g air-dried samples were mixed with 100 mL
of 25% sodium hexametaphosphate (Colgan solution)
and allowed to soak for 16 h. The suspension was
mixed for 2 min, transferred to a 1 L sedimentary cylin-
der, and topped up to the 1 L mark with deionised
water. After 2 h the first reading (R sand) was mea-
sured using a hydrometer that had been immersed in
the suspension for 30 s. The second reading (R clay)
was taken 6 h later. The silt fraction was calculated as
the difference between the two measurements
(Bouyoucos, 1962). Total nitrogen (TN) was deter-
mined using the catalysed high temperature combus-
tion method (Dumas method) (Bremner, 1996).

DNA extraction

DNA was extracted using the DNeasy PowerSoil Kit
(QIAGEN, USA) following the manufacturer’s instruc-
tions with minor modifications. The following

modifications were made to the protocol: DNA was
eluted by first adding 30 μL of preheated (55�C) solu-
tion C6 to the spin column, followed by 40 μL elution
buffer to give a final volume of 70 μL DNA.

Amplicon sequencing

Amplicon sequencing was performed by MRDNA labo-
ratories (www.mrdnalab.com, Shallowater, TX, USA)
according to in-house protocols. Briefly, primers 515F
(50-GTGYCAGCMGCCGCGGTAA-30) and 909R (50-CC
CCGYCAATTCMTTTRAGT-30) were used to amplify
the hypervariable V4/V5 region of the 16S rRNA gene
in bacteria (Wang & Qian, 2009). The fungal internal
transcribed spacers (ITS) region was amplified using
ITS1F (50-CTTGGTCATTTAGAGGAAGTAA-30) and
ITS4 (50-TCCTCCGCTTATTGATATGC-30) primers of
the ITS-1 and ITS-2 regions respectively (Martin &
Rygiewicz, 2005; White et al., 1990). A 30-cycle poly-
merase chain reaction (PCR) reaction was performed
using the HotStarTaq Plus Master Mix Kit (Qiagen,
USA) for both 16S rRNA and ITS samples under the
following conditions: 94�C for 3 min, followed by
30 cycles of 94�C for 30 s, 53�C for 40 s, and 72�C for
1 min, followed by a final elongation step at 72�C for
5 min. PCR products were electrophoresed on 2% (w/
v) agarose gels to determine the presence and intensity
of the amplification product. Amplicon products for each
sample were pooled and purified using calibrated
Ampure XP beads (Beckman Coulter Life Sciences,
USA). Paired-end sequencing (2� 300 bp) was per-
formed on an Illumina MiSeq instrument following the
manufacturer’s guidelines.

Bioinformatics analyses

Initial sequence processing and diversity analyses
were conducted using QIIME2 (2017:6:0) (Bolyen et
al., 2019). Raw sequences were demultiplexed, quality
filtered, denoised and chimeric sequences removed
using the DADA2 pipeline (Callahan et al., 2016). Low-
quality reads were removed by truncating reads to
290 bps for bacterial species and 190 bps for fungal
species at an average quality score of 25. Quality
sequences were then clustered into amplicon
sequence variants (ASVs). Representative sequences
were aligned using a multiple sequence alignment pro-
gram (MAFFT) and a phylogenetic tree was generated
with fasttree (Katoh & Toh, 2008). The taxonomic iden-
tity of the ASVs was determined using a trained SILVA
138 (release 12-2019) database for prokaryotic species
(Quast et al., 2012) and the UNITE fungal database
(V7.2, release 11-2018) (Kõljalg et al., 2005). SILVA
138 database was trained using q2-feature-classifier
plugin in QIIME2 (QIIME2, 2020).
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Statistical analyses

Statistical analyses were performed using R v4.2.0 (R
Core Team, 2013) using the following packages: phylo-
seq (McMurdie & Holmes, 2013), tidyverse (Wickham
et al., 2019), caret (Kuhn, 2008), leaps (Lumley, 2013),
car package (Dormann et al., 2013), and vegan
(Oksanen, 2010).

A Kruskal–Wallis test was applied to determine the
significant differences between the means of environ-
mental factors between the ecological zones (McKight
& Najab, 2010). Pairwise differences of different vari-
ables by ecological zones were assessed using Dunn’s
test (Dinno & Dinno, 2017). Spearman’s correlations
and corresponding p values were calculated for envi-
ronmental variables. The p-values were corrected for
multiple testing using the Benjamini–Hochberg method
(Benjamini & Hochberg, 1995).

Statistical analyses on community data were per-
formed using rarefied (56,933 and 52,529 sequences
per sample for 16S rRNA and ITS respectively),
log10(x + 1) normalized data unless otherwise indi-
cated. Phylum relative abundance and alpha diversity
indices (richness and inverse Simpson) were deter-
mined with the phyloseq package. Although ASVs were
used in this study to calculate species richness and
diversity, we acknowledge that the use of ASV ana-
lyses can result in an overestimation of both species
richness and diversity (Kauserud, 2023; Tedersoo et
al., 2022). The Kruskal–Wallis test was used to deter-
mine significant differences in phylum relative abun-
dances and alpha diversity metrics between the
different ecological zones. Environmental predictors of
microbial alpha diversity were identified using best sub-
set regression (McLeod & Xu, 2010) in the tidyverse,
caret, and leaps packages. The data was first tested for
multicollinearity with the vif function in the car package.
The best models were selected based on: (i) high
adjusted R2 values, (ii) Mallow Cp value that is close to
the number of predictor variables, and (iii) goodness of
fit of the residual plot. The relationship between envi-
ronmental parameters and alpha diversity indices was
further visualised using generalized linear regressions
(Fox, 2015). The significance of the models was tested
using ANOVA (Underwood, 1997).

Beta diversity was assessed using Principal Coordi-
nates Analysis (PCoA) (Ramette, 2007) based on
Bray–Curtis distance matrices, with the ordinate func-
tion in the vegan package. Permutational Multivariate
Analyses of Variance (PERMANOVA), with 9999 per-
mutations, was used to test for significant differences
between ecological zones and pH groups using the
adonis2 function (Anderson, 2001). Variations within
communities were determined by distance-based tests
for homogeneity using the betadisper function
(Anderson, 2006).

