Systematic review and meta-analysis of the impact of decontamination interventions on the prevalence and concentration of *Salmonella* in broiler chickens during primary processing

Section A: PRISMA-P (Preferred Reporting Items for Systematic review and Meta-
Analysis Protocols) 2015 checklist

Section and tonia							
Section and topic							
Item N		Checklist item	Remark				
Administrative	e						
Information							
Title:			Protocol for a new systematic review				
Identification	1a	5 1					
		protocol of a systematic					
		review					
Update	1b	If the protocol is for an	Not applicable				
		update of a previous					
		systematic review, identify					
		as such					
Registration	2	If registered, provide the	Protocol not registered as the systematic				
		name of the registry (such as	review does not directly refer to publications				
		PROSPERO) and	on human health				
		registration number					
Authors			Josphat Njenga Gichure ¹ , Ranil Coorey ² ,				
Contact	3a	,	Patrick Murigu Kamau Njage ³ , Joseph M.				
		affiliation, e-mail address of	Wambui ⁴ , Gary A. Dykes ⁵ , Elna M. Buys ^{1*}				
		all protocol authors; provide	¹ Department of Consumer and Food				
		physical mailing address of	Sciences, University of Pretoria, Private Bag				
		corresponding author	X20, Hatfield 0028, South Africa;				
			jngichure@gmail.com ORCID 0000-0002-				
			1690-2354; elna.buys@up.ac.za ORCID				
			0000-0001-7836-9295				
			² School of Molecular and Life Sciences,				
			Faculty of Science and Engineering, Curtin				
			University, GPO Box U1987, Perth 6845,				
			Australia; r.coorey@curtin.edu.au; ORCID				
			0000-0002-5261-1300				
			³ Division for Epidemiology and Microbial				
			Genomics, National Food Institute,				
			Technical University of Denmark, Søltofts				

			 Plads, Building 221, Kongens Lyngby, 2800, Denmark; panj@food.dtu.dk ⁴Institute for Food Safety and Hygiene, University of Zurich, Winterthurerstrasse 272, 8057, Zurich, Switzerland, josephmwaniki.wambui@uzh.ch ⁵School of Agriculture and Food Sciences, University of Queensland, St. Lucia 4067, Australia; garydykes66@gmail.com
Contributions	3b	Describe contributions of protocol authors and identify the guarantor of the review	Conceptualization: JG, EB, PKN, GD, RC; Methodology: JG, EB, PKN, GD, RC; Investigation: JG, PKN, JW; Resources: JG, EB, PKN, GD, RC; Data curation: JG, PKN, JW; Writing—original draft preparation: JG; Writing—review and editing: JG, EB, PKN, GD, JW, RC.
Amendments	4	If the protocol represents an amendment of a previously completed or published protocol, identify as such and list changes; otherwise, state plan for documenting important protocol amendments	In case the protocol needs to be amended, the description of the amendment shall be dated and submitted with the rationale.
Support: Sources	5a	Indicate sources of financial or other support for the review	Australia Awards Africa postdoctoral scholarship University of Pretoria Postdoctoral scholarship
Sponsor	5b	Provide name for the review funder and/or sponsor	Australia Awards Africa postdoctoral scholarship University of Pretoria Postdoctoral scholarship
Role of sponsor or funder	5c	Describe roles of funder(s), sponsor(s), and/or institution(s), if any, in developing the protocol	The funder had no other role in developing the protocol
INTRODUCT ION			
Rationale	6	Describe the rationale for the review in the context of what is already known	5

