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Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen that exhibits great host diversity. The primary means of trans-
mission of the virus in low- and middle-income countries is contaminated water, often due to a lack of access to proper 
sanitation, which leads to faecal contamination of water sources. Environmental surveillance is an important tool that can 
be used to monitor virus circulation and as an early warning system for outbreaks. This study was conducted to determine 
the prevalence and genetic diversity of HEV in wastewater, surface water (rivers and standpipe/ablution water), and effluent 
from a piggery in South Africa. A total of 536 water samples were screened for HEV using real-time reverse transcription-
polymerase chain reaction. Overall, 21.8% (117/536) of the wastewater, river, and ablution water samples tested positive for 
HEV, whereas 74.4% (29/39) of the samples from the piggery tested positive. Genotyping revealed sequences belonging to 
HEV genotypes 3 (98%, 53/54) and 4 (2%, 1/54), with subtypes 3c, 3f, and 4b being identified.
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Introduction

Hepatitis E virus (HEV) is a pathogen of global importance 
as it is the major cause of acute viral hepatitis (Hoofnagle 
et al., 2012; Sridhar et al., 2017), surpassing hepatitis A 
virus (HAV) (Rein et al., 2012; Wong et al., 2021). The 
World Health Organization (WHO) estimates that HEV 
causes approximately 20 million infections, more than 
44,000 deaths, and 3,000 stillbirths each year (Baez et al., 
2017; Rein et al., 2012; Wong et al., 2021). Hepatitis E virus 
infection is typically self-limiting and presents with compa-
rable clinical manifestations to HAV, such as fever, discom-
fort, body aches, vomiting, jaundice, and nausea. However, 
its primary distinguishing characteristic is its increased 

morbidity and case fatality rate in young adults and pregnant 
women (Kmush et al., 2013).

Hepatitis E virus belongs to the Hepeviridae family and 
is classified within the genus Paslahepevirus, the species 
Paslahepevirus balayani (Purdy et al., 2022). Eight HEV 
genotypes (HEV-1 – HEV-8) have been described to date 
(Smith et al., 2020). Genotypes 1 and 2 are exclusively 
associated with human infections through faecal-oral trans-
mission. Genotypes 3 and 4 are zoonotic in nature and can 
cause chronic infection in the immunocompromised (Aslan 
& Balaban, 2020). The predominant reservoirs for HEV-3 
include swine, rabbits, deer, and mongoose while the main 
reservoirs for HEV-4 are humans and swine (Sridhar et al., 
2017). Genotypes 5 and 6 have been identified only in ani-
mals, specifically wild boars. Genotypes 7 and 8 are novel 
genotypes which have been recently isolated from camelids 
(Woo et al., 2014, 2016). Genotype 7, which was identified 
in dromedaries, could have a significant impact on human 
health as it was detected in a liver transplant patient who 
developed chronic HEV infection after consuming camel 
meat and camel-derived products (Lee et al., 2016). To date, 
scientists have identified more than 30 HEV subtypes (Smith 
et al., 2020). Only a few of these subtypes, such as subtype 
HEV-3c, 3f, 4b, and 4c, are of major clinical importance as 
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they have been identified as key drivers of zoonotic trans-
mission or severe clinical manifestations such as acute liver 
failure (Abravanel et al., 2020; Hakze-van der Honing et al., 
2011; Nakano et al., 2018; Sato et al., 2020).

Hepatitis E virus can be transmitted through two main 
routes: the faecal-oral route, which involves the consumption 
of faecally contaminated water, and zoonotic transmission, 
which occurs when humans consume raw or undercooked 
meat from HEV-infected animals such as swine, deer and 
wild boar (van der Poel & Rzezutka, 2017). Person-to-per-
son transmission is relatively infrequent but there have been 
reported cases of mother-to-infant transmission and trans-
mission through solid organ transplants and blood transfu-
sions (Arankalle & Chobe, 2000; Kumar & Sarin, 2013; 
Kumar et al., 2001; Murkey et al., 2017).

The presence of HEV in water is a growing concern as 
both drinking and irrigation water can be contaminated, 
causing a further spread of HEV through fresh produce and 
potable water consumption (Kokkinos et al., 2017; Salvador 
et al., 2020; Tripathy et al., 2019). Modes of water con-
tamination may differ depending on the region but typical 
contamination scenarios include conditions such as heavy 
rains, water flowing through contaminated soil or leaking 
sewage pipes, and living in population-dense areas with 
no access to safe water supply (Khuroo, 2011). Studies in 
America, Asia and Europe have demonstrated the presence 
of HEV in groundwater, rivers, and wastewater (Baez et al., 
2017; Takuissu et al., 2022; van der Poel & Rzezutka, 2017). 
Molecular analysis of wastewater runoff and faeces from pig 
farms in North Carolina, United States of America (USA), 
presented evidence of HEV RNA in these samples. Waste 
from pig farms is often disposed of through land application 
such as fertilisation and irrigation of crops, which means it 
could inadvertently seep into groundwater that is used for 
drinking, resulting in HEV exposure of nearby communities 
and other pigs on the farms (Kase et al., 2009; Meester et al., 
2021). Employment at pig farms and wastewater treatment 
works (WWTWs) may also be considered a risk factor for 
HEV transmission (Beyer et al., 2020).

