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Proteases, including serine proteases, are involved in the entire life cycle of

plants. Proteases are controlled by protease inhibitors (PI) to limit any

uncontrolled or harmful protease activity. The role of PIs in biotic and abiotic

stress tolerance is well documented, however their role in various other plant

processes has not been fully elucidated. Seed development is one such area that

lack detailed work on the function of PIs despite the fact that this is a key process

in the life cycle of the plant. Serine protease inhibitors (SPI) such as the Bowman-

Birk inhibitors and Kunitz-type inhibitors, are abundant in legume seeds and act

as antinutrients in humans and animals. Their role in seed development is not

fully understood and present an interesting research target. Whether lowering

the levels and activity of PIs, in order to lower the anti-nutrient levels in seed will

affect the development of viable seed, remains an important question. Studies on

the function of SPI in seed development are therefore required. In this

Perspective paper, we provide an overview on the current knowledge of seed

storage proteins, their degradation as well as on the serine protease-SPI system

in seeds and what is known about the consequences when this system is

modified. We discuss areas that require investigation. This includes the

identification of seed specific SPIs; screening of germplasms, to identify plants

with low seed inhibitor content, establishing serine protease-SPI ratios and lastly

a focus on molecular techniques that can be used to modify seed SPI activity.

KEYWORDS

serine proteases, serine protease inhibitors, seed development, seed viability,
antinutrients, abiotic stress
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1 Introduction

Proteases are involved in the entire life cycle of plants with

cysteine proteases the most abundant and investigated followed by

serine proteases and aspartic proteases. The model plant Arabidopsis

thaliana for example has approximately 700 genes coding for

proteases (Rawlings et al., 2018; Marshall and Vierstra, 2019). Plant

proteases act as regulators of physiological processes including

protein processing and homeostasis, organelle development, seed

germination, environmental stress response as well as senescence and

programmed cell death. Uncontrolled protease activity is, however,

harmful for plant growth. Regulation of this protease activity by

intracellular protease inhibitors is, therefore, of utmost importance

(Rachel and Sirisha, 2014; Sharma and Gayen, 2021). Proteases

inhibitors are grouped into families, classified based on the specific

reactive sites present. These are cysteine-, metalloid- aspartic and

serine protease inhibitors. In plants they can also be classified

according to their specific structural or biochemical properties such

as the Bowman-Birk (BBI) and Kunitz type serine protease inhibitors

(KTI). (Clemente et al., 2019). Protease inhibition occurs based on

one of two mechanisms, irreversible trapping that is irreversible or a

tight binding interaction where proteases and inhibitors co-exist in a

stable equilibrium. SPI falls within the latter group. In addition to the

regulation of the activity of exogenous proteases, derived, for

example, from insect pests and pathogens feeding or attacking

plants, these inhibitors are important in plant cellular homeostasis

and survival (van der Hoorn and Rivas, 2018). Serine protease

inhibitors (SPIs), such as KTIs, and the much smaller BBIs, can

additionally act as antinutrients in humans and animals. The quantity

of these inhibitors in seeds varies depending on plant species and

variety (Fernandes et al., 1991). In mature seeds of the marama bean,

trypsin inhibitors can represent up to 10% of the total seed protein

amount (Elfant et al., 1985; Cullis et al., 2023).

Unfortunately, the exact biological function of SPIs has not yet

been fully elucidated (Grosse-Holz and van der Hoorn, 2016). This is

despite the fact that SPIs are present in different organs and

associated with different functions, such as defense against biotic

and abiotic stresses (Sun et al., 2015; Rodrıǵuez-Sifuentes et al., 2020;

Mangena, 2022). In this regard, any detailed work is still scarce on

demonstrating a particular function of SPIs in viable seed production.