Environmental drivers of microbial community struc-
ture were identified using redundancy analysis (RDA)

in the vegan package (Legendre & Anderson, 1999).
Community and environmental data were Hellinger
transformed and z-score standardized, respectively.
The best models were selected using both the forward
and backward procedures. Predictor variables with a
variance inflation factor (VIF) > 10 were excluded from
the final model. ANOVA was subsequently used to test
for significance (Monte Carlo permutation test, 999 per-
mutations) of the final model and individual predictor
variables. Spearman’s correlation analysis was used to
determine the relationships between the relative abun-
dance of major phyla with all the environmental vari-
ables. p-Values were corrected for multiple testing
using the Benjamini–Hochberg method (Benjamini &
Hochberg, 1995).

Variation partitioning analysis (VPA) was used to
assess the influence of edaphic, climatic, and spatial
factors on community variation (Legendre, 2008;
Peres-Neto et al., 2006). Spatial variables were gener-
ated from the longitude-latitude coordinates of each
sampling point using principal coordinates of neighbour
matrices (PCNM) (Borcard & Legendre, 2002) with
function pcnm. The best set of variables explaining vari-
ation in community composition was determined by dis-
tance-based redundancy analysis (db-RDA), based on
Bray–Curtis dissimilarity. The models were identified
with the capscale function based on Bray–Curtis dis-
similarity, followed by the selection of predictor vari-
ables using the ordistep function with forward selection.
The varpart function was then used to examine commu-
nity variation partitioning. The significance of the
models was subsequently tested using ANOVA (Monte
Carlo permutation test, 999 permutations). A partial
residual plot was used to assess the effect of distance
on Bray–Curtis.

Co-occurrence networks were constructed between
bacterial and fungal communities at different pH cate-
gories (acidic [pH 4.5–6.5, n = 30], alkaline [pH 7.5–
10.3, n = 30], and neutral [pH 6.6–7.3, n = 29]) to
determine potential relationships among taxa (U.S
Department of Agriculture, 2022). The bacterial and
fungal ASVs were first grouped according to pH cate-
gories. Each dataset was filtered by retaining all ASVs
that occurred more than five times in at least 10% of
samples (i.e., the core microbiome) using the phyloseq
package. After this filtering step, we obtained a total of
1018 ASVs (822 bacterial and 191 fungal) in the acidic,
1006 ASVs (773 bacterial and 233 fungal) in the alka-
line and 895 ASVs (636 bacterial and 259 fungal) in the
neutral soils. Spearman correlations were determined
for the filtered datasets using the absolute abundance
of ASVs and p-values were adjusted with the Benja-
mini–Hochberg procedure to minimize the possibility of
false-positive results (Benjamini & Hochberg, 1995).
Spearman correlations with coefficient values (r) >0.7
or < �0.7 and p < 0.01 were considered significant and
selected for bacteria–fungi co-occurrence analysis (Jor-
daan et al., 2019). These were then translated into
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networks in Cytoscape 3.9.1 (Shannon et al., 2003).
Network topology properties were calculated using the
NetworkAnalyzer tool (Doncheva et al., 2012). Modular
structures and clusters of highly interconnected nodes
in each network were identified with the MCODE appli-
cation tool in Cytoscape (Bader & Hogue, 2003). Key-
stone taxa were classified as having the highest degree
(≥15) and cluster coefficient (>0.20) (Jordaan et
al., 2019). The networks were further visualised using
the interactive platform Gephi (v.0.9.7) (Bastian et
al., 2009).

RESULTS

Physico-chemical analysis

The soil physicochemical and climatic variables col-
lected in this study are presented in Table 1. Most envi-
ronmental variables significantly (p < 0.05) differed
across the Hardveld, Sandveld and Wet-sandveld.
Soils from the Sandveld zone had statistically signifi-
cant (p < 0.05) lower nutrient concentrations (TN, TOC,
K, Ca, and Mg) and MAP than the other zones. Signifi-
cantly higher (p < 0.05) NPP, MAT and pH content
were observed in the Wet_sandveld soils than in other
ecological zones. Hardveld soils had higher P, Al, and

Fe concentrations than the Sandveld and the Wet-
sandveld zones. All soils were oligotrophic, as indicated
by low soil TOC (0.06%–3.03%) and TN (0.01%–

0.44%) levels. Soil pH across the sampling sites signifi-
cantly (p < 0.05) correlated with MAP, MAT, soil K, Mg,
Mg, Na, Mn, Fe, and Al content (Table S2). TOC and
TN were significantly (p < 0.05) positively correlated
with all the variables except MAT.

Microbial community composition

Sequencing results yielded a total of 7,077,626 bacterial
and 8,024,482 fungal amplicon sequences following
data quality filtering, denoising and chimera removal.
Sequence clustering into ASVs and subsequent rare-
faction resulted in 37,643 bacterial and 13,815 fungal
ASVs. Bacterial ASVs were assigned to 44 phyla (one
unassigned) while fungal ASVs were assigned to a total
of 16 phyla (two unassigned). Approximately 18.9% of
the fungal reads could not be assigned to any known
phylum. The most abundant bacterial phyla identified
across all the samples were Actinomycetota (21.1%),
Pseudomonadota (15.9%), Acidobacteriota (10.9%),
Chloroflexota (8.6%), Bacteroidota (7.6%), Bacillota
(7.1%), Planctomycetota (3.2%), Myxococcota (2.4%),
Gemmatimonadota (2.1%), and Verrucomicrobiota

TAB LE 1 Mean values for the environmental variables for the soils across the sampling sites.