Presently, there is a paucity of data regarding the preva-
lence and diversity of HEV in South Africa (SA). Early stud-
ies in SA indicated a modest seroprevalence of 2.4% in 1994 
and then 5.8–14.3% by 1996, suggesting persistent virus 
circulation and endemicity (Grabow et al., 1994, 1996). 
More recent studies have revealed a significant increase in 
the seroprevalence of HEV among blood donors as well as 
an increase in the incidence and genetic diversity of HEV in 
pigs and pig-derived products (Adelabu et al., 2017; Chau-
han & Gordon, 2022; Lopes et al., 2017; Maponga et al., 
2020). A linear relationship has also been reported between 
seroprevalence, age, and geographical area (Tucker et al., 
1996). Despite progress in surveillance, characterisation, 
and risk factor identification of HEV, limited attention has 

been paid to asymptomatic individuals or those with mild 
symptoms who may still be shedding the virus but do not 
seek medical care. A comprehensive understanding of the 
prevalence and distribution of HEV in a region cannot be 
obtained based on clinical case data alone. Therefore, this 
exploratory study investigated the prevalence and diversity 
of HEV in SA in various water matrices. Water samples 
from WWTWs, rivers, runoff from selected ablution facili-
ties, and a piggery were screened using real-time reverse 
transcription-polymerase chain reaction (RT-PCR), and 
HEV strains were further characterised by genotyping using 
Sanger sequencing.

Materials and Methods

Sample Collection

Systematic water sampling was conducted from Febru-
ary to September 2021; samples (1 L) were collected from 
selected rivers, influent from WWTWs, and surface runoff 
at communal standpipe/ablution sites in seven provinces 
of SA, namely: Free State (FS), Gauteng (GP), Kwa-Zulu 
Natal (KZN), Limpopo (L), Mpumalanga (MP), North West 
(NW), and Western Cape (WC). The sampling frequency 
varied from weekly to biweekly for WWTWs and surface 
water (river and standpipe/ablution) sites, respectively. Grab 
sampling was used for all sites except one WWTW site, 
which used composite sampling. From May to September 
2022, 2-L samples of raw wastewater were collected from 
pig pens, effluent processed through the solid–liquid separa-
tion and autothermal thermophilic aerobic digestion (ATAD) 
system, and water from the adjacent river at a piggery in 
Tshwane. All the samples were transported in cooler boxes 
and refrigerated at 4 °C until further processing.

Virus Recovery

The skimmed milk flocculation protocol as outlined by 
Falman et al. (2019) was used to recover viruses from the 
water samples. Briefly, 5% weight/volume (w/v) pre-floccu-
lated skimmed milk solution (2 mL) (Oxoid, Basingstoke, 
Hampshire, UK) was added to a 200 mL sample, followed 
by pH adjustment to 3.0–4.0 using 1 M hydrochloric acid 
(HCl) (Merck KGaA, Darmstadt, Germany) and gentle 
shaking at 200 revolutions per minute (rpm) at room tem-
perature (20–25 °C) for 2 hours (h). The samples were 
then clarified by centrifugation (Sorvall® Super T20, du 
Pont, Wilmington, DE, USA) at 4500 × g for 30 min (min) 
at 4 °C. The supernatant was decanted, and the pellet was 
resuspended in 2 mL phosphate-buffered saline (PBS; pH 
7.4; Sigma-Aldrich, St. Louis, MO, USA). Aliquots (1 mL) 
of each recovered virus concentrate were stored at − 20 °C 
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for analysis, while the remaining volumes were stored 
at − 70 °C.

Nucleic Acid Extraction

The virus concentrates were subjected to chloroform treat-
ment before extraction to reduce potential PCR inhibitors. 
Briefly, chloroform (Merck KGaA) (250 μL) was added to 
1 mL of the virus concentrate. The solution was vortexed 
three times for 15 s (sec) and incubated at room temperature 
for 5 min, followed by centrifugation at 5000× g for 3 min. 
Following phase separation, the aqueous phase (1 mL) was 
transferred to a new 2 mL tube. This process was performed 
once for wastewater and surface water samples and twice for 
pig farm samples.

