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Abstract
Plant–soil biodiversity interactions are fundamental for the functioning of terrestrial 
ecosystems. Yet, the existence of a set of globally distributed topsoil microbial and small 
invertebrate organisms consistently associated with land plants (i.e., their consistent soil-
borne microbiome), together with the environmental preferences and functional capa-
bilities of these organisms, remains unknown. We conducted a standardized field survey 
under 150 species of land plants, including 58 species of bryophytes and 92 of vascular 
plants, across 124 locations from all continents. We found that, despite the immense bio-
diversity of soil organisms, the land plants evaluated only shared a small fraction (less than 
1%) of all microbial and invertebrate taxa that were present across contrasting climatic 
and soil conditions and vegetation types. These consistent taxa were dominated by gener-
alist decomposers and phagotrophs and their presence was positively correlated with the 
abundance of functional genes linked to mineralization. Finally, we showed that crossing 
environmental thresholds in aridity (aridity index of 0.65, i.e., the transition from mesic to 
dry ecosystems), soil pH (5.5; i.e., the transition from acidic to strongly acidic soils), and 
carbon (less than 2%, the lower limit of fertile soils) can result in drastic disruptions in the 
associations between land plants and soil organisms, with potential implications for the 
delivery of soil ecosystem processes under ongoing global environmental change.
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belowground networks, environmental thresholds, moss microbiome, plant microbiome, plant–
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1  |  INTRODUC TION

Land plants (i.e., embryophytes, including vascular and non-vascular 
plants) invariably establish tight interactions with microbial and in-
vertebrate taxa that, together, constitute their associated microbi-
ome (Vandenkoornhuyse et  al.,  2015). Plant-associated soil-borne 
organisms such as bacteria, fungi, and small invertebrates have been 
studied for decades due to their control over economically important 
processes such as food, feed, and fiber production (Soudzilovskaia 
et al., 2019; Steidinger et al., 2019; Vandenkoornhuyse et al., 2015). 
This is particularly true in the case of vascular plants, but less so in 
the case of non-vascular plants such as bryophytes. These associa-
tions can be either beneficial (symbionts and decomposers) or det-
rimental (pathogens) and, together, determine plant health (van der 
Putten et al., 2016; Vandenkoornhuyse et al., 2015).

The roots of plants and the fraction of soil influenced by them, 
particularly the rhizosphere, are a hotspot of plant-microbial interac-
tions (Berendsen et al., 2012). For example, we know that the roots 
of vascular plants and their associated rhizosphere are frequently col-
onized by diverse bacterial communities, including members of the 
phyla Actinomycetota and Proteobacteriota (Lundberg et  al.,  2012), 
and that the roots of around 90% of vascular plants are colonized by 
endo- and ectomycorrhizal fungi belonging to the phyla Ascomycota, 
Basidiomycota, and Mucoromycota, which contribute to increase the 
volume of soil explored by plant roots (van der Heijden et al., 2015). 
Similarly, the surface of mosses is frequently colonized by highly bio-
diverse microbial communities, including members of the phylum 
Cyanobacteriota, which are known for their ability to fix atmospheric 
nitrogen, allowing them to thrive under stressful environmental condi-
tions (DeLuca et al., 2002; Rousk, DeLuca, & Rousk, 2013).

More recently, coordinated studies have demonstrated that cli-
mate (Delgado-Baquerizo et al., 2018; Maestre et al., 2015; Tedersoo 
et  al.,  2014), vegetation type (Delgado-Baquerizo et  al.,  2016a; 
Delgado-Baquerizo et al., 2018), and soil properties such as texture, 
organic matter, and pH (Delgado-Baquerizo et al., 2016b; Delgado-
Baquerizo et al., 2018; Fierer et al., 2009) are major environmental 
drivers of soil biodiversity patterns at global scale, as well as the role 
of soil biodiversity for ecosystem functioning and the supply of ser-
vices (Delgado-Baquerizo et al., 2016b). We also know now that bac-
terial diversity is maximized in organic soils with neutral pH under 
more stable climatic conditions (Delgado-Baquerizo et  al.,  2016a; 
Fierer & Jackson, 2006), while the diversity of fungal communities 
peaks in tropical ecosystems and is highly driven by plant commu-
nity composition (e.g., endomycorrhizal vs ectomycorrhizal trees; 
Crowther et al., 2019; Tedersoo et al., 2014). The greater diversity of 
protistan communities is, in turn, more determined by higher precipi-
tations (Oliverio et al., 2023). However, while considerable effort has 
been recently directed to understanding the diversity, ecology, and 
association patterns of soil communities, including plant-associated 
soil-borne communities, across the globe (Delgado-Baquerizo 
et  al.,  2018; Tedersoo et  al.,  2014), we still do not know whether 
there is set of taxa that are consistently present in topsoils associ-
ated with land plants (i.e., their consistent soil-borne microbiome) 

across contrasting climates, soil conditions, and vegetation types 
globally, as well as their identity, and functional characteristics.

The identification of a consistent land plant-associated soil-borne 
microbiome, together with their main environmental preferences 
and functional capabilities, is important for three main reasons: (i) 
to better understand and predict the generality of land plant–soil 
biodiversity associations and belowground networks in a broader 
ecological and evolutionary context, which may allow us to unravel 
whether there is a common template defining plant-associated soil 
ecosystems; (ii) to resolve the importance of such uniquely associ-
ated soil-borne taxa to support ecosystem functions, with poten-
tial implications for ecological restoration and the intensification of 
production systems; and (iii) to identify the potential susceptibilities 
of land plant-associated soil-borne microbiomes to changing envi-
ronmental conditions (Maestre et  al.,  2015). For instance, while 
studies suggest that terrestrial ecosystems can respond to changing 
environmental conditions in nonlinear ways (Berdugo et al., 2020), 
we still do not know whether the responses of soil-borne plant-
associated communities to natural or human-induced environmen-
tal changes will be gradual or abrupt (e.g., threshold-like; Groffman 
et al., 2006). Given that land plants are highly dependent upon their 
associations with soil organisms for their nutrition, immunity, and 
ability to tolerate stressful conditions (Soudzilovskaia et al., 2019), 
understanding the nonlinear mechanisms underlying land plant–soil 
microbiome interactions is critical if we are to avoid potentially rapid 
catastrophic shifts that could threaten important soil processes that 
support life on Earth.