Hardveld Sandveld Wet-sandveld p-Value

pH 6.65 ± 0.78a 7.14 ± 1.18a 7.83 ± 1.01b 3.38 � 10�4***

Carbon–nitrogen ratio 12 ± 3.06a 12.9 ± 4.25a 14.8 ± 5.33a 3.20 � 10�1

Concentration (mg/kg) of:

Potassium (K) 193 ± 192a 100.0 ± 298.0b 168.0 ± 210.0a 6.14 � 10�6***

Calcium (Ca) 1497 ± 1389a 903.0 ± 1263.0b 3225.0 ± 2835.0a 1.00 � 10�4***

Magnesium (Mg) 280 ± 277a 89.6 ± 39.4b 349.0 ± 570.0a 9.98 � 10�5***

Sodium (Na) 27.8 ± 23.9a 528 ± 2809b 193 ± 759a 4.69 � 10�5***

Phosphorus (P) 15.7 ± 13.1a 10.2 ± 8.3b 8.3 ± 5.8b 5.76 � 10�4***

Manganese (Mn) 66.8 ± 40a 18.1 ± 20.8b 38.8 ± 29.9c 1.19 � 10�8***

Aluminium (Al) 375 ± 148a 164 ± 64.5b 201.0 ± 123.0b 3.09 � 10�9***

Iron (Fe) 79.2 ± 96.6a 29.3 ± 7.65b 33 ± 17.9b 1.69 � 10�8***

% of:

Total organic carbon (TOC) 0.87 ± 0.48a 0.31 ± 0.13b 0.76 ± 0.53a 1.02 � 10�10***

Total nitrogen (TN) 0.09 ± 0.08a 0.03 ± 0.01b 0.06 ± 0.05a 4.67 � 10�9***

Sand 76.7 ± 14.9a 92.3 ± 4.62b 80.1 ± 20.4a 2.98 � 10�8***

Silt 3.56 ± 9.0a 0.33 ± 0.18b 2.04 ± 3.4a 3.0 � 10�3***

Clay 19.8 ± 9.24a 7.7 ± 4.6b 17.8 ± 181a 2.07 � 10�8***

NPP 2801 ± 381a 2534 ± 758a 3228 ± 3133b 1.05 � 10�4***

MAT 199 ± 32.4a 203 ± 8.89a 208 ± 39.4b 8.53 � 10�6***

MAP 433 ± 37.3a 358 ± 83.4b 437 ± 72.1a 4.12 � 10�6***

Aridity index 0.18 ± 0.03a 0.14 ± 0.03b 0.17 ± 0.04a 8.64 � 10�7***

Values are means (±standard deviation). Significant differences are based on the Wilcoxon rank-sum test and are represented by asterisks as follows: ***p < 0.001,
**p < 0.01, *p < 0.05. Pairwise differences were generated using Dunn’s test.
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(1.0%) Figure S1A). Similar phylum-level community
composition was observed when comparing the Hard-
veld, Sandveld and Wet-sandveld communities sepa-
rately (Figure S1A). However, significantly higher
relative abundances of Planctomycetota (Kruskal–

Wallis chi-squared = 10.904, df = 2, p-value = 0.004)
and Gemmatimonadota (Kruskal–Wallis chi-
squared = 9.753, df = 2, p-value = 0.008) were
observed in the Wet-sandveld samples. The Hardveld
samples were characterised by a significantly higher

F I GURE 2 Relative abundance of the major (A) bacterial and (B) fungal phyla (≥5%) in Hardveld, Sandveld and Wet-sandveld ecological
zones.
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relative abundance of Bacteroidota (Kruskal–Wallis chi-
squared = 11.307, df = 2, p-value = 0.00351-). At the
order level, Chitinophagales (6.36%), Bacillales
(6.28%), and Rhizobiales (6.12%) dominated the com-
munities across the different ecological zones
(Figure 2A). The relative abundance of Chitinophagales
(Kruskal–Wallis chi-squared = 22.669, df = 2, p-
value = 1.20 � 10�5) significantly differed between
samples in the different ecological zones. A significant
increase in the relative abundance of Frankiales (Krus-
kal–Wallis chi-squared = 12.188, df = 2, p-
value = 0.002-) was observed in the Sandveld samples.
The relative abundance of Vicinamibacterales (Kruskal–
Wallis chi-squared = 10.78, df = 2, p-value = 0.005)
was significantly higher, while that of Bryobacterales
(Kruskal–Wallis chi-squared = 22.055, df = 2, p-
value = 1.62 � 10�5) was significantly lower in the Wet-
sandveld samples than other ecological zones.

Ascomycota, accounted for 57.3% of all ITS ampli-
con sequences, followed by Basidiomycota (7.5%),
Glomeromycota (1.6%), and Mortierellomycota (1.3%).
Ascomycota and Basidiomycota dominated the com-
munities across the three ecological zones
(Figure S1A). Conversely, an increase in the relative
abundance of Mortierellomycota was observed in the
Sandveld (Kruskal–Wallis chi-squared = 11.701,
df = 2, p-value = 0.003), while Glomeromycota was
more prominent in the Wet-sandveld (Kruskal–Wallis
chi-squared = 18.711, df = 2, p-value = 8.65 � 10�5).
Major fungal orders detected across the different eco-
logical zones were Pleosporales (22.65%), Hypo-
creales (9.48%), and Sordariales (8.20%) (Figure 2B).
A significant decrease in the relative abundance of
Mortierellales (Kruskal–Wallis chi-squared = 11.239,
df = 2, p-value = 0.004) and Glomerales (Kruskal–
Wallis chi-squared = 20.759, df = 2, p-
value = 3.11 � 10�5) was observed in the Wet-sand-
veld and Sandveld samples, respectively. The relative
abundance of Mortierellales was 0.05%, 0.30% and
1.0% across the Wet-sandveld, Hardveld, and Sand-
veld ecological zones, respectively. Glomarales relative
abundance was 0.16%, 0.37%, and 0.74% in the Sand-
veld, Hardveld, and Wet-sandveld zones respectively.