In this paper, we will outline the reasons we believe studies on the

function of SPIs in seed are urgently required, particularly when the

aim is to decrease the anti-nutrient activity of these PIs in seeds. We,

therefore, provide an overview of seed storage proteins and their

degradation, an overview of the current knowledge regarding the role

of the serine protease – SPI system in seed and the known

consequences of attempting to modify this system. We then give an

outline of areas, that require substantial research before lowering SPI

activity in seeds, for lowered anti-nutrient activity to be achieved.
2 Seed storage proteins and
their degradation

Storage proteins make up 80% of the total protein in seed and

can be targets of proteases. These proteins are produced during seed
Frontiers in Plant Science 02
development and maturation. In dicot plant species, storage

proteins are located in the mesophyll of cotyledons as well as in

the embryonic axis (Schlereth et al., 2000). In contrast, monocot

plants, such as cereals, have grains which are endospermic seeds.

Grains have, however, much less protein than legume seeds

(Wakasa and Takaiwa, 2013). Globally wheat (Triticum aestivum)

is one of the three most important grain crops and cultivated for its

importance as a staple food and protein source. Wheat seeds mainly

consist of the embryo and the endosperm. Both facilitate seed

germination as well as subsequent plant growth and development.

The wheat embryo develops from the oosperm and holds a large

amount of sugar, fats and proteins that represents 2.8 – 3.5% of the

total seed weight (Liu et al, 2021a)

Storage proteins accumulate mainly in the endosperm tissue

(Shewry and Halford, 2002) and stored proteins represent 10–12%

of the total seed dry weight. There are four categories of seed storage

protein which include albumins and globulins (dicot storage

proteins) as well as glutelins and prolamins (monocot storage

proteins) (Radhika and Rao, 2015). During seed germination, the

embryo secretes several enzymes to degrade the storage proteins in

the endosperm, which develops from the nucleus after fertilization,

to provide nutrition for growth. The endosperm contains mainly

storage proteins and starch in addition to some fat and mineral

elements. These components ultimately provide energy and raw

materials for seed germination (Liu et al., 2021a).

Storage proteins accumulate in protein storage vacuoles and or

protein bodies (Pedrazzini et al., 2016). Following germination,

storage proteins are degraded with the help of proteases to form free

amino acids. These are required for the synthesis of new proteins as

well as other nitrogen-containing compounds in the seedling (Liu

et al., 2021b). Proteolysis, which is vital for life, is generally required

in all organisms for protein turnover by non-selective protein

degradation. Proteolysis of seed storage proteins, due to protease

action, is, therefore, an important process during seed germination.

In cereals as well as legumes, these proteases are highly expressed

during germination (Diaz-Mendoza et al., 2019; Szewińska et al.,

2016). Based on protein annotations, 6% of the known proteases is

associated with seed germination or embryo development

(Escandón et al., 2022). Several protease families are involved in

the germination process that include cysteine, serine, threonine,

aspartic as well as metallo-proteases (Diaz-Mendoza et al., 2016;

Rustgi et al., 2018). The catalytic residues of the active sites differ

between families with cysteine proteases containing a Cys–His–Asn

triad at the active site, serine proteases a His-Asp-Ser triad, while

threonine proteases have an active site with a threonine residue at

the N-terminal. Aspartic proteases finally possess a dyad of two

aspartates and the metallo-proteases usually have a Zn2+ in their

active site (Rustgi et al., 2018). Most proteolytic enzymes involved

in the degradation of seed storage proteins during germination are

cysteine proteases with serine, aspartic and metalloproteases also

being involved (Tan-Wilson andWilson, 2012). Protein breakdown

is however regulated by endogenous PIs with specific activity

towards the various proteases. These inhibitors are, therefore, also

constitutive components of seeds and storage organs (Escandón

et al., 2022). Due to their abundance in many seeds, the seed PIs are

probably playing a twofold function. Firstly, they function as
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protection against proteases from other non-plant organisms, for

example insects and pathogens, and secondly the regulation of

endogenous proteases during mobilization of reserve proteins

(Hartl et al., 2011; van der Hoorn and Rivas, 2018). However, the

precise function of the protease-protease inhibitor system in the

regulation of seed protein accumulation and composition as well as

seed germination is still not fully characterized.
3 Serine protease-serine PI system

Serine proteases affect, alongside cysteine proteases of papain

family (C1A) and the legumain family (C13), all stages of the plant

life cycle (Schaller et al., 2018). The members of the S10 serine

carboxypeptidases (SCP) have particularly been implicated in the

cereal seed germination process (Diaz-Mendoza et al., 2016;