Here, we conducted a standardized field survey across 124 sam-
pling sites globally distributed (Figure 1; Figures S1 and S2), and an-
alyzed 364 composite soil samples collected underneath coexisting 
vascular plants, mosses, and unvegetated patches to: (i) investigate 
the individual soil taxa that are associated with land plants (i.e., vas-
cular plants and/or mosses) across the globe; and (ii) evaluate whether 
their responses to changing environmental conditions are linear or 
threshold-like. Topsoil samples were collected from all continents, in-
cluding Antarctica (Figure 1), covering a wide range of environmental 
conditions supporting land plants on Earth, from natural ecosystems 
(71 locations) to urban ecosystems (53 locations). We also considered 
a wide range of soil properties and vegetation types, including grass-
lands (29), shrublands (16), and forests (74; Table S1). Our global sur-
vey comprises 150 vascular plant species (92) and moss species (58) 
from 49 families, including a representative range of land plant lineages 
such as Bryophyta (i.e., mosses), gymnosperms, angiosperm monocots 
(Poales), and most of the main dicot lineages (Rosids, Caryophyllales, 
and Asterids; Leebens-Mack et  al.,  2019; see Table  S2 for a com-
plete list of vascular plant and moss species). However, our study 
did not account for important groups of bryophytes like hornworts 
(Anthocerotopsida) and liverworts (Marchantiopsida), as well as ferns 
(Lycophyta and Monilophyta), minoritarian gymnosperm groups like 
Cycadophyta and Gnetophyta, and early dicots.

Given the more than 400 million of years of independent evolu-
tion separating vascular and mosses (Leebens-Mack et al., 2019), and 
their contrasting lifestyles (e.g., early cf. later succession, rhizoids cf. 
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developed root systems), we hypothesized that soils associated with 
either vascular plants or mosses would have developed their own 
uniquely associated microbiomes. Moreover, given the importance 
of environmental thresholds in driving plant communities and eco-
system properties worldwide (Berdugo et  al.,  2020), we expected 
that the proportion of land plant microbiomes would change abruptly 
under certain climatic and soil conditions. Investigating the identity 
of those soil-borne taxa involved in these thresholds and their sen-
sitivity to abrupt shifts could provide insights into the role of land 
plant-associated soil-borne microbiomes in controlling drastic veg-
etation regime shifts (Berdugo et al., 2020; Groffman et al., 2006), 
helping us to link such shifts with alterations in soil functioning.

2  |  MATERIAL S AND METHODS

2.1  |  Study sites

We collected topsoil samples (ca. 0–5 cm from five soil cores) under-
neath coexisting vascular plants, mosses, and unvegetated patches 
across 124 globally distributed ecosystems to test the hypothesis that 
land plants support unique soil microbiomes and microbial networks 
across the globe. We focused on surface soils because this layer is 
typically the most biologically active in terms of plant–soil interactions, 
microbial biomass and diversity, labile nutrient pools, and C exchange 
with the atmosphere, and also to allow direct comparison between 
mosses and vascular plants. A total of 368 soil samples were collected 
in this study, however, we reduced the analyses to 364 samples due to 
missing information from four locations. We collected these samples 
at sites from all continents, including Antarctica (Figure 1), covering 

a wide range of environmental conditions, from natural to managed 
ecosystems (e.g., forests and city parks), and from polar to tropical 
ecosystems. We also considered a wide range of soil properties and 
vegetation types (grasslands, shrublands, and forests). Soil samples 
were collected between February 2017 and August 2020, depending 
on the climatic conditions of each site and the main growing season 
for mosses (Table S1). Most samples were collected either in summer 
(41 sites) or autumn (36 sites), and to a lesser extent in winter (29 sites) 
and spring (18 sites). Despite the likely influence of sampling season 
and year of sampling on the composition of the soil microbiome, ap-
proaches like ours are still considered as highly valuable when evaluat-
ing macroecological patterns at large scales (Zhang et al., 2020).

Our global survey comprises vascular plant and moss species 
from 150 species from 49 families (Table  S2). Mean annual rain-
fall across our locations ranged from 210–1577 mm and tempera-
ture 3.1–26.4°C. At each location, we established a 30 × 30 m plot 
comprising three, equally spaced 30 m transects. Soil samples were 
collected from within three microsites: (1) underneath the most 
common perennial vegetation type at each location (generally a 
tree, shrub, or grass), (2) underneath mosses, and (3) in bare soils, 
defined as patches devoid of vegetation and not colonized by plant 
roots. Five composite soil cores were collected from each microsite 
using a trowel, bulked into plastic Ziplock bags, and further divided 
into Ziplock bags containing two separate sub-samples; one that was 
immediately frozen (−20°C) for molecular analyses and another one 
that was air-dried for chemical analyses. Three sites from Antarctica 
and one from Chile had samples only from bare and moss surfaces. 
Each sample from each site was unequivocally assigned to only one 
species of either vascular plant or bryophyte. Tools were cleaned 
between microsites to avoid contamination.

F I G U R E  1 Location of the 124 sampling sites and the main vegetation type of each site.