Soil microbial diversity

Bacterial species richness ranged between 1012 and
2143 across the ecological zones. Sandveld had signif-
icantly lower bacterial richness (chi-squared = 9.51,
df = 2, p-value = 0.009) than Hardveld and Wet-sand-
veld (Figure 3A). However, species diversity showed
no significant difference among the ecological zones
(Figure 3B). Fungal species richness ranged from 135
to 750 across all samples. Overall, the Wet-sandveld
were richer (chi-squared = 19.78, df = 2, p-
value = 5.07 � 10�5) and more diverse based on the

inverse of the Simpson (InvSimpson) diversity index
test results (chi-squared = 6.72, df = 2, p-
value = 0.03) than the Sandveld (Figure 3C,D). The
best subset regression identified Mg, Na, NPP, and soil
pH as the best predictors of bacterial species richness
across the ecological zones (Table S3). However, the
influence of Mg was not statistically significant
(p < 0.05) and was not used for downstream analysis.
Bacterial species richness positively correlated with
Na, NPP, and soil pH (Figure S2A–C). The best predic-
tors of species richness for fungal communities were
NPP, Mn, Na, and soil TOC, with Mn being non-signifi-
cant (p < 0.05) (Table S4). Fungal species richness
increased with NPP, Na, and soil TOC (Figure S2D–F).
Assessment of the influence of these variables per eco-
logical zone indicates that NPP’s influence on fungal
species richness was only statistically significant
(R2 = 0.303, p-value = 9.63 � 10�4) in the Sandveld
samples. Conversely, Mn positively influenced fungal
species richness in the Hardveld samples only
(R2 = 0.160, p-value = 0.016).

Drivers of soil community composition

The PCoA plot based on Bray–Curtis distance matrices
did not exhibit clustering of bacterial communities
according to ecological zones (Figure 5A). However,
Permanova performed on the bacterial data indicated
significantly different communities across different eco-
logical zones (R2 = 0.100, p-value = 0.0001). This was
supported by an insignificant betadisper (p-
value = 0.926) test result, suggesting that the differ-
ences observed between ecological zones are mean-
ingful and not simply due to random variation within the
groups. For fungal communities, PCOA plots showed
distinct clustering according to soil ecological zones
(Figure 4B), and this was confirmed by a significant
Permanova (R2 = 0.060, p-value = 0.0001) test and
an insignificant betadisper (p-value = 0.060). These
results suggest diverse fungal and bacterial communi-
ties per ecological zone.

Impact of physicochemical parameters on
microbial community structure

RDA was used to identify the environmental factors that
influence the structure of soil microbial communities
across Botswana. Drivers of community structure dif-
fered between bacterial and fungal communities.
Edaphic factors significantly influencing bacterial com-
munity structure (p < 0.05) were soil pH, C:N ratio, Al,
Ca, Mg, TOC, Na, and P content (Figure 5A and
Table S5). The only significant climatic driver of bacte-
rial community structure was MAP (p-value = 0.006).
The major edaphic drivers of fungal community
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structure (p < 0.05) were soil pH, C:N ratio (p-
value = 0.004) and soil Ca, Mn, Mg, C, Na, and P con-
tent (Figure 5B and Table S6). Conversely, the domi-
nant climatic drivers of fungal diversity were MAP (p-
value = 0.001) and MAT (p-value = 0.001). Soil pH
was the most important common predictor of bacterial
and fungal communities (Figure 5A,B). Overall, the
combination of the environmental parameters
explained 29.0% and 20.4% of the bacterial and fungal
community variation, respectively (p < 0.05).

The relative abundances of the dominant (relative
abundance ≥1%) bacterial and fungal phyla signifi-
cantly correlated with most of the environmental vari-
ables (p < 0.05) (Figure S3). The abundance of
Gemmatimonadota, Myxococcota, Planctomycetota,
Armatimonadota, and Pseudomonadota positively cor-
related with soil pH, while the opposite pattern was
observed for Verrucomicrobiota, Bacteroidota, and
Bacillota (Figure S3A). Soil Al content correlated posi-
tively with the abundance of Verrucomicrobiota, Actino-
mycetota, Acidobacteriota and Chloroflexota and
negatively with Pseudomonadota. For fungal phyla, the

relative abundance of Mortierellomycota was negatively
associated with MAT, soil Na, Ca content, and soil pH
(Figure S3B), while that of Ascomycota was negatively
associated with soil TOC. The relative abundance of
Glomeromycota positively correlated with MAP, MAT,
soil TOC, soil Mn, Mg, Ca, and Na and negatively cor-
related with soil P content. In contrast, the relative
abundance of Basidiomycota was not significantly pre-
dicted by assessed environmental variables.

The percentages of community variation attributed
to edaphic, climatic and spatial factors were determined
using variation partitioning analysis (Figure 6). For bac-
terial communities, these three factors explained 24%
of the variation in community composition, with 9.0% of
this being shared among the three factors (Figure 6A).
Variation was significantly (p-value = 0.001) explained
by edaphic parameters (11%), followed by spatial
(3.0%) and climatic (1.0%), respectively. A large pro-
portion (74%) of the variation remained unexplained.
For fungal communities, variation was mainly explained
by spatial variables (5.0%), followed by edaphic (3.0%)
and climatic factors (1.0%) (Figure 6B). A total of 6.0%

F I GURE 3 Alpha diversity indices (Observed and InvSimpson) for (A and B) bacterial and (C and D) fungal communities. Kruskal–Wallis
test was performed for significant differences in the alpha diversity of the ecological zones. Significant levels are represented as follows:
***p < 0.001, �p < 0.1.
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of community variation was shared among the three
factors, whereas 85% of the variation remained unex-
plained. There was no interaction detected between
edaphic and climatic factors of either bacterial or fungal
communities. The Bray–Curtis abundance-based dis-
similarity index was used to calculate pairwise commu-
nity dissimilarity amongst all sampling sites. The

influence of geographic distance on community dissimi-
larity was statistically significant (r: 0.003, p < 0.001) for
fungal communities only (Figure S4). While the influ-
ence of geographic distance on community dissimilarity
was statistically significant, the low r-value indicates
that these findings lack practical significance or
interpretability.