Martinez et al., 2019). However, in contrast to cysteine proteases,

relatively little is currently known about the involvement of serine

proteases in the development of viable seeds. Most knowledge so far

gained is from investigating cereal seeds. Members of the S10 serine

carboxypeptidases are involved in monocot cereal grain

germination (Tan-Wilson and Wilson, 2012) and cowpea

germination (Lima et al., 2019; Drzymała et al. 2012) reported

that serine carboxypeptidases I and III from triticale grains are

involved in the degradation of seed storage proteins that were

proteolytically modified by a cathepsin L-like proteases. Upon

hormonal induction, the rice SCP46 serine carboxypeptidase also

regulates grain filling and seed germination (Li et al., 2016). In Vicia

seeds, subtilisin-like (S8) serine proteases further participate,

alongside cysteine proteases, in the breakdown and mobilization

of seed reserve proteins (Schlereth et al., 2000). A serine protease

from soybean seedling cotyledons also initiates the proteolysis of the

b-conglycinin storage proteins (Morita et al., 1994).

Serine PIs that control serine protease activity are ubiquitously

present in many plant species. They have also diverse biological

functions and can play dual roles with their physiological functions

conserved and their functions diversified by a positive selection

pressure (Sin et al., 2006). Little investigated has been, however, the

existence of seed specific inhibitor genes. Although many functions

of SPIs are not well clarified, researches have suggested that these

inhibitors control exogenous proteolytic activity, for example in the

defense against herbivores. They possibly also function in plant

metabolism and development by regulating endogenous serine

protease activity during seed germination and development as

well in the mobilization of storage proteins (Roberts et al., 2003;

Hartl et al., 2011; Clemente et al., 2019). Importantly, serine

proteases, in contrast to cysteine proteases, are part of the human

digestive system. Serine PIs with anti-trypsin activity are able to

block serine proteases in the human digestive system. These

inhibitors accumulate in high levels in legume seeds and can

severely reduce the digestibility of a legume meal. It is, therefore,

necessary to inactivate these inhibitors before consumption.

Presence of inhibitors greatly affects consumer acceptance of

beans which are particularly high in inhibitors with anti-trypsin

activity. Decreasing the amount of SPI in legume seeds, are,
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therefore, a consideration in order to improve their nutritional

value (Samtiya et al., 2020).

The two major groups of SPI in legume seeds are the Kunitz-

type inhibitors (KTIs) and Bowman-Birk inhibitors (BBIs) (for an

overview see: Bonturi et al., 2020; Hellinger and Gruber, 2019;

Gitlin-Domagalska et al., 2020; Xie et al., 2021). Protease inhibitors

were originally proposed to be storage proteins (Pusztai, 1972),

being present in storage tissues such as seeds and tubers (Jørgensen

et al., 2011). The number of disulfide linkages is a major difference

between the BBIs and KTIs, with BBIs usually containing seven

while KTIs only containing two linkages. KTIs have further a single

reactive site whereas BBIs have two reaction sites. Legumes contain

members of both families. Compared to KTIs, BBIs are particularly

abundant in common beans and lentil seeds. Both serine PIs are also

relatively heat stable and capable of inhibiting two types of serine

proteases, trypsin and chymotrypsin, either independently or

simultaneously. Chymotrypsin-like proteases are possibly absent

in plants (Hohl et al., 2017).

No major effect on plant development or growth occurred when

a SPI was silenced (Hartl et al., 2010). Three Bowman-Birk

inhibitors BBI-A, BBI-CII and BBI-DII are expressed during

development of soybean seeds, with maximal expression during

the intermediate stages of seed development and with decreased

expression as seeds mature (de Almeida Barros et al., 2012). The

inhibitor SaPI2a from Solanum americanum, expressed in ovules

and young seeds, is further a strong inhibitor of subtilisin (Sin et al.,

2006). The specificity of SnSPI2a, and also SnSPI2b, towards

subtilisin suggests that SPIs interact with a plant subtilase in the

ovary since silencing these inhibitors results in a defect in seed

development (Hartl et al., 2011).
4 Modifying the serine
protease-serine PI system