4 of 17  |     OCHOA-­HUESO et al.

2.2  |  Soil microbiome

Soil microbial biodiversity (bacteria, protists, and invertebrates) was 
measured via amplicon sequencing using the Illumina MiSeq platform 
(llumina, Inc., CA, USA) in all soils associated with vascular plants, 
mosses, and bare soils. Once the soils were collected and received in a 
central lab, soil DNA was extracted using the DNeasy PowerSoil Kit—
QIAGEN (Qiagen, Hilden, Germany) according to the manufacturer's 
instructions. DNA was then shipped to the University of Colorado 
Boulder where all samples were analyzed using the same standard-
ized protocol. To characterize the community of bacteria, protists and 
invertebrates, a portion of the prokaryotic 16S (bacteria) and eukar-
yotic (protists and invertebrates) 18S rRNA genes were sequenced 
using the 515F/806R and Euk1391f/EukBr primer sets (Herlemann 
et al., 2011; Ihrmark et al., 2012), respectively. Fungi were determined 
via 18S-full ITS amplicon sequencing using the primers ITS9mun/
ITS4ngsUni and PacBio Sequel II platform in the University of Tartu, 
Estonia, as described in Tedersoo et al. (2020). The proportion of fun-
gal functional groups was determined from the ITS data using the 
FUNGuild database (Nguyen et al., 2016). All ASV representative se-
quences selected in this study are available in Tables S3–S5.

Bioinformatic processing was performed using DADA2 v1.16 
(Callahan et al., 2016). Phylotypes (i.e., amplicon sequence variants; 
ASVs) were identified at the 100% identity level. The ASV abun-
dance tables were rarefied at 5000 (bacteria via 16S rRNA gene), 
2000 (protists via 18S rRNA gene) and 250 (invertebrates via 18S 
rRNA gene) sequences per sample, respectively, to ensure even sam-
pling depth within each belowground group of organisms. Protists 
are defined as all eukaryotic taxa, except fungi, invertebrates 
(Metazoa), and Streptophyta. Bioinformatic processing was per-
formed as explained above. Representative sequences of 16S ASVs 
were annotated against the GTDB database (v214.1). The 18S tax-
onomy annotation used the Protist Ribosomal Reference database 
(PR2, https://​pr2-​datab​ase.​org/​). Taxonomic assignments for ITS 
ASVs were done using UNITE (https://​unite.​ut.​ee). The fungi ASVs 
abundance table was rarefied at 1000 sequences per sample.

2.3  |  Environmental factors

Solar radiation and climatic information, including mean annual 
temperature, seasonal temperature, diurnal temperature range, 
precipitation and precipitation seasonality, were extracted from the 
WorldClim v2 database (https://​www.​world​clim.​org/​data/​index.​
html). Aridity index (AI) was extracted from the Global Aridity Index 
(Global-Aridity_ET0) datasets. Lower aridity index values indicate 
more arid sites. Soil pH was measured in all the soil samples with a pH 
meter in a 1: 2.5 mass:volume soil and water suspension. Sand con-
tent was also determined in the lab as done in Kettler et al. (2001). 
Soil organic carbon content was measured using a CN analyzer (C/N 
Flash EA 112 Series-Leco Truspec) after removing inorganic carbon.

2.4  |  Functional genes

Real-time PCR quantifications of representative genes for nitrogen 
fixation (nifH), nitrogen mineralization (chiA), nitrification (amoA of 
ammonia-oxidizing archaea), denitrification (nosZ), acid phosphatase 
production (phoC), alkaline phosphatase production (phoD), car-
bon fixation (cbbL), fungal ligninase production (Mn-peroxidase), 
chitinase production (GH18), particulate methane monooxygenase 
gene (pmoA), and sulfur metabolism (apsA) were used to estimate 
the density of functional communities involved in soil nitrogen, 
phosphorus, carbon, and sulfur cycling by using primers described 
in Table S6. However, we acknowledge that, despite being among 
the most commonly abundant functional genes in soils driving the 
biogeochemical cycling of carbon, nitrogen, phosphorus, and sulfur, 
the genes analyzed only represent a subset of the existing ones and 
could, therefore, provide a skewed representation of the metabolic 
potential of our soils. This is particularly true for nitrifying genes, 
which are also widely present in bacteria (AOB and comammox; 
Martikainen, 2022).

All reactions were carried out using SensiFAST SYBR No-ROX 
(Bioline, USA). Each sample was quantified in duplicate in a 10 μL 
reaction using the Bio-Rad C1000 Touch thermal cycler CFX96 
Real-Time System (Bio-Rad Laboratories, USA). Briefly, all reaction 
mixtures contained 5 μL of SensiFAST SYBR No-ROX (1X), 0.2 μL of 
each primer (0.4 μM), 0.2 μL of BSA (0.4 mg/mL) and 2 μL of diluted 
template DNA (0.5–3.00 ng μL − 1) for gene targets. Results were 
analyzed using ABI Prism software. Raw data were analyzed using 
the default settings (threshold = 0.2) of the software. Standard 
curves for real-time PCR assays were developed by PCR amplify-
ing the respective genes by their specific primers. PCR products 
were purified using a PCR cleanup kit (Axygen Bioscience, Union 
City, CA, USA) and cloned into the pGEM-T Easy Vector (Promega 
Corp.). The resulting ligation mix was transformed into E. coli 
JM109 competent cells (Promega Corp.) following the manufac-
turer's instructions. Plasmids used as standards for quantitative 
analyses were extracted from the correct insert clones of each 
target gene and sent for Sanger sequencing. The plasmid DNA 
concentration was determined on a NanoDrop ND-1000 spectro-
photometer (NanoDrop Technologies Inc., Wilmington, DE, USA), 
and copy numbers of target genes were calculated directly from 
the concentration of the extracted plasmid DNA. Tenfold serial 
dilutions (108–101 copies per μL) of the plasmid DNA were sub-
jected to a qPCR assay in triplicate to generate an external stan-
dard curve and to check the amplification efficiency. Standard 
curve regression coefficients were consistently above 0.98 and 
melt curve analysis verified a single amplicon per reaction in all 
the cases. Samples and standards were assessed in at least two 
different runs to confirm reproducibility of the quantification. 
Target copy numbers for each reaction were calculated from the 
standard curve and were used to ascertain the number of copies 
per μg of DNA.

