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1 Supplementary Table 

1.1 Table 1: A list of NLR engineering studies and the associated modifications that have been conducted to confer novel effector recognition 
ability. 

NLR immune receptor/ 
Plant protein  

(Plant Host) 

New effector(s) recognized 
(Pathogen) 

NLR Modification  Reference  

NRC2D317K (Nicotiana 
benthamiana) 

SPRYSEC15 (Globodera 
rostochiensis) 

SPRYSEC15 binds to NRC2 to inhibit its activity, but 
not NRC4. The structural basis of NRC4’s resistance to 
effector inhibition was mapped and corresponding 
mutations were introduced into NRC2, which allowed the 
NRC2 mutant to resist inhibition by SPRYSEC15. 

 (Contreras et al., 
2023) 

Pikm-1 (Oryza sativa) 
nanobody fusion  

Viral coat protein (Potato virus 
X) tagged with fluorescent 
proteins  

NLRs were used as scaffolds to form nanobody fusions 
capable of binding to fluorescent proteins. This allows 
the activation of immune responses to mediate resistance 
against effectors and plant virus coat proteins expressing 
fluorescent proteins.  

 (Kourelis et al., 
2023) 
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Pik-1 mutants (O. sativa) Avr-PikC and Avr-PikF 
(Magnaporthe oryzae) 

Using knowledge of the binding interaction between Avr-
Pik and osHIPP19, new Pik-1 variants were generated 
which could recognize Avr-PikC/F. 

 (Maidment et 
al., 2023) 

StPBS1Nla (Solanum 
tuberosum) 

PVY Nla-Pro protease (Potato 
virus Y) 

The cleavage sequence of AvrPphB within StPBS1 was 
replaced with a PVY Nla-pro protease domain to create 
StPBS1Nla. This conferred the protein with stronger 
immunity against Potato virus Y (PVY) infection 
compared to StPBS1 transgenic lines. (Decoy 
engineering) 

 (Bai et al., 2022) 

Sr35 (Triticum aestivum) AvrSr35 variants (Puccinia 
graminis f. sp. tritici) 

Random mutagenesis experiments identified a repertoire 
of substitutions in AvrSr35 which could potentially 
escape Sr35 recognition. Likewise, a set of substitutions 
were identified within Sr35 which could recapture 
AvrSr35. 

 (Förderer et al., 
2022) 

RGA5m1 (O. sativa) AvrPikD (M. oryzae) The Avr-PikD binding residues located in Pikp-1_HMA 
were introduced into RGA5_HMA. 

 (Cesari et al., 
2022) 

Sr33 (T. aestivum) AvrSr50 (P. graminis f. 
sp. tritici) 

12 amino acids in Sr50 NLR which mediated recognition 
of AvrSr50 was mapped and transferred to Sr33 which 
resulted in an AvrSr50-dependent cell death initiation in 
transient expression assays. (Domain swapping) 

 (Tamborski et 
al., 2022) 

Sw-5bL33P/K319E/R927A and 
Sw-5bL33P/K319E/R927Q 

(Solanum lycopersicum) 

Variants of Tomato spotted wilt 
virus (TSWV) 

Owing to the two-step recognition process employed by 
Sw-5b, two mutations were introduced in a stepwise 
manner. First, a set of mutations were introduced at the 
R927 residue in the LRR, after which random 
mutagenesis was directed at the domain. The mutants 

 (Huang et al., 
2021) 
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demonstrated immunity against resistance breaking 
isolates of TSWV. 

RGA5HMA2 (O. sativa) AvrS- and AvrPib (M. oryzae) HMA domain modified to confer new effector 
recognition specificities to AvrS- and AvrPib  

 (Liu et al., 2021)  

Pm2a (T. aestivum) AvrPm2 - BgtE-5846 (Blumeria 
graminis f. sp. tritici) 

Introduction of natural, non-synonymous SNPs and 
structure guided mutagenesis unraveled the variant 
specific nature of Pm2-mediated hypersensitive response 
(HR). This allowed the swapping of the AvrPm2 head 
epitope to the non-HR-triggering AvrPm2 family member 
BgtE-5846 led to gain of a HR by Pm2a.  

 (Manser et al., 
2021) 

RRS1-R (Arabidopsis 
thaliana) 

SAP05 (phytoplasmas) A pathogen dependent degron domain was attached to 
RRS1-R allowing it to become degraded by a 
phytoplasma effector SAP05. This resulted in depression 
of RRS1-R slh119 auto-activity, resulting in SAP05-
mediated resistance. 

