

8 | Virology | Announcement

A rabies-related lyssavirus from a *Nycticeinops schlieffeni* bat with neurological signs, South Africa

Natalie Viljoen,^{1,2} Arshad Ismail,^{3,4,5} Jacqueline Weyer,^{1,2,6} Wanda Markotter¹

AUTHOR AFFILIATIONS See affiliation list on p. 3.

ABSTRACT We report the coding-complete sequence of a lyssavirus, provisionally designated Phala bat lyssavirus (PBLV), characterized using a metagenomics approach. PBLV was identified in a *Nycticeinops schlieffeni* bat that exhibited neurological signs and died within 24 hours of admission to a wildlife rehabilitation center in Phalaborwa, South Africa.

KEYWORDS *Lyssavirus*, rabies, South Africa, bat, surveillance, neurological

B ats are considered to be important hosts for viruses that belong to the genus Lyssavirus, subfamily Alpharhabdovirinae, family Rhaboviridae (1, 2). As part of a disease ecology of zoonotic pathogens in bats study, a bat collected in Phalaborwa, South Africa (coordinates: -23.943190 and 31.128990; laboratory number: UP14561) that displayed neurological signs and died on 7 September 2021 within 24 hours of admission to a wildlife rehabilitation center was submitted for investigation. Brain material from a Nycticeinops schlieffeni bat, confirmed by DNA barcoding (CytB, COI, and 12S rRNA genes) (3-7), was homogenized, and nucleic acids were extracted using the Nucleo-Mag VET RNA/DNA kit (Macherey-Nagel). A lyssavirus quantitative reverse-transcriptase PCR (8) with modifications to the probe (Table 1) was positive and was confirmed by partial nucleoprotein gene amplification (9). Double-stranded complementary DNA was prepared from total RNA using Superscript IV (Thermo Fisher Scientific) and random hexamer primers (Integrated DNA Technologies) followed by degradation of the RNA strand using 10U RNase H (Ambion) and second-strand synthesis using 5U Klenow 3'-5' Exo-minus DNA polymerase (Thermo Fisher Scientific) (10) in a single step. DNA was purified using the MinElute PCR purification kit (Qiagen) and quantified using a Qubit fluorometer (Thermo Fisher Scientific). Paired-end libraries (2 × 150 bp) were prepared using the Nextera DNA flex preparation kit (Illumina) according to the manufacturer's instructions, and sequencing was performed on 30-ng cDNA on a NextSeq 2000 instrument (Illumina).

A total of 87.73 million reads with an average read length of 140 bp was obtained. FASTQ files were uploaded to the Galaxy Web platform, and data were analyzed using the server at http://usegalaxy.eu (12). All tools were run for paired-end reads using default parameters unless otherwise noted. FASTQ data sets were quality assessed using FastQC v.0.11.9 (13); reads were quality trimmed (qualified quality Phred score of 20) using fastp v.0.32.2 (14); *de novo* assembly was performed using Megahit v.1.2.9 (15); and contigs were classified using megablast v.2.10.1 (16). A single contig, 12,156 nt in length, was classified as being similar to lyssaviruses and had a nucleotide identity of 73.14% with *Lyssavirus hamburg* [host species: *Eptesicus serotinus* (serotine bat); GenBank accession number: NC009527.1 available at https://www.ncbi.nlm.nih.gov/nuccore/NC_009527] determined using Clustal Omega (17). The 5' and 3' ends were verified by amplification of adaptor-ligated DNA fragments using adaptor- and virus-specific primers followed by Sanger sequencing (Table 1), which resolved two

Editor Jelle Matthijnssens, Katholieke Universiteit Leuven, Leuven, Belgium

Address correspondence to Wanda Markotter, wanda.markotter@up.ac.za.

The authors declare no conflict of interest.

See the funding table on p. 3.