https://pr2-database.org/
https://unite.ut.ee
https://www.worldclim.org/data/index.html
https://www.worldclim.org/data/index.html
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2.5  |  Statistical analyses

2.5.1  |  Characterizing the soil-borne microbiome of 
land plants

We used the “multipatt” function from the indicspecies package 
in R (De Cáceres et  al.,  2012) to identify the soil phylotypes that 
were uniquely associated with land plants, vascular plants, or 
mosses, which could occur through their roots/rhizoids, litter, or 
microhabitats in soils across the globe. The “multipatt” function is 
based on indicator values for each species, as defined by Dufrêne 
and Legendre (1997). Indicator analyses are based on the criteria of 
exclusiveness and abundance (Bakker, 2008). Statistical significance 
was based on 999 permutations. We also included unvegetated soil 
samples in these analyses to account for soil phylotypes that are nat-
urally abundant in all soils, but that are not unequivocal indicators 
of vegetated microhabitats. We then filtered out these results to 
keep only those taxa that were present in at least three of the seven 
continents and >50% of climates (tropical, arid, temperate, polar, 
continental) to identify microbial assemblages which are character-
istic of vascular plants and mosses worldwide (we refer to this as the 
moderate filter). We compared these results against using no filters 
and against a much stricter filter (taxa present in five continents and 
four climates). We also used linear mixed effect models to evaluate 
the effect of soil microhabitat on the relative abundance of bacte-
rial, fungal, protistan, and invertebrate taxa and functional groups. 
Samples were nested within sites. For this, we use the “lme” function 
from the nlme package in R (Pinheiro et al., 2017). Given the number 
of variables to be tested, we compared these results after applying a 
false discovery rate correction based on (Pike, 2011).

We then used linear models to determine whether the mean of 
the standardized abundance of indicator taxa (mean = 0, standard 
deviation = 1) differed across plant functional groups (e.g., N-fixers 
vs. nonfixers) and land uses (e.g., urban vs. nonurban) within vascular 
plants and mosses separately. Relative abundances were standard-
ized across indicator phylotypes. For this analysis, we used the “lm” 
function of the stats package. After this, we used Spearman correla-
tion analyses to investigate the associations between the mean of 
the standardized abundances of indicator taxa for land plants and 
environmental variables, as well as with functional genes associated 
with the cycling of carbon, nitrogen, phosphorus, and sulfur. For 
this, we used the “rcorr” function from the Hmisc package (Harrell 
Jr, 2020).

Finally, we used co-occurrence network analyses to investi-
gate associations within the soil-borne land plant microbiome. Co-
occurrence was based on Spearman correlations, and only indicator 
phylotypes based on the moderate filter were considered. For this, 
we used the “graph_from_adjacency_matrix” and “cluster_walktrap” 
functions from the igraph package in R (Csárdi & Nepusz, 2006). We 
used null models based on 999 permutations of our dataset to es-
tablish the overall connectivity of the networks based on indicator 
phylotypes. Connectivity was defined as the proportion of highly 
significant (p < .001) links across the network.

2.5.2  |  Environmental thresholds

We fitted linear and nonlinear (quadratic and general additive 
models [GAM]) regressions to the relationships between the rela-
tive abundance of consistent land plant microbiomes and selected 
environmental variables and used the Akaike information criterion 
(AIC) to select the model that provided the best fit in each case. 
This criterion penalizes model fit when more parameters (as used in 
nonlinear regressions) are used, so that the most likely model has the 
lowest AIC value. In general, differences in AIC higher than 2 indi-
cate that the models are different in terms of likelihood. Thresholds 
may be present only when nonlinear regressions were a better fit to 
the data. Additional information regarding the use of thresholds can 
be found in Appendix S1.

3  |  RESULTS

3.1  |  Phylotypes comprising the consistent 
soil-borne land plant-associated microbiome

Across the 124 global locations sampled, we showed that, when no 
filters were applied, 135, 855, and 362 soil microbial and inverte-
brate phylotypes were consistently associated with land plants (i.e., 
mosses and vascular plants together), vascular plants, and mosses, 
respectively (Figures 2 and 3; Tables S7–S14). More specifically, we 
found that 116, 724, and 309 bacteria, and 13, 96, and 34 protists, 
1, 25, and 7 fungi, and 5, 10, and 12 invertebrates were linked with 
land plants, vascular plants, and mosses, respectively. These num-
bers were reduced to 121, 395, and 221 soil microbial and inverte-
brate phylotypes consistently associated with land plants, vascular 
plants, and mosses, respectively, when the moderate geographical 
and climatic filters were applied (Figures 2 and 3; Tables S7–S14). 
Out of these, 106, 322, and 192 bacteria, and 13, 59, and 20 pro-
tists, but only 0, 7, and 2 fungi and 3, 7, and 7 invertebrates were 
linked with land plants, vascular plants, and mosses, respectively. 
These soil taxa, based on the moderate filter, accounted for less 
than one percent of all retrieved soil organisms. Specifically, these 
soil taxa represented, on average, 0.58%, 0.56%, and 0.43% of all 
bacterial phylotypes, 0%, 0.08%, and 0.51% of all fungal phylotypes, 
0.24%, 0.35%, and 1.86% of all protistan phylotypes, and 1.18%, 
1.50%, and 0.41% of all invertebrate phylotypes found in land plant-
associated, vascular plant-associated, and moss-associated soils, 
respectively. When the strictest geographical and climatic filters 
were applied, these numbers were further reduced to only 50 land 
plant-associated phylotypes (45 bacteria and 5 protists), 66 vascular 
plant-associated phylotypes (53 bacteria, 12 protists, and 1 fungus), 
and 47 moss-associated phylotypes (40 bacteria, 6 protists, and 1 
invertebrate). From here onwards, we will describe only the results 
obtained after applying the moderate filtering.