Total nucleic acids were extracted from the wastewater 
and surface water samples using a QIAamp® UltraSens® 
Virus Kit (QIAGEN, Hilden, Germany) following the manu-
facturer’s instructions. Nucleic acids were eluted in AVE 
buffer (100 μL) and stored at − 80 °C. Nucleic acids from 
recovered piggery and adjacent river samples were extracted 
using the EMAG® Nucleic Acid Extraction System (bioMé-
rieux, Marcy-l’Étoile, France) following the manufacturer’s 
instructions, eluted in 100 μL of elution buffer, and then 
stored at − 80 °C.

Positive Control Preparation

An HEV-positive stool specimen, kindly provided by Prof. 
Wolfgang Preiser from Stellenbosch University, SA, was 
used to generate a positive control plasmid for the detection 
assay. Total nucleic acids were extracted from a 10% sus-
pension of the stool specimen using the QIAamp® UltraS-
ens® Virus Kit (QIAGEN) according to the manufacturer’s 
instructions. To construct the plasmid, complementary DNA 
(cDNA) was synthesised using a Protoscript® II Reverse 

Transcriptase Kit (New England Biolabs Inc., Ipswich, MA, 
USA), 0.5 mM deoxynucleotide triphosphates (dNTPs) 
(New England Biolabs Inc.), and random hexamer primers 
(Roche, Basel, Switzerland) according to the manufacturer’s 
instructions. A PCR was then performed using the cDNA 
(5 μL), EmeraldAmp MAX HS PCR Master Mix (25 μL) 
(Takara Bio Inc., Kusatsu, Shiga, Japan), nuclease-free 
water (18 μL; Promega Corporation, Madison, WI, USA), 
and published primers: JVHEVF and JVHEVR, at a final 
concentration of 0.4 μM for each primer (Table 1). The ther-
mal cycling parameters were 95 °C for 3 min, followed by 
40 cycles at 94 °C for 1 min, 45 °C for 1 min, and 72 °C for 
1 min, with a final extension at 72 °C for 7 min.

The 69 bp product was then purified and cloned into a 
pJET1.2/blunt vector using the CloneJET™ PCR Cloning 
Kit (Thermo Fisher Scientific, Waltham, MA, USA) and 
10-beta Escherichia coli (E. coli) chemically competent cells 
(New England Biolabs Inc.). Following colony PCR, the 
plasmid was purified using the Zyppy™ Plasmid Miniprep 
Kit (Zymo Research, Irvine, CA, USA) and stored at − 20 °C 
until further use.

Real‑Time RT‑PCR Assay for HEV Detection

A one-step real-time RT-PCR assay (QuantiFast Pathogen® 
RT-PCR + IC kit, QIAGEN) was used to amplify the 69 bp 
region of the highly conserved ORF3. The nucleic acid tem-
plate (5 μL), nuclease-free water (7.55 μL; Promega Corp.), 
5× Reaction Mix (5 μL), and published primers and probe 
(Table 1) at a final concentration of 0.4 μM and 0.08 μM 
respectively, were added to a final reaction volume of 25 μL. 
The kit’s internal control (IC) was used to monitor PCR 
inhibition.

The assay was performed using the QuantStudio™ 5 
platform (Applied Biosystems, Waltham, MA, USA). The 
cycling conditions were as follows: reverse transcription at 

Table 1   Primers and probes for detection and genotyping of HEV

a Jothikumar et al. (2006)
b Modified probe by Garson et al. (2012). Probe labels: 6-carboxy fluorescein (FAM), minor groove binder (MGB)
c Huang et al. (2002)
d Degenerate base code: Y = C or T; M = A or C
e The sequence location of all primers and probe corresponds to nucleotide position 5261–6417 of GenBank accession number M73218

Primer Sequenced Type Locatione

Detection JVHEVFa 5′-GGT​GGT​TTC​TGG​GGT​GAC​-3′ Forward 5261–5278
JVHEVRa 5′-AGG​GGT​TGG​TTG​GAT​GAA​-3′ Reverse 5313–5330
JVHEVPb 5′-FAM-TGA​TTC​TCA​GCC​CTT​CGC​-MGB-3′ Probe 5284–5301

Genotyping 1st PCR MengFOc 5′-AAY​TAT​GCMCAG​TAC​CGG​GTT​G-3′ Forward 5687–5708
MengROc 5′-CCC​TTA​TCC​TGC​TGA​GCA​TTCTC-3′ Reverse 6395–6417

2nd PCR MengFIc 5′-GTY​ATG​YTY​TGC​ATA​CAT​GGCT-3′ Forward 5972–5993
MengRIc 5′-AGC​CGA​CGA​AAT​YAA​TTC​TGTC-3′ Reverse 6298–6319
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50 °C for 30 min, enzyme activation at 95 °C for 5 min, and 
45 cycles at 95 °C for 15 s and 60 °C for 1 min. Fluorescence 
was measured during the extension step. The data was ana-
lysed with QuantStudio™ software (Applied Biosystems).