Received 13 July 2023 Accepted 30 August 2023

Published 6 October 2023

Copyright © 2023 Viljoen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Downloaded from https://journals.asm.org/journal/mra on 03 June 2024 by 137.215.26.226

TABLE 1 Primers and probes used for amplification and sequencing

Application	Primer/probe name	Primer/probe sequence (5'-3') ^a :	Position on	Reference
			reference	
Cytochrome B barcoding PCR	LGL 765	GAAAAACCAYCGTTGTWATTCAACT	14,710–14,734 ^b	(3)
	LGL 766	GTTTAATTAGAATYTYAGCTTTGGG	15,989–16,014 ^b	(4)
12S rRNA barcoding PCR	12SU1230M2-CH	GCACTGAAAATGCYTAGATG	607–625 ^b	(5)
	12SL2226M1	CAGTAYGCTTACCTTGTTACGAC	1,559–1,581 ^b	(6)
Cytochrome C oxidase subunit	LCO1490	GGTCAACAAATCATAAAGATATTGG	5,931–5,950 ^b	(7)
I gene barcoding PCR	HCO2198	TAAACTTCAGGGTGACCAAAAAATCA	6,609–6,634 ^b	
Lyssavirus partial NP RT-PCR ^d	lys001	ACGCTTAACGAMAAA	1–15 [°]	(9)
	550B	GTRCTCCARTTAGCRCACAT	647–666 [°]	
Lyssavirus screening qRT-PCR	541lys	CACMGSNAAYTAYAARACNAA	541–561 [°]	(9)
	550B	GTRCTCCARTTAGCRCACAT	647–666 [°]	(9)
	620lyssaC	6-Carboxyfluorescein (FAM)–CAYCAYACHYTVATGACHACH- CAYAA–nonfluorescent quencher (QSY)	620–645 ^c	Modified to include degenerate bases to allow the detection of more diverse lyssaviruses (8)
Lyssavirus complete NP PCR	lys001	ACGCTTAACGAMAAA	1–15 [°]	(9)
	304	TTGACAAAGATCTTGCTCAT	1,514–1,533 ^c	
Lyssavirus complete GP PCR	Lyssa Glyco F	TGGTGYATNAAYATRAAYTC	3,000–3,019 ^c	(11)
	Lyssa Glyco R	GGRGARTTNARRTTRTARTC	5,520–5,539 ^c	
Lyssavirus NP sequencing	lys001	ACGCTTAACGAMAAA	1–15 [°]	(9)
primers	550B	GTRCTCCARTTAGCRCACAT	647–666 [°]	
	304	TTGACAAAGATCTTGCTCAT	1,514–1,533 ^c	
Lyssavirus GP sequencing	Lyssa Glyco F	TGGTGYATNAAYATRAAYTC	3,000–3,019 ^c	(11)
primers	Sequencing GF1	GAYCCNAGRTAYGARGARTC	3,687–3,706 ^c	
	Sequencing GF2	ATNCCNGARATGCARTC	4,491–4,507 ^c	
	Sequencing GF3	CWTCNTGGGARTYNTAYAA	4,849–4,867 ^c	
	Lyssa Glyco R	GGRGARTTNARRTTRTARTC	5,520–5,539 ^c	
End verification	Adapt5	ACACTCTTTCCCTACACGACGC	Not applicable	In-house
	nLys5	GGGTCTAGCTTGGCGGC		
	Adapt3	TGACTGGAGTTCAGACGTGTGC		
	nLys3	GCTTGAGTCTGTCCTCCCACTG		

^oDegenerate bases are indicated using the IUPAC nucleotide code (R = A/G, Y = C/T, S = G/C, W = A/T, K = G/T, M = A/C, B = C/G/T, D = A/G/T, H = A/C/T, V = A/C/G, N = A/C/G/T).

^bPosition on human mitochondrial DNA (GenBank accession number: NC012920.1).

^cPosition on Pasteur virus (GenBank accession number: M13215.1).

^dGP, glycoprotein; NP, nucleoprotein; RT-PCR, reverse-transcriptase PCR; qRT-PCR, quantitative reverse-transcriptase PCR.

misassemblies. Genome annotation was performed using BLASTn and BLASTp (18), and the genome organization was consistent with that of lyssaviruses (Fig. 1). Reads were mapped on the draft genome using Bowtie2 v.2.4.5 (19); duplicate reads were removed and the average sequencing depth was determined, which exceeded 2,600× across the genome, using the SAMtools suite v.1.15.1 (20). The genome was 11,978 nt in length

FIG 1 Schematic of PBLV genome organization.