The consistent soil-borne bacterial microbiome of land plants was 
dominated by Alphaproteobacteria (20%), Planctomycetota (13%), 
Actinomycetota (13%), Verrucomicrobiota (12%), and Bacteroidota 
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(11%; Figure  2; Table  S7). The consistent soil-borne protistan mi-
crobiome of land plants was dominated by Rhizaria (38%) and 
Amoebozoa (31%; Figure 2; Table S8). The consistent soil-borne bac-
terial microbiome of vascular plants was dominated by phylotypes 
belonging to six main taxonomic groups comprising 73% of all phy-
lotypes: (i) Actinomycetota (18%), (ii) Alphaproteobacteria (15%), (iii) 
Planctomycetota (11%), (iv) Bacteroidota (10%), (v) Acidobacteriota 
(9%), and (vi) Gammaproteobacteria (8%; Figure 2; Table S9). Many 
of these taxa included nonsporulating aerobic chemoheterotrophs. 
The consistent vascular plant-associated microbiome was also 
particularly enriched in members of the family Rhizobiaceae. The 
consistent vascular plant-fungal microbiome was dominated by 
members of the Dothideomycetes family (43%) and was enriched in 
saprotrophic fungi, while the consistent protistan microbiome was 
overwhelmingly dominated by phagotrophic taxa belonging to the 
supergroups Alveolata (34%), Amoebozoa (24%), and Rhizaria (22%; 
Tables S10–S11). The consistent soil-borne bacterial microbiome of 
mosses was dominated by Pseudomonadota (16%), Chloroflexota 
(8%), and Myxococcota (8%; Figure  2; Table  S12). The consistent 
moss-associated microbiome was also particularly enriched in 
Cyanobacteria (4%), as compared with vascular plants. The consis-
tent moss protistan microbiome was dominated by phagotrophic 
Rhizaria (45%) and, to a lesser extent, phototrophic Archeplastida 
(i.e., green algae; 25%) and Amoebozoa (15%; Figure 2; Table S13).

The proportion of the consistent soil-borne vascular plant mi-
crobiome was maintained regardless of the taxonomic category 

(i.e., family) of vascular plants (p = .53) or their functional types, in-
cluding mycorrhizal types (p = .77) and N-fixers (p = .37), and across 
climatic zones (p = .43) and land use types (i.e., urban vs. natural 
ecosystem; p = .13; Figure  3; Figure  S3). The proportion of the 
consistent soil-borne microbiome of mosses was also maintained 
regardless of family (p = .24), growth type (p = .24), and land use 
types (p = .40; Figure S4). In contrast, ephemeral mosses, as com-
pared with perennial mosses, were associated with a more devel-
oped consistent moss-associated microbiome (p < .01; Figure  S4). 
Our analyses further revealed that the consistent soil-borne land 
plant-associated microbiome is organized into well-defined be-
lowground networks, with greater connections among individual 
taxa than expected by chance (Figures 4–6). We only found pos-
itive relationships (p < .001) among soil taxa within these land 
plant–soil networks. Nodes from these networks could be further 
grouped into seventeen, eighteen, and twenty-four major clusters, 
in the case of land plants, vascular plants, and mosses, respectively 
(Tables S7–S14).

3.2  |  Main groups of organisms associated with the 
soil-borne microbiome of plants

At higher taxonomic levels (phylum, class, order, family, and genus), 
we found that, across the 124 plots and seven continents sampled, 
soils associated with vascular plants were enriched in phylotypes 

F I G U R E  2 Relative abundance of major 
bacterial phyla and protistan supergroups 
belonging to the consistent microbiome 
of land plants (mosses + vascular plants), 
vascular plants, and mosses. Fungi and 
small invertebrates are not shown due to 
the low number of phylotypes selected.
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belonging to one phylum, Pseudomonadota, one class, Actinomycetia, 
eight orders, including Planctomycetales, Streptomycetales, 
and Verrucomicrobiales, and twenty-three families, includ-
ing Akkermansiaceae, Burkholderiaceae, Nitrosomonadaceae, 
the N-fixing Rhizobiaceae, and Streptomycetaceae (Figure  S5 
and Table  S15). Soils associated with vascular plants were also 

characterized by a greater proportion of fungal saprotrophs 
and members of the free-living nematode genus Panagrolaimus 
(Figure S5 and Table S15). Soils associated with mosses had a greater 
proportion of one bacterial phylum (Armatimonadota), three classes 
(Anaerolineae [Chloroflexota], Fimbriimonadia [Armatimonadota], 
and Thermoanaerobaculia [Acidobacteriota]), and five orders, 

F I G U R E  3 Standardized relative abundance (i.e., mean of z-scores) of bacterial and eukaryotic phylotypes that are identified as part of 
the consistent (a, b) land plant-associated, (c, d) vascular plant-associated and (e, f) moss-associated microbiomes as a function of climate 
type. p-values associated with microhabitat type (i.e., bare, moss, and vascular plant) are <0.001 in all cases.
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including Aggregatilineales [Chloroflexota], Fimbriimonadales, and 
Rickettsiales [Pseudomonadota], than surrounding plant-associated 
soils and bare soils (Figure  S6 and Table  S15). Moss-associated 
soils were also enriched in eight known bacterial genera, includ-
ing Paenibacillus and Spirosoma (Figure  S6 and Table  S15). Finally, 
moss-associated soils had a greater proportion of one fungal class 
(Pucciniomycetes), one family (Hygrophoraceae), and two genera 
(Hygrocybe and Lamprospora), as well as two families (Prasiolales 
and Ctenocladales), and four genera of green algae (Chloroidium, 
Diplosphaera, Leptosira, and Stichococcus; Figure S6 and Table S15).