Objectives	7	Provide an explicit statement of the question(s) the review will address with reference to participants, interventions, comparators, and outcomes (PICO)	eligible studies into unified summary estimates for <i>Salmonella</i> decontamination
			variables using meta-regression.
METHODS Eligibility criteria	8	Specify the study characteristics (such as PICO, study design, setting, time frame) and report characteristics (such as years considered, language, publication status) to be used as criteria for eligibility for the review	Screening and inclusion based on PICO guidelines as per the following criteria: Study designs: for inclusion, randomized controlled, challenge trials, and before-after- trials. Participants: broiler chicken carcass from scalding to post-chill. Interventions: microbial and physical decontamination interventions examining the effect on <i>Salmonella</i> concentration and prevalence. Comparators: Interventions were grouped based on prevalence or concentration studies. Outcomes: the decrease/increase in concentration and/or prevalence before and after an intervention Timing: only samples collected from the same lot were evaluated. Setting: actual slaughterhouse or pilot plants. Language- English
Information sources	9	Describe all intended information sources (such as electronic databases, contact with study authors, trial registers or other grey literature sources) with planned dates of coverage	The search was in five electronic databases namely; (i) Dimensions, (ii) Web of Science, (iii) PubMed, (iv) African Index Medicus and (v) Google Scholar Only literature published between 01/01/1998 and 30/09/2022 were included. Handsearching through scanning the reference lists of the included studies and existing reviews was conducted to complement the electronic database search.

a 1	10		
Search	10		Publications on qualitative and quantitative
strategy		strategy to be used for at	trials were identified. No restrictions were
		least one electronic database,	made on the design or language at this point.
		including planned limits,	Google translate was used in case the title
		such that it could be repeated	0 0 0
			The algorithm used: ((Salmonella* AND
			(((Chicken* OR Poultr*) OR broiler*) OR
			gallus)) AND (slaughter* OR process*))
Study			From the search engines, the literature search
records: Data	11	Describe the mechanism(s)	results were exported to Mendeley for
management	а	that will be used to manage	deduplication, and then shared with two
		records and data throughout	other reviewers for title/abstracts screening.
		the review	Pre-tested checklists were used along the
			screening process. Data extraction was done
			using MS Access, then exported to MS
			Excel. Data analysis was done using Metafor
			package (Version 3.8-1) in R-programme
			(version 4.2.0).
Selection	11	State the process that will be	Two independent reviewers screened the
	b	used for selecting studies	titles and articles after deduplication using
process	υ	e	
		(such as two independent	the checklist provided. The reviewers then
		reviewers) through each	screened the reports to confirm that the
		phase of the review (that is,	inclusion criteria had been adhered to.
		screening, eligibility and	Disagreement was solved through
		inclusion in meta-analysis)	discussions and/ or arbitration by a third
			reviewer. Since Mendeley was used, it was
			impossible to blind to journal titles, authors,
			or study institutions.
Data	11	Describe planned method of	Data extraction was done in duplicate, that
collection	c	extracting data from reports	is, the two reviewers extracted data
process		(such as piloting forms, done	independently from each eligible study using
		independently, in duplicate),	standardized MS Access forms. As with the
		any processes for obtaining	selection process, disagreement will be
		and confirming data from	solved through discussions and/ or
		investigators	arbitration by a third reviewer.
Data items	12	List and define all variables	The extracted data comprised of; Article
		for which data will be sought	identification, Sampling point, Intervention
		(such as PICO items,	details, Type of control used, Exposure
		funding sources), any pre-	details to intervention, Sampling, Microbial
		planned data assumptions	culture, Microbial confirmation, Trial size,
		and simplifications	and Publication status.
Outcomes and	13	List and define all outcomes	The main intended outcome was the
prioritization		for which data will be	reduction or increase in concentration and
-		sought, including	prevalence of Salmonella spp. when a given
L		\mathcal{O} , \mathcal{O} , \mathcal{O}	· · · · · · · · · · · · · · · · · · ·