(43.41% GC); however, end verification data suggested that the ends may be longer because, despite repeated attempts, we did not manage to sequence into the adaptors and report the coding-complete genome. At the time of submission, virus isolation attempts had been unsuccessful.

ACKNOWLEDGMENTS

Funding was available from the South African Research Chair Initiative (held by W.M.) of the Department of Science and Innovation and was administered by the National Research Foundation of South Africa (grant number: 98339) and operational funding utilized for NGS (held by J.W.). Postdoctoral fellowship funding provided by the University of Pretoria (UP), under the UP Co-Funding Postdoctoral Fellowship Programme, is acknowledged (N.V.).

AUTHOR AFFILIATIONS

¹Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa

²Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Disease of the National Health Laboratory Service, Sandringham, South Africa

³Sequencing Core Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa

⁴Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa

⁵Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa

⁶Department of Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa

AUTHOR ORCIDs

Natalie Viljoen (b http://orcid.org/0000-0002-9959-2004 Arshad Ismail (b http://orcid.org/0000-0003-4672-5915 Jacqueline Weyer (b http://orcid.org/0000-0001-9471-2890 Wanda Markotter (b http://orcid.org/0000-0002-7550-0080

FUNDING

Funder	Grant(s)	Author(s)
National Research Foundation (NRF)	98339	Wanda Markotter
National Institute for Communicable Diseases, South Africa		Jacqueline Weyer
University of Pretoria, South Africa		Natalie Viljoen

AUTHOR CONTRIBUTIONS

Natalie Viljoen, Data curation, Formal analysis, Investigation, Methodology, Visualization, Writing – original draft | Arshad Ismail, Methodology, Writing – review and editing | Jacqueline Weyer, Funding acquisition, Resources, Supervision, Writing – review and editing | Wanda Markotter, Conceptualization, Funding acquisition, Project administration, Resources, Writing – review and editing

DATA AVAILABILITY

The phala bat Lyssavirus sequence has been deposited in GenBank under the accession number OQ970171. The version described in this paper is the first version. Raw reads were deposited in the NCBI Sequence Read Archive available at PRJNA971078 under the accession numbers PRJNA971078 (BioProject) and SAMN35019052 (BioSample). The

sequence data used for bat identification have been deposited in GenBank under the accession numbers OR096071 (12s rRNA gene) OR091287 (COI gene) and OR105696 (Cytb gene)

ETHICS APPROVAL

Ethics approval was obtained from the University of Pretoria (ethics approvals EC054-14, 458/2019, and 17/2023), and research approval (Section 20 research approval 12/11/1/1/8) was obtained from the Department of Agriculture, Land Reform and Rural Development, South Africa.