Attempts to modify the expression of the components of the

protease-protease inhibitor system have predominantly been aimed

at improving environmental stress tolerance of plants or to increase

the amount of seed storage proteins. Many studies have thereby

focused on the roles of proteases and their inhibitors in defense

against insect and pathogen attack (Kiggundu et al., 2010; Kidric

et al., 2014) and also in coping with abiotic stress (Quain et al., 2014;

Kunert et al., 2015). Recent findings indicate that, for example,

water deficiency regulates the expression of a Kunitz-type inhibitor

in Trifolium repens to maintain cellular homeostasis (Islam et al.,

2017). Changes in the expression profile of Kunitz-type SPIs in

response to water limitation further suggests that these inhibitors

specifically target serine protease and modify their activity (Kidric

et al., 2014; D'Ippólito et al., 2021).

Lowering seed protease activity has also been a research target

aimed to increase the seed protein amount (Quain et al., 2014;

Kunert et al., 2015). Still, relatively little is known about the

involvement of SPIs in viable seed development. A possible

indication that SPIs indeed play an important role in seed

development has been so far derived from studies with tobacco
frontiersin.org
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and other Solanum species. Transgenic tobacco plants constitutively

expressing a SPI under the 35S promoter had enhanced seed

germination, increased root length with a higher root-shoot ratio

as well as a significantly higher total chlorophyll content and also

lowered thiobarbituric acid-reactive substances (Srinivasan et al.,

2009). A study by Malefo et al. (2020), investigating the role of a BBI

in transgenic Arabidopsis under drought stress, found elevated

drought tolerance in transgenic plants associated with a reduction

in drought-induced oxidative stress. Unfortunately, this study did

not investigate the effect of overexpression of the inhibitor on the

development of viable seeds, but our group is currently investigating

seed development in BBI overexpressing Arabidopsis lines. Knock-

down RNAi lines for specific members of the KPI gene family had

further increased proline accumulation under well-watered as well

as under water deficit conditions as well as modified expression of

ethylene biosynthesis genes (Islam et al., 2017). These results

suggest that the KPI family has various in planta protease target

processes which might include regulating proteases during

germination but also regulating the defense-response.

There still remains a large gap in our knowledge with regard to

the effects of lowering the PI content or activity on seed

development and germination. A study by Clemente et al. (2015)

tested so far available germplasm resources together with TILLING

with the specific aim of lowering the antinutrient content of pea

seeds by reduction of the protease inhibitor amounts. In a previous

study on soybean, a transgenic line expressing a mutant BBI, in

which both active sites were disrupted by the insertion of a glycine

residue, showed that seeds had a significantly decreased inhibitor

activity (Livingstone et al., 2007). In a soybean accession (PI

157740) with a frameshift mutation in the Kunitz-type KTI3

(Gm08g341500) gene, KTI mRNA accumulation was blocked in

embryos during seed development (Jofuku et al., 1989). Transgenic

KTI soybean plants, carrying kti1 and kti3 mutations, also had

dramatically reduced (∼40%) trypsin inhibitor activity (Jofuku

et al., 1989; Gillman et al., 2015). A pea line lacking pea

albumin2, lectin and two major trypsin inhibitor genes showed

improved seed protein digestibility and amino acid content without

affecting yield or seed protein concentration (Olıás et al., 2023).

However, a more detailed characterization of these mutants,

regarding their effect on seed development and germination, is

still lacking.
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Finally, in feeding studies animals fed on a protein meal with

lower KTI3 levels had a much better weight gain compared when

fed with a raw soybean meal with functional KTI3 (Perez-

Maldonado et al., 2003). But feeding with mutant lines was still

inferior to feeding with heat-treated soybeans conventionally used

to eliminate KTI activity. Unfortunately, lines low in trypsin

inhibitor activity are more susceptible to pathogens. Knockout of

the BBI APIP4 in rice enhanced, for example, the susceptibility to

the fungal pathogen Magnaporthe oryzae (Zhang et al., 2020).
5 Areas for intensive
future exploration