F I GURE 4 Principal coordinates analysis (PCoA) plots of (A) bacterial communities as related to and (B) fungal communities as related to
ecological zones based on Bray–Curtis similarity matrices respectively.
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Detection of microbial biomarkers

Differentially abundant clades were determined as a
means of identifying microbial biomarkers in the eco-
logical zones. A total of 34 statistically significant dif-
ferentially abundant bacterial taxa were identified
across all soil samples (p < 0.05): 4 were from Hard-
veld, 11 from Sandveld and 19 from Wet-sandveld
samples. Only 2 of the 34 biomarkers, Plactomyce-
tota and Methylomirabilota, were classified to phylum
level (Figure 7A). At family level, biomarkers were
Thermoanaerobaculaceae, SO134-terrestrial-group,
Rokubacteriales and Gitt-GS-136 in the Wet-sand-
veld; Paenibacillaceae, Isosphaeraceae, and Brevi-
bacillaceae in Sandveld; and Bryobacteraceae in

Hardveld soils. Of the 11 fungal taxa biomarkers
identified, 5 were from Hardveld, 3 from Sandveld
and 3 from Wet-sandveld soils. There was only one
class-level biomarker: Ustilagomycetes (Figure 7B).
Hardveld soils were associated with members of the
orders Capnodiales and Hypocreales (Bisifusarium)
while members of Pleosporales (Teichospora) and
Filobasidiales (Naganishia) dominated the Sandveld.
Glomeraceae were uniquely associated with Wet-
sandveld soils (Figure S5A).

Co-occurrence between bacterial and
fungal domains

Considering the observed importance of pH as a poten-
tial driver of soil microbial community composition
across Botswanan soils, the influence of this variable
on bacterial–fungi interactions was further investigated
using a co-occurrence network analysis. The co-occur-
rence network topological properties of the networks
are outlined in Table S7, which are similar for all three
networks. For example, all the networks had a high
modularity index (>0.4), suggesting they had a modular
structure. Bacterial nodes dominated the co-occurrence
networks across all pH categories and most interac-
tions were positive (99%, 99% and 97% in acidic,

F I GURE 5 Redundancy analysis (RDA) plot showing
relationships between (A) bacterial and (B) fungal community
structures and environmental factors. The plot only shows edaphic
and environmental variables that significantly influence community
diversity.

F I GURE 6 Variation partitioning analysis of (A) bacterial and
(B) fungal community structure explained by edaphic, climatic, and
spatial factors, and their interactions. The fraction of the variation is
shown by adjusted R 2 values, p-value = 0.001.
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alkaline and neutral, soils respectively) (Figure 8A–C).
Most of the negative interactions were fungi–fungi and
these were mainly observed in neutral soils (3%). We
identified 238, 316 and 371 bacteria–fungi links in
acidic, alkaline and neutral networks, respectively. The
nodes in the networks across the three pH categories

were all assigned to 23 phyla, including 17 bacterial
and 6 fungal phyla. The bacterial phyla primarily con-
sisted of Actinomycetota (20.00%), Pseudomonadota
(15.64%), Acidobacteriota (10.75%), and Bacteroidota
(8.00%), while the major fungal phylum was Ascomy-
cota (15.11%). The relative proportion of the nodes of

F I GURE 7 Taxonomic cladogram showing differentially abundant taxa for bacterial and fungal communities in different ecological zones.
Phylogenetic levels are represented by the rings (from inner to outer ring): phylum, class, order, family and genus. (A) Bacterial communities.
(B) Fungal communities.
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these dominant microbial phyla (bacteria and fungi) did
not vary across the three pH networks. At the family
level, Chitinophagaceae, Beijerinckiaceae, and Rubro-
bacteriaceae had relatively high abundance across the
different networks. Chaetomiaceae was the most

common fungus found across all the networks. Bacte-
ria–fungi interactions varied with soil pH, and most of
these interactions were observed in the neutral pH net-
work (Figure S6). These interactions were mainly
derived from Ascomycota interacting with bacterial

F I GURE 8 Bacteria–fungi co-occurrence networks in (A) acidic, (B) alkaline, and (C) neutral soils. A grey edge represents a positive
correlation, and a red edge represents a negative correlation.
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phyla. Ascomycota had a relatively high co-occurrence
with Actinomycetota, Acidobacteria, and Chloroflexota
in the acidic network; co-occurred with Actinomycetota,
Chloroflexota, and Pseudomonadota in the alkaline net-
work; and finally, with Chloroflexota, Actinomycetota,
and Bacillota in the neutral network.

Modules of networks

MCODE analysis revealed several modules in the dif-
ferent networks. Our analysis focused on the top five
clusters in each network, which were selected based
on the high number of nodes and bacteria–fungi links.
The composition of the modules varied within each net-
work and between pH networks. Bacteria–bacteria
interactions dominated all modules in the acidic net-
work (Figure S7A) and alkaline network (Figure S7B).
In the neutral network, modules I–III were dominated by
bacteria–bacteria interactions, while modules IV–V had
an equal occurrence of bacteria–bacteria and fungi–
fungi interactions (Figure S7C). The major taxa in the
acidic network were Acidobacteriota, Actinomycetota,
and Chloroflexota, which co-occurred with diverse bac-
terial and fungal phyla (Figure 9A). Module 4 was char-
acterised by Bacillota–Bacillota interactions. In the
alkaline network modules, Pseudomonadota, Actino-
mycetota, and Bacteroidota co-occurred with different
bacterial phyla and Ascomycota (Figure 9B). In the
neutral network, the modules were characterised by
interactions between Ascomycota, Bacillota, Actinomy-
cetota, and Chloroflexota with diverse microbial phyla
(Figure 9C). Our results indicate that although some
fungal families, such as Chaetomiaceae, Nectriaceae,
and Didymellaceae, occurred in modules across the
different networks, they interacted with phylogenetically
diverse bacterial families in each network. At the family
level, distinct network-specific fungi–bacteria
interactions were observed in the different network
modules. Nocardioidaceae, Bryobacteraceae, and
Geodermatophilaceae interacted with Chaetomiaceae
and Nectriaceae in acidic soils. In alkaline soils, Chiti-
nophagaceae, Roseiflexaceae and AKIW781 inter-
acted with Chaetomiaceae and Sporormiaceae. The
neutral network was characterised by associations
between Bacillaceae, Roseiflexaceae, and Chitinopha-
gaceae with unknown fungal taxa and Sporormiaceae.