3.3  |  Linking the consistent soil-borne 
microbiome of land plants and soil functioning

Next, we sought to deepen into the prospective functional capabilities 
of the reported plant-associated soil-borne microbiomes. We found that 
the proportion of soil-borne land plant microbiomes was significantly 
correlated with the total abundance of functional genes associated with 
the biogeochemical cycling of carbon, nitrogen, phosphorus, and sulfur 
in terrestrial ecosystems, as measured using quantitative PCR (Figure 7). 
Specifically, the proportion of the soil-borne land plant microbiome (i.e., 

F I G U R E  4 Microbial co-occurrence networks associated with land plants. Information regarding the lifestyle of phylotypes is also 
included. This information was retrieved from publications (see Table S7 for references). For each network, the histograms on the left 
shows the proportion of links that were significant at p < .001 (from the red vertical line to the right) based on the total possible links, while 
the histograms on the right shows the connectivity of the networks, based on the proportion of significant links (red vertical line), and the 
distribution of a null network (n = 999) based on the randomization of standardized abundances.
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when both vascular plants and mosses were considered simultaneously) 
was positively related to the abundance of amoA genes (Spearman's 
ρ = 0.17, p = .02), involved in the oxidation of nitrite to nitrate (i.e., linked 
with nitrogen cycling), and negatively to genes linked to methanotro-
phy (pmoA; Spearman's ρ = −0.19, p < .01), and denitrification (nosZ; 
Spearman's ρ = −0.15, p = .03). The soil-borne microbiome of vascular 
plants was positively associated with genes involved in ammonium oxi-
dation (Spearman's ρ = 0.20, p < .001). The proportion of the soil-borne 
microbiome of mosses was positively correlated with the absolute abun-
dance of genes associated with phosphatase (phoD; Spearman's ρ = 0.20, 

p = .04), and sulphatase activities (apsA; Spearman's ρ = 0.26, p = .01), as 
well as with methanotrophy (Spearman's ρ = 0.23, p = .03), that is, func-
tions linked with the metabolism of phosphorus, sulfur, and carbon.

3.4 | Role of environmental thresholds in driving the 
consistent soil-borne microbiome of land plants

Finally, we aimed to quantify the potential sensitivity of soil-borne 
land plant microbiomes to changes in environmental conditions. 

F I G U R E  5 Microbial co-occurrence networks associated with vascular plants. Information regarding the lifestyle of phylotypes is also 
included. This information was retrieved from publications (see Table S9 for references). For each network, the histograms on the left 
shows the proportion of links that were significant at p < .001 (from the red vertical line to the right) based on the total possible links, while 
the histograms on the right shows the connectivity of the networks, based on the proportion of significant links (red vertical line), and the 
distribution of a null network (n = 999) based on the randomization of standardized abundances.
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We found that the proportion of the soil-borne microbiomes of 
land plants, vascular plants, and mosses varied across different en-
vironments (Figure 8; Table S16). For example, we showed that the 
soil-borne microbiome of vascular plants declined abruptly in environ-
ments where soil carbon was less than ~2% (Figure 8c; Table S16). For 
mosses, their microbiome harbored a greater relative abundance of 
associated species in soils with pH values exceeding 5.5, the threshold 
between slightly acidic and highly acidic soils, and was abruptly more 
abundant under conditions of greater aridity (from AI ca. 0.65, the 
transition zone between mesic and dryland ecosystems; Figure 5e,f; 
Table S16).

4  |  DISCUSSION

Our study provides novel evidence that, despite the enormous  
biodiversity of soils, land plants from a wide range of families only share 
a few hundred soil microbial and invertebrate species. These taxa may, 
thus, support the universal complex belowground networks thriving 
under plants across contrasting climates, management regimes, and 
vegetation types. Based on the greater number of indicator species, 
we posit that bacteria, as compared to fungi and protists, dominate 
the consistent soil-borne microbiome of lands plants. This most likely 
indicates that land plant-bacterial associations across contrasting land 

F I G U R E  6 Microbial co-occurrence networks associated with mosses. Information regarding the lifestyle of phylotypes is also included. 
This information was retrieved from publications (see Table S12 for references). For each network, the histograms on the left shows the 
proportion of links that were significant at p < .001 (from the red vertical line to the right) based on the total possible links, while the 
histograms on the right shows the connectivity of the networks, based on the proportion of significant links (red vertical line), and the 
distribution of a null network (n = 999) based on the randomization of standardized abundances.
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plant species and environmental conditions are more generalist than 
land plant-fungal associations, which are highly host specific (Maciá-
Vicente & Popa, 2022). The greater number of bacterial members of 
the consistent soil-borne microbiome of land plants could also be due 
to the fact that bacterial phylotypes disperse more easily across the 
globe than protists and fungi do (Egidi et al., 2019). Moreover, these 
soil taxa accounted for less than one percent of all retrieved soil or-
ganisms, which is in agreement with the percentage of soil bacteria 
shared across biomes within the Americas (Lauber et al., 2009). Taken 
together, our results provide unprecedented evidence of the existence 
of a reduced group of individual soil taxa, predominantly bacteria, that 
are consistently associated with land plants worldwide.