		prioritization of main and additional outcomes, with rationale	decontamination interventions had been tested during broiler primary processing. Concentration reduction was the difference between control and treatment groups, while relative risks was used in prevalence trials. In terms of data set for the outcomes, categorical data was obtained for prevalence trials while continuous data was collected for concentration trials.
Risk of bias in individual studies	14	Describe anticipated methods for assessing risk of bias of individual studies, including whether this will be done at the outcome or study level, or both; state how this information will be used in data synthesis	The Cochrane Collaboration tool was adopted (with modifications) to assess risk of bias within studies. The specific areas assessed include study design adequacy and set-up, sampling, sequence generation, allocation concealment, blinding, selective outcome reporting and statistical appropriateness. For each, a brief description of the activity was recorded and evaluated based on possible risk of bias as 'high risk', 'unclear risk' or 'low risk'. Disagreements were cleared through discussions or the third reviewer acting as the arbitrator.
Data synthesis	15 a	Describe criteria under which study data will be quantitatively synthesised	The meta-analysis was run using a random- effects model for heterogenous data set while fixed effect model will be used for homogenous data set.
	15 b	If data are appropriate for quantitative synthesis, describe planned summary measures, methods of handling data and methods of combining data from studies, including any planned exploration of consistency (such as I2, Kendall's τ)	Measures of treatment effect • For categorical outcomes (prevalence), effect was evaluated using risk ratio (RR) with 95% confidence interval (CI). • For continuous outcomes (concentration), raw mean differences was used to evaluate the odds ratio (OR) with 95% CI Dealing with missing data: there was no missing data from the included studies. The following scale was used to rate heterogeneity: I^2 statistic (0% to 40% assumed to be unimportant; 50% to 60% to represent moderate heterogeneity; and above 60%, heterogeneity will be considered substantial. Q-test will used to indicate heterogeneity, and τ^2 will indicate variability. Data synthesis

			Once extracted, data was run using R- packages. The Mantel-Haenszel method adopted for the fixed effect model, while DerSimonian and Laird) method used for the random effect model. The random effect model was used only where heterogeneity was significant ($I^2 < 50\%$ or P <0.1)
	15 c	Describe any proposed additional analyses (such as sensitivity or subgroup analyses, meta-regression)	Subgroup analysis to explore likely causes of heterogeneity, based on the following: sampling point, intervention (physical vs chemical), technique (spray vs immersion vs cloaca treatment), publication year, and sample size Meta-regression was done using a mixed- effects model to evaluate which study characteristics account for heterogeneity and adjust for probable confounders across the studies
	15 d	If quantitative synthesis is not appropriate, describe the type of summary planned	Descriptive characteristics was provided using systematic narrative synthesis with data presented using text and tables. The narrative synthesis was used to bring out the relationship and findings within-studies and between-studies. This was based on modification of Centre for Reviews and Dissemination guidelines
Meta-bias(es)	16	Specify any planned assessment of meta-bias(es) (such as publication bias across studies, selective reporting within studies)	The fixed effect estimates were compared against the random effects model, and for each, forest and funnel plots developed to assess the possible presence of small sample effect on the bias. Mixed-effect meta- regression model used to explain bias across studies.
Confidence in cumulative evidence	17	the body of evidence will be assessed (such as GRADE)	Evidence was evaluated based on the Grading of Recommendations Assessment, Development and Evaluation. On this, quality encompassed risk of bias, publication bias, reliability, directness, and accuracy. The strength was rated as (i) high, (ii) moderate, (iii) low or (iv) very low

*The PRISMA-P Explanation and Elaboration (cite when available) for important clarification on the items. Amendments to a review protocol should be tracked and dated. The copyright for PRISMA-P (including checklist) is held by the PRISMA-P Group and is distributed under a Creative Commons Attribution Licence 4.0. Adopted from (Moher et al., 2015)

Section B: Search strategy used for a systematic review-meta-analysis investigating the change in prevalence and concentration of *Salmonella* spp. in broiler chickens during primary processing

Algorithm

((*Salmonell** AND (((Chicken* OR Poultry*) OR broiler*) OR gallus)) AND (slaughter* OR process*)) Timespan: 01/01/1998- 30/09/2022 (Date of completion of database search)

Databases and captured citations prior to de-dublication

- 1. Web of Science- 848 hits
- 2. PubMed-1324
- 3. Dimensions- 384 hits
- 4. African Index Medicus- 13 hits
- 5. Web-searching
 - a. Databases searched: Google (8 hits), Google Scholar (1220 hits), and CAB Abstracts- 12 hits

Section C: Screening tool for abstracts for the systematic-review meta-analysis investigating the change in prevalence and concentration of *Salmonella* spp. in broiler chickens during primary processing.

RefID: _____

Reviewer:

Question 1 - Does this abstract pertain to primary research and results written in English?