Keystone taxa

Keystone taxa analysis (degree ≥15 and cluster
coefficient >0.20) revealed 75, 69, and 68 keystone
taxa for acidic, alkaline, and neutral soils, respectively.
Bacterial phyla were the most common keystone taxa
across all pH categories, while fungal keystone taxa
were mostly found in neutral soils. The top four

keystone taxa across all pH categories were Beijerinck-
iacea, Bacillaceae, Rubrobacteriaceae, and Pyrinomo-
nadaceae. Family Sporormiaceae was the major fungal
keystone taxa, and it was associated with neutral soils
(1, 3 and 12 ASVs in acidic, alkaline, and neutral soils,
respectively). At the family level, our analysis indicated
distinct keystone taxa preference by pH. For example,
the keystone taxa in acidic soils comprised Bryobacter-
aceae, Chthoniobacteraceae, Kineosporiaceae and
Nocardioidaceae. The keystone taxa in alkaline soils
included Chaetomiaceae, Cytophagaceae, Microbac-
teriaceae and Myxococcaceae. Oxalobacteraceae.
Families Gaiellaceae, Micromonosporaceae, Strepto-
mycetaceae and Aspergillaceae were identified as the
keystone taxa in neutral soils. Some of the keystone
taxa were shared in the three networks, including Acet-
obacteraceae, Bacillaceae, Beijerinckiaceae and
Chitinophagaceae.

DISCUSSION

This study provides a unique report of microbial diver-
sity and its environmental controls in Sandveld, Hard-
veld and Wet-sandveld ecological areas of Botswana
on a landscape scale. Despite the extreme conditions
in the study area, our analysis revealed high levels of
edaphic microbial biodiversity, as shown by other stud-
ies in hyper-arid environments (Andrew et al., 2012;
Armstrong et al., 2016). At the phylum level, the bacte-
rial and fungal composition between ecological zones
was similar, with minor changes in the relative abun-
dance. Members of the top 10 bacterial phyla identified
in this study account for 92% of soil-derived 16S rRNA
and 16S rRNA gene libraries (Janssen, 2006), are ubiq-
uitous in most soils (Delgado-Baquerizo et al., 2018),
and predominate in dryland soils (Coleine et al., 2024;
McHugh et al., 2017; Wang et al., 2017). Our findings
are consistent with local-scale studies of the country
(Elliott et al., 2014; Mhete et al., 2020), where Actino-
mycetota, Pseudomonadota, and Acidobacteria domi-
nate bacterial communities. Fungal communities had a
high relative abundance of Ascomycota. This phylum
dominates biomes globally (Prober et al., 2015; Egidi et
al., 2019a: Cowan et al., 2022), including drylands
(Maestre et al., 2015). These results suggest that, at
the phylum level, the soil microbiome of our study area
is similar to other drylands.

The dominance of these specific phyla in dryland
soils can be attributed to their diverse adaptations to
extreme environmental stresses (Leung et al., 2020).
For instance, members of Actinomycetota tolerate low
moisture conditions, form stress-resistant spores, and
utilize atmospheric trace gases (H2 and CO) to main-
tain energy and fix CO2 into biomass in the dormant
state (Bull et al., 2018; Leung et al., 2020; Lynch et
al., 2014). Furthermore, members of this phylum are
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tolerant to UV radiation due to melanin production (Bull
et al., 2018). Bacillota form heat-resistant spores and
can detect nutrient scarcity through chemotaxis (Filippi-
dou et al., 2016; Makhalanyane et al., 2015). Con-
versely, the dominance of Ascomycota in drylands is

thought to be due to the production of ultraviolent-radia-
tion-resistant melanin (Challacombe et al., 2019; Egidi
et al., 2019a). Variations in the soil properties of the dif-
ferent ecological zones were reflected by the significant
clustering of microbial communities by ecological

F I GURE 9 Co-occurrence network clusters of bacterial and fungal communities in (A) acidic, (B) alkaline, and (C) neutral soils. Node colour
represents different phyla.
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zones. The prevailing environmental conditions could
have potentially selected specific microbial taxa for
these ecological zones, which was reflected by the dis-
tinct indicator taxa observed in association with the
ecological zones evaluated in this study. For fungal
communities, Sandveld soils were populated by mem-
bers of the order Filobasidiales, with a high abundance
of the genus Naganishia. Naganishia species are typi-
cally desiccation-tolerant, can withstand high levels of
UV radiation (Pulschen et al., 2015), and populate oli-
gotrophic environments (Schmidt et al., 2017). Taxa
belonging to Pleosporales (Teichospora) were also
associated with Sandveld soils. The dominance of
these orders in harsh environments is attributed to
darkly pigmented hyphae and melanised spores that
may confer protection against desiccation and UV radi-
ation (Bates et al., 2012). Similarly, Egidi et al. (2019b)
identified Pleosporales as an indicator taxa for arid
sites on a continental scale. Brevibacillus, an indicator
bacterial taxa found in the Sandveld, survives in arid
conditions through the production of exopolysaccharide
(EPS) (Astorga-El�o et al., 2021). Production of exopoly-
saccharides (EPS) by microorganisms confers resis-
tance to ultraviolet radiation, extreme temperature,
extreme pH, high salinity, high pressure, and poor nutri-
ents (Yin et al., 2019).

The genus Bryobacter, an acidophile commonly iso-
lated in acidic soils (Dedysh et al., 2017), was overrep-
resented in the Hardveld, possibly due to the low pH
soils characteristic of this area. Hardveld soils were
also uniquely associated with the orders Capnodiales
and Hypocreales (Bisifusarium), whose members
include plant pathogenic fungi infecting a broad range
of hosts (Abdollahzadeh et al., 2020; Crous et
al., 2009; Gryzenhout et al., 2017; Lombard et
al., 2015). Hardveld zones have relatively fertile soils
that make arable agriculture viable (Mphale et
al., 2018). As a result, the association between Hard-
veld soils and pathogenic fungi may be due to the
zone’s high crop production and the dominance of tropi-
cal grassland. The abundance of Rokubacteriales in
the Wet-sandveld could have been enhanced by the
presence of peatlands with high Ca and Mg levels,
which are characteristic of this ecological zone (Iva-
nova et al., 2021). Members of Glomeromycota in the
family Glomeraceae were indicator taxa for Wet-sand-
veld soils. Glomeraceae promote plant growth by facili-
tating nutrient uptake and conferring plant tolerance to
biotic and abiotic stress (Smith & Read, 2010). The
association of these taxa with Wet-sandveld soils may
be related to the high plant species richness in Wet-
sandveld areas, as indicated by the high NPP in this
ecological zone (Johnson et al., 2005). The most differ-
entially abundant bacterial taxa for Sandveld ecozones
were members of the Paenibacillales (Paenibacillus)
and Brevibacillales (Brevibacillus). Members of these
orders tolerate extremes of pH, temperature, salinity

and drought (Yadav et al., 2015). Taxa belonging to
Pleosporales (Teichospora) were also associated with
Sandveld soils. Pleosporales are frequently found
under extremely dry conditions (Bates et al., 2012;
Knapp et al., 2015). Our results suggest that the growth
of these taxa may be enhanced by the oligotrophic con-
ditions in the Sandveld.