4.1  |  Characterizing the soil-borne microbiome of 
land plants

The consistent plant-associated microbiome was enriched in cer-
tain microbial groups. For example, the consistent vascular plant-
associated bacterial microbiome included nonsporulating aerobic 
chemoheterotrophs and was particularly enriched in members of 
the family Rhizobiaceae, which includes important nitrogen fixers 
(Carareto Alves et  al.,  2014). This result was also supported by a 
greater relative abundance of members of the Rhizobiaceae family in 
vascular plant-associated soils. In particular, we found one phylotype 

of Pararhizobium that was consistently present across locations, 
making it a good candidate for a generalist nitrogen fixing species. 
Burkholderiaceae, commonly found in disease-suppressive plant-
associated soils (Carrión et al., 2018), were also particularly overrep-
resented in the consistent microbiome of vascular plants. In contrast, 
the role of Akkermansiaceae in plant-associated microbiomes is 
less known, despite their importance for mucin degradation and 
anti-inflammatory control in the human gut (González et al., 2023). 
Moreover, the greater relative abundance of Actinomycetota in 
vascular plant-associated soils is in agreement with previous stud-
ies evaluating the composition of bacterial communities from rhizo-
sphere soils (Lundberg et  al.,  2012), indicating the important role 
of plant roots in determining the composition of the soil bacterial 
microbiome of vascular plants. Actinomycetota are well-known for 
their ability to synthesize enzymes, phytohormones, growth factors, 
and vitamins that are critical for the adequate development, growth, 
and immunity of plants (Narsing Rao et al., 2022). Moreover, bacte-
rial groups consistently associated with vascular plants and mosses 
such as Proteobacteriota, Myxococcota, and Bacteroidota are also 
dominant in association with animals, where they are critical regula-
tors of host health, indicating that these may be ubiquitous members 
of a consistent microbiome across biological domains and kingdoms 
(Song et al., 2020; Strandwitz et al., 2019). The consistent vascular 
plant-fungal microbiome was dominated by saprotrophic fungi (i.e., 
decomposers), while the protistan microbiome was dominated by 

F I G U R E  7 Relationships between 
the standardized relative abundance of 
phylotypes belonging to the land plant–
soil microbiomes with environmental 
variables and microbial functions. MAT, 
mean annual temperature. PSEA/
TSEA, seasonality of temperature and 
precipitation. MDR, mean diurnal T range. 
Microbial functions are based on real-time 
PCR quantifications of genes for nitrogen 
fixation (nifH), nitrogen mineralization 
(chiA), nitrification (amoA of ammonia-
oxidizing archaea), denitrification (nosZ), 
acid phosphatase production (phoC), 
alkaline phosphatase production (phoD), 
carbon fixation (cbbL), fungal ligninase 
production (Mn-peroxidase), chitinase 
production (GH18), particulate methane 
monooxygenase gene (pmoA), and sulfur 
metabolism (apsA). *p < .05; **p < .01; 
***p < .001.
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F I G U R E  8 Environmental thresholds and linear associations driving the microbiomes that were uniquely associated with (a, b) land plants, 
(c, d) vascular plants, and (e, f) mosses. Thresholds are shown when the AIC of the segmented model is lower than that of the linear model 
(see Methods). Relationships in (a) and (c) are representative of continuous thresholds, while relationships in (b), (e), and (f) are representative 
of discontinuous thresholds. Lower aridity index values indicate more arid sites. *p < .05; **p < .01; ***p < .001.
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phagotrophic taxa. The importance of saprotrophs in soils associ-
ated with vascular plants is also supported by the greater relative 
abundance of this functional group, which is likely driven by greater 
plant litter inputs, both above- and belowground, and rhizodeposits 
in this microhabitat.

Overall, these results suggest that land plant-associated soil 
networks are dominated by organisms that are potentially able to 
synthesize beneficial compounds for plants such as Actinomycetota, 
as well as by generalist bacterial and fungal decomposers, and 
phagotrophs. We hypothesize that these organisms may be part of 
universal complex soil food webs and ecological networks thriving 
under contrasting land plant species across different climatic, soil, 
and vegetation conditions. Importantly, we only found positive re-
lationships among soil taxa within these land plant–soil networks, 
suggesting that the associations within these networks are mostly 
synergistic (Jared et al., 2021). However, the fact that nodes from 
these networks could be further grouped into major clusters sug-
gests that some soil phylotypes are more likely to co-exist than oth-
ers. Moreover, the fact that individual plants had a mean of 10–15 
(land plants and mosses) or 20–30 (vascular plants) of these organ-
isms implies that not all phylotypes may need to be present simulta-
neously to determine plant health.

In contrast to vascular plants, the consistent moss-associated mi-
crobiome was particularly enriched in Cyanobacteriota, including from 
the genera Nostoc, Tolypothrix, and Brasilonema, suggesting the wide-
spread prevalence of moss-cyanobacterial associations (Rousk, Jones, 
& DeLuca, 2013), which are beneficial in providing reduced mineral ni-
trogen in otherwise low-nitrogen soils from high-latitude, dryland, and 
tropical ecosystems (Arróniz-Crespo et al., 2014; DeLuca et al., 2002; 
Ochoa-Hueso & Manrique,  2013; Rousk, Jones, & DeLuca,  2013). 
The moss-associated soil-borne microbiome was also enriched in 
green algae, particularly from the family Trebouxiophyceae, which 
are known for their ability to form stable symbiotic relationships with 
other organisms, such as with fungi in lichens (Muggia et al., 2020). 
The fact that ephemeral mosses, as compared with perennial mosses, 
were associated with a more developed consistent moss-associated 
microbiome may, in turn, be linked to their important role in driving 
the initial stages of primary and secondary succession, during which 
cyanobacteria and green algae are also known to play an important 
role (Vilmundardóttir et al., 2018).