A standard curve was constructed using triplicate tenfold 
serial dilutions of the positive control plasmid (r2 = 0.995, 
efficiency = 94.57%, error = 0.063). The limit of detection 
(LOD) of the assay, defined as the 95% confidence minimum 
detectable template concentration, and the limit of quantifi-
cation (LOQ), defined as the lowest concentration of HEV 
RNA that could be reliably quantified, were determined 
based on the standard curve. A cycle threshold (Ct) value of 
40 was used as the cut-off value for HEV-positive samples. 
In instances where substantial IC inhibition was observed, 
that is when no amplification signals were detected from 
both the target sequence and the IC or the Ct value of the 
IC was ≥ 40 with no amplification from the target sequence, 
the RT-PCR assay was repeated with diluted nucleic acid 
(1:10 dilution). If the IC tested positive after dilution, inhibi-
tion was considered as resolved. Hepatitis E virus RNA in 
selected positive samples (Ct < 33.9) was quantified using 
the real-time RT-qPCR assay described above.

Molecular Characterisation

Amplification of the Partial Capsid Region

Samples with a Ct value ≤ 35.5 were selected for molecular 
characterisation using a two-step RT-PCR. The extracted 
nucleic acid template (5 μL) was used to synthesise cDNA 
(20 μL) using random hexamer primers (30 μM) (Thermo 
Fisher Scientific), 0.5 mM dNTPs (New England Biolabs 
Inc.), and the Protoscript® II Reverse Transcriptase Kit 
(New England Biolabs Inc.), according to the manufacturer’s 
instructions. The 348 bp partial capsid region (ORF2) was 
amplified by nested PCR using a 50 μL reaction containing 
cDNA (5 μL), EmeraldAmp MAX HS PCR Master Mix 
(25 μL) (Takara Bio Inc.), nuclease-free water (Promega 
Corp.), and published primer sets (Table 1) at a final con-
centration of 0.2 μM. The first-round PCR product (1 μL) 
was used as the template for the second round. The cycling 
conditions for both the first and second rounds were as fol-
lows: 95 °C for 3 min, followed by 40 cycles of 94 °C for 
1 min, 45 °C for 1 min, and 72 °C for 1 min, with a final 
extension at 72 °C for 7 min.

Visualisation of PCR Products and Purification

Amplicons were analysed by 1.5% agarose gel electro-
phoresis using Agarose LE (Cleaver Scientific, Rugby, 
Warwickshire, UK) and purified using the DNA Clean 
and Concentrator® − 25 Kit (Zymo Research) according 
to the manufacturer’s instructions. Amplicons with low 

yields were cloned using the CloneJET™ PCR Cloning 
Kit (Thermo Fisher Scientific) and 10-beta E. coli chemi-
cally competent cells (New England Biolabs Inc.) as per 
the manufacturer’s instructions.

Sanger Sequencing

The PRISM BigDye® Terminator v3.1 Cycle Sequenc-
ing Kit (Thermo Fisher Scientific) was used for cycle 
sequencing of amplicons of the correct size. The cycling 
conditions were as follows: initial denaturation (94 °C for 
3 min), followed by 25 cycles of denaturation (94 °C for 
30 s), annealing (50 °C for 10 s), and extension (60 °C 
for 4 min). Sequencing reactions were referred to Inqaba 
Biotec, Pretoria, SA, for purification and analysis.

Phylogenetic Analysis

The BioEdit Sequence Alignment Editor Software was 
used for base calling, while Sequencher™ DNA Sequence 
Analysis Software version 4.9 (Gene Codes Corporation, 
Ann Arbor, MI, USA) was utilised for sequence assembly 
and translation (Hall, 1999). To identify the genotypes, the 
Nucleotide Basic Local Alignment Search Tool (BLAST) 
was applied to compare them to known sequences in the 
GenBank database. The HEV Genotyping Tool version 
1.0 (https://​www.​rivm.​nl/​mpf/​typin​gtool/​hev/) was used to 
assign the subtypes. All sequences were deposited in Gen-
Bank under accession numbers OR604636 – OR604689.

Sequence alignment was performed with the Multiple 
Alignment using Fast Fourier Transform (MAFFT) version 
7 software (https://​mafft.​cbrc.​jp/​align​ment/​server/) (Katoh 
et al., 2019). The derived HEV sequences were aligned to 
GenBank top hits and HEV reference subtypes as recom-
mended by Smith et al. (2020). A maximum-likelihood 
phylogenetic tree was constructed by using the Molecu-
lar Evolutionary Genetics Analysis Program Version X 
(MEGA X) software; the evolutionary distances were 
determined using the Jukes-Cantor method and validated 
by replication with 1000 bootstraps.