1. From the title abstract, is it evident that the authors collected and analyzed their own data?

- [] Yes
 [] No
 [] Can't tell at this point *Take note of review articles*
- 2. Can you retrieve an English version of this article?
 - [] Yes[] No[] Can't tell at this point

Note that primary research in the screening process refers to Scalding, Defeathering, Evisceration, Inside-Outside Carcass wash, Chilling or Post-chill storage Broiler chickens exclude spent hens and other fowl for human consumption. At this point, assume 'poultry' or 'chicken' refers to broilers.

- 3. Does the study investigate the effects of a decontamination intervention on the prevalence or concentration outcome, on broiler chickens, during primary processing of broiler chickens?
 - []Yes
 - []No
 - [] Can't tell at this point
- 4. Are the results from samples collected at specific points during primary processing of broiler chickens?
 - [] Yes
 - [] No
 - [] Can't tell at this point
- 5. Does the study investigate the effects of a decontamination intervention on broiler chickens, and **NOT** the processing environment (surfaces, air, process water)?
 - []Yes
 - []No
 - [] Can't tell at this point
- 6. Does the sample refer to typical broiler breeds slaughtered at 5-7 weeks of age?

Yes
 No
 Can't tell at this point

Section D: Relevance screening tool for full articles for the systematic-review investigating the change in prevalence and concentration of *Salmonella* spp. in broiler chickens from scalding to post-chill.

RefID: _____ Reviewer: _____

Relevance criteria

1. Have the authors used an appropriate study design in this study? Have the researcher adequately measured the outcome of interest before a treatment and after a treatment.

[] Yes

[] No

[] Can't tell at this point

The samples can either be inoculated or naturally contaminated and the extent of an outcome may be from an earlier point during the primary processing. The designs to accept include Randomized control trials, challenge trials, Before-after-trials. Reject full articles if it's a cohort study, cross-sectional, surveillance reports, modelling and risk analysis publications based on secondary literature. Articles and trials were also accepted if sampling was done to evaluate the effects over a series of different sampling points. Trials refers to treatment-to-control comparisons made within a study. An effect is evaluated by changes in prevalence (frequency or presence/absence) or concentration (colony forming units (CFU) or most probable number (MPN) per unit measured) within a study.

2. Have the methods/ methodology/ procedures been adequately described and presented?

- []Yes
- [] No

3. Have the results being adequately presented?

- [] Yes
- [] No
- 4. Can specific details of each trial together with its results (control and treatment) be properly extracted?
 - []Yes
 - [] No
 - [] Data can be adequately extracted from images using available R-packages

Section E: Risk of Bias Assessment Checklists used for the systematic review investigating the change in prevalence and concentration of *Salmonella* in broiler chickens from scalding to post-chill.

The checklist was based on GRADE (Grading of Recommendations Assessment, Development, and Evaluation) as recommended (Schünemann et al., 2011).

Quality item	Coding (Please circle the	Description
	applicable one)	
Study design adequacy	Yes	The design is clearly stated including
		sample size, intervention details,
		outcomes and controls that will be
		measured.
	No	One or more of the components are
		missing.
Sample size justification	Yes	Used formulas, based on desired
		power or precision and estimate of
		expected variability to detect
		differences.
	No	No details in the text, convenient or
		judgemental sampling done.
Allocation sequence adequately	Yes	Allocation sequence is described in
generated		enough detail
	No	Sample picked with no formal process
		for randomization, that is, sampling
		was judgmental, convenient, &
		purposive
Allocation concealment or blinding	Yes	Concealment or blinding described
adequate	Not described	No enough details on allocation
		concealment/ blinding
Adequate description of procedure	Yes	Clearly stated procedures (time,
		temperature, process environment,
		process capacity
	No	Description not clearly stated