Our findings underscore the significance of edaphic
and floristic variables (pH, NPP and Al, Mg, TOC, and
Ca contents) in explaining variation in soil microbial
diversity. We observed significantly lower soil microbial
alpha diversity in arid Sandveld compared to Hardveld
and Wet-sandveld ecological areas. Our results sug-
gest that microbial responses are driven by decreases
in NPP and soil TOC content associated with increas-
ing aridity (Berdugo et al., 2020; Maestre et al., 2015).
NPP was the universal predictor of bacterial and fungal
species richness in this study but is also a major driver
of bacterial alpha diversity in global drylands (Delgado-
Baquerizo et al., 2018). NPP has an indirect effect on
fungal diversity via its influence on other environmental
variables such as soil TOC (Maestre et al., 2015; Yang
et al., 2017). This supports our findings that show a
strong positive correlation between fungal species rich-
ness and soil TOC. This finding also suggests that in
low carbon drylands, microbial communities are limited
by soil TOC (Delgado-Baquerizo & Eldridge, 2019;
Maestre et al., 2015). The significance of soil TOC in
influencing microbial diversity is consistent with land-
scape-scale patterns observed in drylands (Maestre et
al., 2015; Zeng et al., 2019) and tussock grasslands
(Egidi et al., 2019b).

Soil pH is generally regarded as a major predictor of
bacterial richness across a wide range of systems
(Cowan et al., 2022; Fierer et al., 2009; Lauber et
al., 2009), although it does not have great importance
in drylands where pH values are >6.5 (Maestre et
al., 2015; Neilson et al., 2017; V�asquez-Dean et
al., 2020). Despite these contradictions, the strong rela-
tionships (positive or negative) between soil pH, bacte-
rial richness and major bacterial and fungal phyla
observed in this study support the notion that soil pH is
one of the major drivers of changes in microbial com-
munity composition in the Botswana drylands (Bahram
et al., 2018; Lauber et al., 2009).

Of the climatic variables (MAT and MAP) assessed
in our study, MAP influenced bacterial and fungal com-
munity structure and relative abundance. Similarly, pre-
vious studies have identified climatic variables as
drivers of soil community structure (Chen et al., 2017;
McHugh et al., 2017; V�asquez-Dean et al., 2020;
Větrovský et al., 2019). The strong influence of MAP on
dominant bacterial and fungal phyla was not surprising
but is highly relevant as both factors will continue to be
affected by climate change in arid environments (Fu &
Feng, 2014; Knutti et al., 2008). Precipitation is funda-
mental for the functioning of arid and semi-arid
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ecosystems and biodiversity regulation (Bai et
al., 2008; Liu et al., 2009). Our results show that TOC,
TN, and NPP positively correlate with MAP. Addition-
ally, the driest ecological zone, Sandveld, was charac-
terised by significantly low TOC, TN, and NPP and had
the lowest species richness. This highlights the strong
influence of a decrease in precipitation on microbial
communities due to the unavailability of water-soluble
substrates or reduced soil nutrient availability and NPP
(Bai et al., 2008; Schimel, 2018).

Various studies have highlighted the importance of
environmental selection and dispersal limitation in
structuring soil microbial communities in different envi-
ronments (Wang et al., 2015, 2017; Zeng et al., 2019).
Similarly, our results underscore the importance of
these processes in structuring the biogeographic pat-
terns of bacterial and fungal β-diversity. However, the
relative effects of these processes vary with taxa type.
While some studies have shown that environmental
factors are the primary drivers of variations in fungal
communities (Chen et al., 2017), our findings suggest
that variations in microbial community structure are
influenced by both geographic distance and environ-
mental heterogeneity at the landscape scale. A signifi-
cant portion of the community variation (78% for
bacteria and 86% for fungi) remained unexplained by
variation partitioning analysis (VPA). Although widely
used to determine variations in community structure,
VPA may not be the most efficient method to determine
the relative importance of environmental filtering and
spatial limitation (Gilbert & Bennett, 2010; Smith &
Lundholm, 2010). Additionally, variations in microbial
communities among ecosystems are due to both deter-
ministic (e.g., environmental filtering, plant diversity,
and species interactions) and stochastic processes (e.
g., dispersal limitation, speciation, and genetic drift)
(Wang et al., 2013; Zhou & Ning, 2017). It has been
shown that the soil microbial communities of Antarctica
(McMurdo Dry Valleys) follow both stochastic and
deterministic processes, but fine-scale taxonomic reso-
lution (i.e., identification to species level) is necessary
to decipher such interactions (Lee et al., 2018). There-
fore, unexplained variations may be due to some of
these factors that were unaccounted for in this study.
We suspect that both processes, mostly deterministic,
also drive microbial communities in the Botswana dry-
lands. However, further analysis is required to prove
our hypothesis.

This study assessed the co-occurrence patterns of
bacteria and fungi in acidic, alkaline, and neutral soils,
demonstrating that soil pH significantly impacts the
potential relationships between soil taxa. Bacterial
ASVs dominated the nodes across pH categories, cor-
responding with the higher bacterial richness observed
in this study. Positive correlations were more common
than negative correlations, suggesting the dominance
of mutualistic and synergistic interactions. Negative

interactions were mainly fungi–fungi interactions. Micro-
organisms that coexist in the environment compete for
resources such as nutrients or space (Ghoul &
Mitri, 2016). These findings suggest strong competitive
exclusion between the different fungal species (Wardle
et al., 1993) and narrow specialised niches in these
soils (Yang et al., 2022). Furthermore, some microor-
ganisms produce secondary metabolites in the soil that
confer a competitive advantage (Keller et al., 2005).
Our findings indicate that families involved in negative
interactions include fungi Aspergillaceae and Trichoco-
macea. These families produce secondary metabolites
such as polyketides and terpenoids, which have anti-
fungal and antibacterial activities (Al-Fakih &
Almaqtri, 2019).