Interestingly, soils associated with mosses were also enriched 
in two known bacterial genera, Paenibacillus and Spirosoma, both 
previously isolated from mosses and biocrusts, and widely known 
for their great potential in bioremediation (Hassan & Ganai, 2023; 
Yang et  al.,  2016; Zhang et  al.,  2019; Zhou et  al.,  2015). This 
suggests the role of bryophytes as an untapped source of mi-
crobial metabolites with biotechnological applications. In addi-
tion, the overrepresentation of plant pathogens such as rusts 
(Pucciniomycetes; Zhu et  al.,  2017) and Phytium (Oomycota; 
Martin & Loper, 1999), may mean that mosses may serve as a res-
ervoir for plant pathogenic agents, which may be also associated 
with an evolutionary strategy of mosses to use fungi and pseudo-
fungi as biological weapons to compete with vascular plants 

(Lehtonen et  al.,  2012). Actually, bryophytes are well-known for 
being barely infected by fungi and for harboring a biodiverse as-
sembly of bacterial taxa with abilities to produce antifungal agents 
that help maintain fungal growth at bay, thus keeping bryophytes 
protected (Opelt et al., 2007). Moreover, this is, to our knowledge, 
the first time that the bacterial phylum Armatimonadota has been 
identified as an indicator of moss-associated soils. Considering 
the unknown role of Armatimonadota in soils, we suggest that un-
derstanding their function in soils may be particularly relevant to 
untap the biotechnological potential of mosses such as in ecosys-
tem restoration projects.

4.2  |  Linking the consistent soil-borne 
microbiome of land plants and soil functioning

The consistent soil-borne microbiome of land plants was linked 
with the absolute abundance of genes linked to soil metabolism. For 
example, the positive association between the proportion of the 
soil-borne microbiome of mosses and the abundance of genes as-
sociated with functions linked with phosphorus, sulfur, and carbon 
metabolism, may be highly indicative of stress resilience (Graham 
et al., 2017). This could account for their preeminence in primary suc-
cessional processes during landscape development (Vilmundardóttir 
et al., 2018). In contrast, the tight association between the consist-
ent soil-borne microbiome of vascular plants and greater abundance 
of genes linked with nitrogen cycling is consistent with the reported 
dominance of decomposers and nitrogen fixers. Thus, our findings 
provide not only an inventory of soil organisms that are consist-
ently and uniquely associated with the soil underneath land plants, 
but also improve our understanding of how soil organisms and land 
plants can interact, and the implications of such interactions for soil 
functioning. This information also lays the foundation for future 
work aimed at investigating the functional links between land plants 
and soil organisms and their shared ecological history. This is further 
relevant to investigating the connection between the consistent 
land plant-associated soil microbiome and ecosystem services such 
as nutrient cycling, carbon sequestration, plant immune defense, 
and food production.

4.3  |  Role of environmental thresholds in 
driving the consistent soil-borne microbiome of 
land plants

Quantifying the potential sensitivity of the soil-borne land plant mi-
crobiome to changes in environmental conditions may be fundamen-
tal to forecast potential disruptions in the soil-borne microbiome of 
land plants, with undescribed consequences for plant productivity 
and health worldwide. In the case of mosses, their microbiome was 
abruptly more abundant under conditions of greater aridity, starting at 
AI of ca. 0.65, a zone that differentiates drylands from mesic ecosys-
tems (Huang et al., 2016), which likely indicates the importance of the 
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consistent soil-borne microbiome of mosses to tolerate harsh environ-
mental conditions. In contrast, the consistent soil-borne microbiome 
of vascular plants declined abruptly in environments where soil carbon 
was less than ~2%, the lower threshold of optimal plant growth (Oldfield 
et al., 2019; Patrick et al., 2013). Taken together, our results highlight 
the widespread existence of environmental thresholds governing land 
plant–soil biodiversity associations, indicating the potential vulnerabil-
ity of land plant-microbial associations under ongoing and future global 
change (Cheng et al., 2019). This knowledge could be used to further 
improve our understanding on how to restore functional terrestrial eco-
systems by reinstating the uniquely associated soil-borne microbiome 
of land plants to hasten environmental recovery. Our results also indi-
cate that environmental changes associated with ecosystem succession, 
management practices, changes in soil fertility, and increases in aridity, 
could have important implications for the maintenance of functional land 
plant-microbial associations. The greater abundance of moss-associated 
soil taxa under harsh environmental conditions also suggests a strong 
coevolution between moss-like early embryophytes and soil microbes 
that may have been key to the eventual colonization of terrestrial en-
vironments by land plants more than 470 million years ago (Graham 
et al., 2017; Humphreys et al., 2010).

4.4  |  Conclusions

In summary, we provide solid evidence, from a global field survey, 
that despite the incalculable biodiversity of soils, land plants only 
share a small fraction (around or less than 1%) of multi-kingdom soil-
borne bacterial, fungal, protistan, and invertebrate taxa. These taxa 
are, however, consistently present in land plants across contrasting 
climates, vegetation types, and management types, correlate with 
important ecosystem functions, and may constitute the foundational 
organisms of belowground networks thriving in topsoils under land 
plants worldwide. We also show that despite their global prevalence, 
the consistent soil-borne microbiome of land plants may be highly 
vulnerable to environmental changes due to nonlinear responses to 
increases in aridity and changes in soil pH (e.g., due to acidification), 
and carbon content. Our findings are integral to better understand-
ing the identity and vulnerability of the essential land plant–soil bio-
diversity interactions that maintain life on planet Earth.
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