REFERENCES

- Walker PJ, Bigarré L, Kurath G, Dacheux L, Pallandre L. 2022. Revised taxonomy of rhabdoviruses infecting fish and marine mammals. Animals (Basel) 12:1363. https://doi.org/10.3390/ani12111363
- Fooks AR, Shipley R, Markotter W, Tordo N, Freuling CM, Müller T, McElhinney LM, Banyard AC, Rupprecht CE. 2021. Renewed public health threat from emerging Lyssaviruses. Viruses 13:1769. https://doi.org/10. 3390/v13091769
- Bickham JW, Wood CC, Patton JC. 1995. Biogeographic implications of cytochrome b sequences and allozymes in sockeye (oncorhynchus nerka). J Hered 86:140–144. https://doi.org/10.1093/oxfordjournals. jhered.a111544
- Bickham JW, Patton JC, Schlitter DA, Rautenbach IL, Honeycutt RL. 2004. Molecular phylogenetics, karyotypic diversity, and partition of the genus myotis (chiroptera: vespertilionidae). Mol Phylogenet Evol 33:333–338. https://doi.org/10.1016/j.ympev.2004.06.012
- Hassanin A, Colombo R, Gembu G-C, Merle M, Tu VT, Görföl T, Akawa PM, Csorba G, Kearney T, Monadjem A, Ing RK. 2018. Multilocus phylogeny and species delimitation within the genusGlauconycteris(Chiroptera, Vespertilionidae), with the description of a new bat species from the Tshopo Province of the Democratic Republic of the Congo. J Zool Syst Evol Res 56:1–22. https://doi.org/10.1111/jzs.12176
- Hassanin A, Delsuc F, Ropiquet A, Hammer C, Jansen van Vuuren B, Matthee C, Ruiz-Garcia M, Catzeflis F, Areskoug V, Nguyen TT, Couloux A. 2012. Pattern and timing of diversification of cetartiodactyla. C R Biol 335:32–50. https://doi.org/10.1016/j.crvi.2011.11.002
- Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299.
- Coertse J, Weyer J, Nel LH, Markotter W. 2010. Improved PCR methods for detection of African rabies and rabies-related lyssaviruses. J Clin Microbiol 48:3949–3955. https://doi.org/10.1128/JCM.01256-10
- Markotter W, Kuzmin I, Rupprecht CE, Randles J, Sabeta CT, Wandeler AI, Nel LH. 2006. Isolation of lagos bat virus from water mongoose. Emerg Infect Dis 12:1913–1918. https://doi.org/10.3201/eid1212.060514
- Chen G, Qiu Y, Zhuang Q, Wang S, Wang T, Chen J, Wang K. 2018. Nextgeneration sequencing library preparation method for identification of RNA viruses on the ion torrent sequencing platform. Virus Genes 54:536–542. https://doi.org/10.1007/s11262-018-1568-x
- Coertse J, Viljoen N, Weyer J, Markotter W. 2023. Comparative neutralization activity of commercial rabies immunoglobulin against diverse lyssaviruses. Vaccines (Basel) 11:1255. https://doi.org/10.3390/ vaccines11071255
- Afgan E, Nekrutenko A, Grüning BA, Blankenberg D, Goecks J, Schatz MC, Ostrovsky AE, Mahmoud A, Lonie AJ, Syme A, Fouilloux A, Bretaudeau A, Nekrutenko A, Kumar A, Eschenlauer AC, DeSanto AD, Guerler A,

Serrano-Solano B, Batut B, Grüning BA, Langhorst BW, Carr B, Raubenolt BA, Hyde CJ, Bromhead CJ, Barnett CB, Royaux C, Gallardo C, Blankenberg D, Fornika DJ, Baker D, Bouvier D, Clements D, de Lima Morais DA, Tabernero DL, Lariviere D, Nasr E, Afgan E, Zambelli F, Heyl F, Psomopoulos F, Coppens F, Price GR, Cuccuru G, Corguillé GL, Von Kuster G, Akbulut GG, Rasche H, Hotz H-R, Eguinoa I, Makunin I, Ranawaka IJ, Taylor JP, Joshi J, Hillman-Jackson J, Goecks J, Chilton JM, Kamali K, Suderman K, Poterlowicz K, Yvan LB, Lopez-Delisle L, Sargent L, Bassetti ME, Tangaro MA, van den Beek M, Čech M, Bernt M, Fahrner M, Tekman M, Föll MC, Schatz MC, Crusoe MR, Roncoroni M, Kucher N, Coraor N, Stoler N, Rhodes N, Soranzo N, Pinter N, Goonasekera NA, Moreno PA, Videm P, Melanie P, Mandreoli P, Jagtap PD, Gu Q, Weber RJM, Lazarus R, Vorderman RHP, Hiltemann S, Golitsynskiy S, Garg S, Bray SA, Gladman SL, Leo S, Mehta SP, Griffin TJ, Jalili V, Yves V, Wen V, Nagampalli VK, Bacon WA, de Koning W, Maier W, Briggs PJ, The Galaxy Community. 2022. The Galaxy platform for accessible, reproducible and collaborative BIOMEDICAL analyses. Nucleic Acids Res 50:W345-W351. https://doi. org/10.1093/nar/gkac247

- 13. Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. 370
- Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/ bioinformatics/bty560
- Li D, Liu CM, Luo R, Sadakane K, Lam TW. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676. https://doi.org/ 10.1093/bioinformatics/btv033
- Cock PJA, Chilton JM, Grüning B, Johnson JE, Soranzo N. 2015. NCBI BLAST+ integrated into Galaxy. Gigascience 4. https://doi.org/10.1186/ s13742-015-0080-7
- Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539–539. https://doi. org/10.1038/msb.2011.75
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/ S0022-2836(05)80360-2
- Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923
- Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H. 2021. Twelve years of SAMtools and BCFtools. Gigascience 10:giab008. https://doi.org/10. 1093/gigascience/giab008