Whether seed viability will be affected by lowering seed protease

inhibitor levels, in order to achieve lower antinutrient activity,

remains an interesting question. In general, current research on

protease inhibitors is mainly focused on increasing, rather than

decreasing, inhibitor activity to prevent, for example, protease

activity of seed predators and seed pests as well as controlling

endogenous seed proteases (Jamal et al., 2013; Grosse-Holz and van

der Hoorn, 2016). As a first step screening of existing germplasm of

beans for example, naturally occurring, low levels of serine protease

inhibitors in the seeds, would be an important research task (for an

overview see Figure 1). A high throughput and accurate HPLC-

based method to determine TIr content is seeds has been developed

by Rosso et al. (2018). The relationship between inhibitor amounts

and seed viability also needs to be established. In this regard, we

have already started to screen part of a European common bean

core collection specifically for lower SPI activity in seeds to

determine if their viability is depending on the SPI activity.

Interesting would also be investigating in much more detail the

existence of specific seed inhibitor genes essential for the

development of viable seeds.

Another important aspect to be investigated in the future will be

to evaluate the tolerance of low antinutrient seeds towards seed

predators and pathogens. This might be compromised due to lower

SPI activity. A further interesting question is also if a lower protease

inhibitor amount will correlate with a higher, or lower, serine

protease activity in seeds. A higher protease activity might actually

be detrimental for seeds when premature degradation of storage
FIGURE 1

Actions to characterize and modify serine PIs in seeds.
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proteins is allowed during seed development. This might ultimately

severely affect seed germination and growth of the seedling.

Finally, in addition to classical breeding methods, application of

genetic modification technologies would be, a promising option in

lowering the expression of specific serine proteases in seeds. In cases

where seed specifically expressed SPIs have been identified,

selectively silencing these, in order to reduce antinutrients in

seeds, by genome editing (GE) to produce inhibitor mutants

would be a possible future strategy. Silencing such individual seed

SPIs would allow to unravel specific and unique functions in the

development of viable seeds. Application of GE, such CRISPR/Cas9

and TALEN (Zhang et al., 2018), has resulted in the nutritional

improvement of a tomato which has already been released to the

market (Waltz, 2022). A first success applying GE for detection of a

seed specific protease/protease inhibitors has been the recent

detection of the aspartic protease nepenthesins, which has been

exclusively identified by the GE technology in non-viable seeds

(Escandón et al., 2022). An advantage of the GE technology is that

mutations created by this technology are considered to be almost

identical to spontaneous genetic mutations since mutation inducer,

the edited foreign gene, can be completely eliminated from the final

genome-edited hosts after causing the mutation. Recently Rosso

et al. (2021) developed a cost effective and breeder-friendly KASP

SNP genotyping assay linked to low KTI content in soybean. This

system may be extended to other crops to develop low KTI lines.
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Garcia, N., Olmos, E., et al. (2014). Ectopic phytocystatin expression leads to enhanced
Frontiers in Plant Science 06
drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through
effects on strigolactone pathways and can also result in improved seed traits. Plant
Biotechnol. J. 12, 903–913. doi: 10.1111/pbi.12193

Rachel, K. V., and Sirisha, G. V. D. (2014). A review of protease inhibitors from
different sources. Int. J. Applied Phys. Bio-Chemistry Res. 4, 1–18.

Radhika, V., and Rao, V. S. (2015). Computational approaches for the classification of
seed storage proteins. J. Food Sci. Technol. 52, 4246–4255. doi: 10.1007/s13197-014-1500-x

Rawlings, N. D., Barrett, A. J., Thomas, P. D., Huang, X., Bateman, A., and Finn, R. D.
(2018). The MEROPS database of proteolytic enzymes, their substrates and inhibitors
in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids
Res. 46, D624–D632. doi: 10.1093/nar/gkx1134

Roberts, T. H., Marttila, S., Rasmussen, S. K., and Hejgaard, J. (2003). Differential
gene expression for suicide-substrate serine proteinase inhibitors (serpins) in vegetative
and grain tissues of barley. J. Exp. Bot. 54, 2251–2263. doi: 10.1093/jxb/erg248
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