Statistical Analysis

Descriptive statistics were used to summarise HEV detec-
tion rates. The significance of differences in HEV detec-
tion rate according to sample type, province, and time 
period were assessed using the chi square test on OpenEpi 
(Sullivan et al., 2009) (https://​www.​opene​pi.​com/​Twoby​
Two/​Twoby​Two.​htm, accessed 21/02/2024).

https://www.rivm.nl/mpf/typingtool/hev/
https://mafft.cbrc.jp/alignment/server/
https://www.openepi.com/TwobyTwo/TwobyTwo.htm
https://www.openepi.com/TwobyTwo/TwobyTwo.htm
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Results

Hepatitis E Virus Detection

A total of 536 water samples were collected from Febru-
ary to September 2021. Of these, 328 were influent sam-
ples from WWTWs, 188 were river samples, and only 20 
were from standpipe/ablution sites. Hepatitis E virus was 
detected in 21.8% (117/536) of the samples, with detection 
rates of 22% (72/328) in wastewater influent, 22% (42/188) 
in river water, and 10% (2/20) in ablution runoff/standpipe 
site samples. The average Ct value for the positive sam-
ples was 34.5 (WWTWs), 34.6 (rivers), and 36.8 (stand-
pipe/ablution). No statistically significant difference was 
observed in the detection rates in wastewater influent and 
river water (p = 0.3382). Inhibition was observed in 18.9% 
(98/536) of samples. After dilution, 14.3% (14/98) tested 
positive (average Ct value: 36.28) while 72% (71/98) were 
negative and 13 samples (2.4%) remained inconclusive. 
In total, 406 samples were negative. The LOD of the real-
time RT-qPCR assay was determined as 100 genome cop-
ies (gc)/reaction and the LOQ as 1000 gc/reaction. The 
HEV RNA concentrations for the positive samples ranged 
between 1.89 × 103 gc/reaction and 2.35 × 104 gc/reaction.

Hepatitis E virus was detected in all seven provinces 
with the WC having the highest percentage of positive 
samples (38.1%, 32/84), followed by NW (37.5%, 9/24) 
and then GP (23.3%, 57/245) (Fig. 1A). The HEV detec-
tion rate in the WC was significantly higher than all other 
provinces (p < 0.006) except for NW (p = 0.4627). A higher 
frequency of positive samples was observed in the winter 
months of June and July, with a progressive decrease in 
positivity from August (Fig. 1B). No significant differ-
ence was observed from the samples in the WC (p > 0.05) 
between February-April (30% positivity), May–July (45% 
positivity), and August–September (40% positivity). How-
ever, GP demonstrated a statistically significant increase in 
positive samples (p < 0.02) during May–July (31% positiv-
ity) compared to both the February-April (14% positivity) 
and August–September (15% positivity) time periods.

Between May and September 2022, an additional 39 
samples were collected from the Tshwane piggery and the 
adjacent river. These included 10 samples of raw effluent, 
10 samples of effluent after settling, 9 samples of effluent 
after separation, and 10 samples from the adjacent river. 
All effluent samples from the piggery (29) tested positive 
for HEV (average Ct value: 27.5) with RNA concentrations 
ranging between 1.13 × 104 gc/reaction and 1.79 × 106 gc/
reaction, while all samples from the river adjacent to the 
piggery (10) tested negative.

Molecular Characterisation

Amplification of the Partial Capsid Region

Of the 74 WWTW influent and surface water samples 
selected for genotyping (average Ct value: 33.18), the 
HEV partial capsid region was successfully amplified in 
33.8% (25/74) of the samples. Additionally, 100% (29/29) 
of the HEV-positive piggery effluent samples were suc-
cessfully amplified (average Ct value: 27.54). A total of 
54 HEV strains were sequenced, genotyped, and phyloge-
netically analysed.

Phylogenetic Analysis

A maximum likelihood phylogenetic tree was constructed 
to determine the relatedness of the sequences obtained 
in this study to those in GenBank (Fig. 2). Most of the 
strains clustered with strains from SA and were classified 
as HEV-3 (53/54), with only one strain being identified as 
HEV-4 (1/54). Further analysis using the HEV typing tool 
revealed that three HEV-3 strains belonged to subtypes 
HEV-3f and HEV-3c, and the HEV-4 strain belonged to 
subtype HEV-4b. The remaining strains (n = 51) were cat-
egorically of genotype HEV-3, but the online HEV typing 
tool was unable to classify them into a subtype.