 (Wang et al., 
2021)  

PBS1 mutants (A. 
thaliana)  

Nuclear inclusion protein a 
(NIa) protease (from turnip and 
soybean mosaic viruses) 

Replacement of seven amino acids within a cleavage site 
in PBS1 allowed activation of RPS5 in response to turnip 
mosaic virus (TuMV) infection. Thus, TuMV resistance 
was engineered into the PBS1/RPS5 decoy system. 
Authors also modified a soybean ortholog of PBS1 to 
enable cleavage by NIa protease from soybean mosaic 
virus (SMV), facilitating resistance against SMV. 
(Domain swapping) 

 (Pottinger et al., 
2020) 

PM3A variants (T. 
aestivum) 

AvrPM3A2/F2 (B. graminis 
f.sp. tritici) 

Site-directed mutagenesis and domain swapping.   (Lindner et al., 
2020)  
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PBS1 protein kinase 
(Glycine max) 

NIa (SMV) The guard model involving the NLR RPS5 and protein 
kinase PBS1 in Arabidopsis was exploited in soybean. 
New cleavage sites for NIa protease from SMV was 
integrated into PBS1 paralogues in soybean which 
activated an unknown soybean NLR. (Decoy 
engineering)  

 (Helm et al., 
2019)  

Pikp variants (O. sativa) Avr-Pik (M. oryzae) A structure guided engineering approach was used to 
expand Pikp’s recognition spectra to recognize variants 
of Avr-Pik.  

 (De la 
Concepcion et 
al., 2019)  

Sw-5b (S. lycopersicum) viral movement protein (Nsm) 
(tospoviruses)  

Natural variants of Sw-5b revealed a set of four 
polymorphic sites within the LRR domain which 
conferred resistance against tospoviruses. (Natural 
variation analysis) 

 (Zhu et al., 
2017)  

PBS1 kinase (A. thaliana) TEV Nla protease (Tobacco etch 
virus) 

Replacement of the AvrPphB cleavage site within PBS1 
with a Tobacco etch virus (TEV) Nla protease cleavage 
site, mediated the activation of HR via TEV protease. 

 (Kim et al., 
2016)  

I2I141N (S. lycopersicum) Avr3a (Phytophthora infestans) 
+ some effectors from Fusarium 
oxysporum f. sp. lycopersici.  

Mutations from the potato immune receptor, R3a were 
transferred to the tomato orthologue I2 to create a 
mutated N-terminal domain in I2: I2I141N. (targeted 
mutagenesis) 

 
(Giannakopoulou 
et al., 2015)  

Pm3 narrow spectrum (T. 
aestivum) 

No pathogen proteins per se but 
elicited an HR in transient 
expression system.  

Two amino acid substitutions in the ARC2 domain were 
identified in broad spectrum resistance Pm3. These 
substitutions were integrated into narrow spectrum Pm3 

 (Stirnweis et al., 
2014) 
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which enhanced their ability to induce an HR response in 
N. benthamiana.  

R3a (S.  tuberosum) Avr3aEM (P. infestans) and 
PcAvr3a4 (Phytophthora 
capsici)  

Eight single mutations extended R3a response to the 
Avr3aEM isoform. N336Y mutation in NB-ARC domain 
conferred recognition to PcAvr3a4. (Gain of function 
random mutagenesis) 

 (Segretin et al., 
2014)  

RxM1 (S. tuberosum) Additional PVX strains (CPTK 

and CPKR) 

PopMV coat protein (poplar 
mosaic virus)  

Random mutagenesis was conducted to identify four 
mutations which affect the NB-ARC domain structure 
(RxS1-4M1) to recognize potato virus X (PVX) variants 
and mitigate poplar mosaic virus (PopMV) necrosis.   

 (Harris et al., 
2013)  

L5 and L6 (Linum 
usitatissimum) 

AvrL567 (Melampsora lini) Site directed mutagenesis of AvrL567 and domain 
swapping between L5 and L6 gave consensus on which 
specific residues mitigate or escape effector recognition. 

 (Ravensdale et 
al., 2012)  

Chimeric Pm3 (T. 
aestivum) 

pathotypes of B. graminis f.sp. 
tritici 

A chimeric Pm3 gene was constructed via intragenic 
allele pyramiding of Pm3d and Pm3e which 
demonstrated a broader recognition spectrum compared 
to the parental alleles. (Domain swapping and site 
directed mutagenesis) 

 (Brunner et al., 
2010) 

Rx (S. tuberosum) Additional PVX strains and 
PopMV 

RxM2 showed the strongest response to CP-PoMV, 
RxM1 showed the strongest response to CPKR PVX strain 
(Random mutagenesis) 

 (Farnham and 
Baulcombe, 
2006)  
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