Soil bacteria and fungi may positively influence
each other, and these interactions are critical for the
proper functioning of an ecosystem (Deveau et
al., 2018; Frey-Klett et al., 2011). We observed high
bacteria–fungi interactions in the neutral pH network.
Bacteria thrive in alkaline soils, while fungi dominate
acidic ones, making neutral soils conducive to synergis-
tic interactions between bacteria and fungi. Additionally,
the fungal species involved in the co-occurrence inter-
actions remained consistent across the analysed pH
networks. However, the bacterial phyla participating in
these interactions varied depending on the pH network
being examined. The consistency of fungal species
across the different pH networks suggests these taxa
thrive in a broad range of pH levels compared to bacte-
rial species (Rousk et al., 2010). Our findings under-
score that variations in soil pH do not only influence the
composition of bacterial species but also the specific
interactions they form with fungal families. Microbial
interactions are dependent on resource availability and
environmental variables (Zheng et al., 2021). Soil nutri-
ents in our study vary significantly according to the soil
pH and may have influenced the observed microbial
interactions (Table S8). For instance, concentrations of
potassium, calcium and magnesium varied significantly
across different pH categories, potentially resulting in
variations in microbiota composition according to
soil pH.

Our findings indicate that in acidic and neutral net-
works, the fungal families co-occurred with the bacterial
families primarily involved in phosphate solubilisation,
nitrogen fixation, and decomposition of organic matter.
These include bacterial families Bacillaceae, Paeniba-
cillaceae, Gaiellaceae, and Roseiflexaceae (Mandic-
Mulec et al., 2016; Siddiqi et al., 2017; Thiel & Hanada,
2015; Wang et al., 2022). Fungi and bacteria interact in
different environments, influencing carbon mineralisa-
tion and decomposition. Nonetheless, fungi are gener-
ally more efficient than bacteria in degrading polymers
such as lignin and cellulose (Romaní et al., 2006),
enabling bacteria to mineralize intermediate decompo-
sition products released by fungi (Dang et al., 2021;
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Phukhamsakda et al., 2016; Romaní et al., 2006). The
bacteria may also benefit from the interaction by
directly assimilating the fungal decomposition products
such as soluble sugars, amino acids and other metabo-
lites. In return, the bacteria contribute to the pool of
available phosphorus and nitrogen in the soil, which
may provide the interacting fungi with a competitive
advantage (G�omez-Brand�on et al., 2020). Bacterial
metabolic byproducts may also create favourable
microenvironments that may enhance fungal enzyme
production necessary for further decomposition of
organic material (Raczka et al., 2021).

In alkaline networks, bacteria–fungi interactions
were dominated by bacterial families such as Chitino-
phagaceae and Roseiflexaceae which are involved in
chitin and cellulose degradation and organic matter
decomposition (Chung et al., 2012; Thiel &
Hanada, 2015). However, this did not positively influ-
ence the carbon content of alkaline soils in this study,
possibly due to reduced microbial activity and slower
decomposition of organic matter due to high pH (Guo et
al., 2023). Additionally, the high salinity of alkaline soils
may have exacerbated the negative influence of high
pH on microbial organic matter decomposition rates
(Table S8). Organic matter may have been less avail-
able due to good aggregation in saline soils, or salinity-
induced stress may have reduced microbial efficiency
in organic matter decomposition (Singh, 2016). Further-
more, these results suggest functional redundancy in
carbon mineralisation in different soils owing to the con-
trasting influence of soil pH on microbial growth. This
means that even if the pH negatively influences one
group, the other group can compensate for it and main-
tain the overall function of carbon decomposition.

Microbial keystone taxa are crucial for the function-
ing of the soil ecosystem and determining community
structure (Banerjee et al., 2018). We identified several
keystone taxa that were also influenced by the soil pH.
Furthermore, most of these taxa are potentially involved
in organic matter decomposition. Keystone taxa known
to degrade organic matter include Bacillaceae, Chitino-
phagaceae, Beijerinckiaceae and Sporormiaceae,
observed across the three networks (Chiba et al., 2021;
Lynd et al., 2002; Raczka et al., 2021; Sun et al., 2017;
Trujillo et al., 2014). Different studies highlight the sig-
nificance of keystone taxa in lignocellulose degrada-
tion, and these have been linked to enhanced
decomposition efficiency and enzyme activity (Meng et
al., 2022; Xiao et al., 2022; Zheng et al., 2021). None-
theless, these interactions may also indicate a possible
functional redundancy in these communities (Banerjee
et al., 2018). In addition, members of the family Bacilla-
ceae are found in diverse habitats and play key roles in
denitrification, nitrogen fixation, and phosphate solubili-
sation (Mandic-Mulec et al., 2016). Nocardioidaceae
break down recalcitrant chemicals and are involved in
the bioremediation of environmental pollutants.

CONCLUSION

This is the first study to investigate soil bacterial and
fungal communities, using high throughput sequencing
technology, at the landscape scale in Botswana. Our
findings show that microbial community structures dif-
fer by ecological zones, with Sandveld soils having sig-
nificantly lower alpha diversity than Wet-sandveld and
Hardveld. Nonetheless, the major phyla observed
across the ecological zones corroborate the findings of
other drylands, such as the Namib and Atacama
deserts. The most important driver of microbial diver-
sity and composition is soil pH. Climatic variables
(MAP and MAT) significantly correlated with commu-
nity diversity. Furthermore, our results indicated that
environmental filtering played a significant role in bac-
terial community variation while geographic distance
influenced fungal communities. Our findings close a
knowledge gap in the biogeographic patterns of
Botswana soils and provide insights into how soil
microbial communities may respond to environmental
changes. Although the Sandveld, Wet-sandveld and
Hardveld ecological zones of Botswana harbor diverse
microorganisms, this study nevertheless represents
only a baseline for future research, where issues such
as functional diversity, inter-taxon interactions and
community responses to climate change remain
unexplored.
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