Discussion

Wastewater-based epidemiology (WBE) was applied to 
investigate the prevalence and diversity of HEV in waste-
water and other water matrices across both rural and urban 
settings in SA. The WBE field is a relatively new and 
dynamic area of research that can complement conven-
tional surveillance systems and serve as an early warning 
system for infectious disease outbreaks in specific regions 
(Sims & Kasprzyk-Hordern, 2020).

Real-time RT-PCR was used to detect HEV. This 
detection method has been used in previous studies from 
other countries, including Pakistan (Ahmad et al., 2010), 
Sweden (Hellmér et al., 2014), Portugal (Salvador et al., 
2020), and Argentina (Lo Castro et al., 2023). Because 
of its widespread availability, dependability, and afford-
ability, this method is regarded as the gold standard for 
virus detection in water matrices. Other assays, such as 
the reverse transcription droplet digital PCR (RT-ddPCR) 
assay, have been developed and have demonstrated 
improved sensitivity, specificity, and reproducibility com-
pared to real-time RT-PCR (Nicot et al., 2016). However, 
the costs and need for specialised equipment make such 
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assays impractical for most researchers, especially in low- 
and middle-income countries (LMICs).

Real-time RT-PCR inhibition could not be resolved for 
2.4% (13/536) of the wastewater and surface water samples 
collected from February-September 2021. Compounds 

present in samples, such as metal ions, lipids, proteins, 
and polysaccharides, can inhibit nucleic acid amplifica-
tion (Schrader et al., 2012). Diluting the RNA can reduce 
the concentration of such compounds, therefore assist-
ing with the amplification of the target. Inhibition was 

Fig. 1   The number of HEV-positive, negative, and inhibited samples collected between February to September 2021 per province (A) and the 
distribution of HEV-positive samples through the sampling period (B). Figure created in Microsoft Excel 2016
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predominantly detected in the wastewater samples, as 
well as in a few surface water samples extracted manually 
using the QIAamp® UltraSens® Virus Kit (QIAGEN). No 
inhibition was observed in the piggery samples collected 
between May and September 2022, which could be due to 
the use of a different extraction method (EMAG® Nucleic 
Acid Extraction System) or the less complex matrix of 
piggery wastewater with fewer potential PCR inhibitors. 
Inhibition leads to a possible underestimation of the posi-
tivity rate within a sample pool.

A 21.8% HEV positivity rate was found in wastewater 
and surface water samples collected between February and 
September 2021. The detection rate in wastewater influent 
was high (22%), this is likely because significant concentra-
tions of HEV are shed in stool excreted by infected indi-
viduals, making it more detectable in wastewater influent, 
which is a pooled sample from thousands of people in each 
area (Hellmér et al., 2014; Iaconelli et al., 2020; Takuissu 
et al., 2022). A recent meta-analysis of HEV in environmen-
tal waters showed that its prevalence is higher in untreated 
wastewater (15.1%) compared to surface waters (7.4%) 
(Takuissu et al., 2022). Interestingly, the prevalence of HEV 
in wastewater is typically lower in most industrialised coun-
tries, such as Italy (5.4%) (Iaconelli et al., 2020), Norway 
(8.0%) (Myrmel et al., 2015), and Portugal (3.3%) (Matos 
et al., 2018) when compared to LMICs.

For the surface water samples collected between Feb-
ruary and September 2021, the detection rate of HEV in 
the rivers and standpipe/ablution sites was 22% and 10%, 
respectively. These results are comparable to the detection 
rate in WWTW influent. This study shows frequent HEV 
contamination of SA river systems at low levels. Accord-
ing to the Green Drop Watch Report for 2023, 70.1% of 
wastewater treatment plants in SA are dysfunctional or have 
exceeded their design capacity (Department of Water and 
Sanitation, Republic of South Africa, 2023). There are also 
unsewered informal settlements with rapidly changing popu-
lation numbers close to rivers leading to inadequate disposal 
of sewage. Many of these informal settlements have back-
yard pigs and other free-ranging animals which could shed 
HEV. The lower detection rates of HEV, or lack thereof, in 
surface water in industrialised countries can be attributed to 
access to proper sanitation, hygiene, and adequate disposal 
and treatment of sewage (Ahmad et al., 2022).

Fig. 2   Maximum-likelihood phylogenetic tree of partial capsid 
gene sequences (348  bp, ORF2) representing the 54 HEV strains 
detected in the study. Evolutionary distances were determined using 
the Jukes-Cantor method, conducted in MEGA X. Numbers next to 
the branches indicate nodes where bootstrap support was > 70% out 
of the 1000 replicates. Reference sequences are based on Smith et al. 
(2020). Closely related strains from GenBank are indicated by acces-
sion numbers and study strains are indicated by triangles ▲(river), 
solid circles ● (WWTWs), and open circles ○ (piggery)

▸
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All piggery samples (29) tested positive for HEV. Pigs 
are one of the main reservoirs of HEV (Ahmed & Nash-
eri, 2023). Infected pigs can shed the virus in their stool, 
therefore, exposure to manure and faecally contaminated pig 
pens is a potential source of infection for both pigs and farm 
workers (Beyer et al., 2020; Meester et al., 2021). The pres-
ence of HEV RNA in the environment is not conclusive evi-
dence of infectious virions, but it does highlight the potential 
risks. Studies have shown that working at WWTWs and pig-
geries/slaughterhouses as an HEV risk factor (Bagulo et al., 
2020; Pavio et al., 2017; Vaidya et al., 2003). In Antioquia, 
Columbia, pig farm employees had an HEV seroprevalence 
of 11.25% (Baez et al., 2017). To mitigate the risk of HEV 
infection in farm workers, it is imperative to provide them 
with adequate personal protective equipment and to handle 
all waste carefully. Vaccination of these cohorts for disease 
prevention would be optimal. However, the only available 
vaccine that has demonstrated good safety and high effi-
cacy is solely licensed in China and Pakistan since 2011 and 
2020, respectively (Zhong et al., 2023).

None of the samples from the river adjacent to the pig-
gery tested positive for HEV. These results align with 
a study conducted by Kasorndorkbua et al. (2005) in the 
USA, which suggested that contamination of the adjacent 
river may not be evident because the virions in the river 
being present at a low concentration and thus undetectable 
by the applied detection methods. Alternatively, the effec-
tive implementation of aerobic digestion similar to ATAD 
described by Wi et al. (2019), coupled with the initial release 
of the effluent into a wetland, likely ensured sufficient treat-
ment of the waste before it reached the river.

Although the seasonality of HEV is unclear (Fares, 2015), 
an increased incidence of HEV in the summer months of 
May–July in Europe suggests a summer seasonality of HEV 
in that region (Healy et al., 2022). Lu and colleagues (2013) 
reported that the seasonality of HEV differed according to 
the geographical area in China (Lu et al., 2013), emphasising 
the complexity of describing HEV seasonality. In this study, 
HEV was detected throughout the sampling period at vary-
ing frequencies across the months and provinces. Analysis 
of the data revealed a gradual increase in the incidence of 
HEV from March, with a peak observed in June and July. As 
the winter season progressed, there was a gradual decrease 
in the incidence of HEV. Conclusions on the seasonality 
of HEV in SA could not be drawn from this study because 
the sample collection duration was too short, however it is 
clear the virus circulates in the population for most of the 
year. This suggests that regular environmental and clinical 
surveillance is required to predict potential outbreaks, espe-
cially in densely populated rural areas with limited access 
to clean water and proper sanitation.

The South African National Health Act (Act No. 61 
of 2003) classifies hepatitis E as a category 2 medical 

condition, requiring health care professionals to report clini-
cal/laboratory confirmed cases to the Department of Health 
through written or electronic communication within 7 days. 
However, between June 2018 and May 2023, only 247 cases 
were reported in the notifiable medical condition system for 
the entire country (NICD, 2023). Considering the HEV 
detection rate in the current study, HEV infections are likely 
underreported or misdiagnosed in the country. Research 
has shown that most cases of hepatitis E are misdiagnosed 
as drug-induced liver injury (DILI), especially in LMICs 
(El-Mokhtar et al., 2021; Kamar et al., 2014). In SA, over 
five million people were receiving antiretroviral therapy in 
2022 (UNAIDS, 2022). Antiretroviral therapy causes DILI 
in patients with HIV infection (Pillaye et al., 2020), often 
leading to healthcare workers misdiagnosing HEV-induced 
liver inflammation as DILI. This is caused by limited HEV 
awareness in clinical settings. Environmental surveillance 
is therefore necessary to improve our understanding of the 
prevalence of HEV in the country. The low prevalence of 
the virus in the clinical setting could also be due to its low 
concentrations, causing sporadic, asymptomatic infections 
as it spreads (Grabow et al., 1996).

Among the 74 positive samples collected between Feb-
ruary and September 2021 and selected for genotyping, 
only 33.8% (25/74) were positive by nested PCR. This 
low positivity rate may be due to low concentrations of the 
virus and inhibitors within the sample. All piggery sam-
ples collected between May and September 2022 were suc-
cessfully genotyped. These samples had a 100-fold higher 
viral concentration than the 2021 samples, which likely 
facilitated efficient amplification using nested PCR. Phy-
logenetic analysis revealed the predominance of HEV-3 
in the country (98.1% [53/54]), with a single detection of 
genotype 4 (1.85% [1/54]). Previous investigations in vari-
ous countries, including Italy (La Rosa et al., 2015, 2017), 
Germany (Beyer et al., 2020), and Australia (Miura et al., 
2016), have reported the presence of these genotypes in 
similar environmental sources. Nucleotide BLAST analysis 
indicated that most sequences from this study (74%) were 
closely related to an HEV-3 sequence identified in a renal 
transplant patient (KU178916.1) from the WC province in 
SA. Interestingly, the phylogenetic tree showed that strains 
from the piggery formed a distinct cluster that was more 
closely related to strains detected in a WWTW and river in 
this study than to their top hit from GenBank (renal trans-
plant patient) (Andersson et al., 2015). The samples in this 
cluster could not be definitively subtyped due to insufficient 
bootstrap support, as the bootstrap cut-off was 70%. Future 
studies should characterise a larger region of the genome 
to determine whether or not these samples belong to a new, 
possibly unclassified subtype.

One study strain was identified as subtype 3f and clus-
tered with a human strain from France (Lhomme et al., 
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2015) with a significant bootstrap value (80%). Infection 
with this subtype correlates with elevated HEV viral titres, 
a higher fever risk, and increased hospitalisation rates (Abra-
vanel et al., 2020). Three strains (5.6%) were most closely 
related to an HEV-3 strain detected in pork liver spread 
(MF503296.1) from SA (Korsman et al., 2019). The remain-
ing sequences (18.5%) matched those from swine in Nige-
ria (KJ451631.1), Italy (MK532915.1), SA (OM104034.1), 
Japan (AB094271.1), and China (KJ001830.1). Overall, 
the sequences from this study showed nucleotide identities 
between 93.0% and 97.0% with their top hits in GenBank. 
Within the SA context, there is limited sequence data avail-
able for HEV, with only 21 sequences from SA available in 
GenBank to date.

The subtype 3c strains, related to HEV-3 detected in 
backyard pigs in KZN (OM104034.1) (Chauhan & Gordon, 
2022), were detected in GP, MP and NW. This subtype is 
widespread in pigs and wild boars (Fenaux et al., 2018). 
Although 3c infections are associated with a low viral load 
(Abravanel et al., 2020), a study spanning four European 
countries, comparing HEV infections in symptomatic and 
asymptomatic individuals found that infection with 3c leads 
to more asymptomatic infections (Smith et al., 2015). This 
could further perpetuate the spread of HEV. HEV strains 
found in human populations have been detected in water 
matrices in both industrialised and LMICs (Li et al., 2017). 
The association of the HEV strains in this study with strains 
from clinical cases suggests a wider community spread than 
previously thought. This poses a health risk, especially to 
immunocompromised people, who may suffer from chronic 
infection after exposure to the virus in rivers and other water 
sources.

Our findings are consistent with those of Beyer et al. 
(2020), who similarly identified both subtypes 3c and 3f in 
environmental samples in Germany. Subtypes 3c and 3f are 
predominant in Europe; however, subtype 3f has also been 
found in Thailand and Japan (Nakano et al., 2018). Infection 
with subtype 3f is associated with an increase in hospitalisa-
tion and a higher viral load, whereas subtype 3c has mostly 
been implicated in increased HEV incidence. (Abravanel 
et al., 2020; Nakano et al., 2018). The single HEV 4 strain 
was classified as subtype 4b and clustered with a strain 
from a pig in China and a reference strain, as described by 
Smith et al. (2020) (81% bootstrap support). Infections with 
genotype 4 have been noted to cause more severe clinical 
manifestations in humans (Hakze-van der Honing et al., 
2011). The phylogenetic findings in this study are in line 
with most studies that have investigated the genetic diversity 
of HEV in water matrices, as HEV-3 has been recognised 
as the most predominant genotype, with HEV-4 being pre-
sent in low quantities (Iaconelli et al., 2020; Takuissu et al., 
2022). A limitation of our study is that we could not confirm 
whether the viruses identified in this study were infectious 

or not. Future studies should incorporate viability PCR in 
their methods to detect viable viruses that could potentially 
cause infection.

Conclusion

From the available information, this is the first study of its 
kind to be conducted in SA. Our analyses present compel-
ling evidence for the presence of HEV in pig slurry, waste-
water, and surface waters within SA. Phylogenetic analysis 
established a clear link between the strains detected in the 
environment and those previously detected in human cases, 
indicating an ongoing circulation of HEV in the popula-
tion that extends beyond reported clinical cases. This study 
not only expands our understanding of water-based epide-
miology, but also significantly contributes to bridging the 
existing knowledge gap concerning the prevalence and dis-
tribution of HEV in our region. Furthermore, the valuable 
data obtained from this research can inform and support the 
development of effective vaccines and implementation of 
preventive measures to mitigate HEV outbreaks.
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