Study set-up	Actual factory set up	Intervention implemented in a typical broiler processing facility and used
	Pilot plant set up	commercial equipment Intervention implemented in a pilot plant
	Lab design	Simulated processing done in the lab
Appropriateness of control group	Yes	Yes
used	No	No
Use of standard methods to culture &	z Yes	Standard methods were used and have
confirmation Salmonella		been adequately described.
	No	Not clear
Report all intended outcomes with no	oYes	The results address all intended
evidence of exclusion of some		outcomes
samples from the results	No	Evidence some outcomes have been
		excluded from the results
Appropriateness of statistical	Yes	The results fit the study design,
analysis, including presentation of		outcomes (parameter estimates &
measures of variability		measures of variability) adequately
		presented.
	No	Statistical analysis and measures of
		variability not properly presented or
		carried out.
Presence of a dose-response gradient	Yes	The authors present a clear dose-
		response effect in the study
	No	Not presented
Presence of any other any concerns	Yes	Kindly state in brief
that may contribute to bias	No	None detected during screening or
		inclusion
	Low Risk of Bias	Minimal biases indicated, acceptable
		bias is unlikely across the study

Based on GRADE, how would	Unclear Risk of Bias	Elements of acceptable bias detected
GRADE the risk of bias in this study	<i>i</i>	in the study, that creates uncertainty in
(GRADE 1-10, new)		the results
	High Risk of Bias	Unacceptable bias identified across
		the study that consequently affects the
		overall results

Adopted from (Centre for Reviews and Dissemination, 2009)

Section F: Findings on Risk of Bias Assessment

Allocation concealment and blinding was not reported by any study, and none of the studies justified the sample size used. Allocation sequence was inadequately generated in most studies.

Article	Study	Sampl	Alloc	Alloc	Adeq	Study set-up	Appro	Use	Repor	Appro	Dose-	Any other	Overall
ID	design	e size	ation	ation	uate		priate	of	t all	priate	respo	concern	RoB
	adequ	justifi	seque	conce	descri		ness	standa	intede	ness	nse		
	acy	cation	nce	almen	ption		of	rd	d	of	gradie		
			adequ	t or	of		contro	metho	outco	statist	nt		
			ately	blindi	proce		1	ds	mes	ical			
			gener	ng	dures		group			analys			
			ated	C			U			is			
A10	Yes	No	No	No	Yes	Lab	Yes	Yes	Yes	Yes	No	None	Low
A14	Yes	No	No	No	No	Lab	Yes	Yes	No	Yes	No	None	Unclear
A16	Yes	No	No	No	Yes	Factory	Yes	Yes	Yes	Yes	No	Different	Unclear
												factories	
A18	Yes	No	Yes	No	Yes	Factory	Yes	Yes	Yes	Yes	No	None	Low
A2	Yes	No	No	No	Yes	Factory	Yes	Yes	Yes	Yes	No	None	Low
A20	Yes	No	No	No	Yes	Factory	Yes	Yes	Yes	Yes	No	Residual	Unclear
												bacteriostatic	
												activity not	
												factored	
A21	Yes	No	No	No	No	Factory	Yes	Yes	No	Yes	No	None	Low
A23	Yes	No	Yes	No	Yes	Factory	Yes	Yes	Yes	No	No	None	Unclear
A24	Yes	No	No	No	Yes	Factory	Yes	Yes	Yes	Yes	No	None	Low
A25	Yes	No	No	No	Yes	Pilot	Yes	Yes	Yes	Yes	No	Artificial	Unclear
												contamination	
A27	Yes	No	No	No	Yes	Pilot	Yes	Yes	Yes	Yes	Yes	None	Low
A29	Yes	No	No	No	Yes	Pilot	Yes	Yes	No	Yes	No	Residual	Unclear
												bacteriostatic	

Table 1: Descriptive characteristics of the trials (studies) for inclusion in the systematic review

												activity not factored	
A3	Yes	No	No	No	Yes	Pilot	Yes	Yes	Yes	Yes	No	None	Low
A30	Yes	No	Yes	No	Yes	Factory	Yes	Yes	Yes	Yes	No	None	Low
A31	Yes	No	Yes	No	Yes	Pilot	Yes	Yes	No	Yes	No	None	Low
A32	Yes	No	Yes	No	Yes	Pilot	Yes	Yes	Yes	Yes	No	None	Low
A33	Yes	No	Yes	No	Yes	Factory	No	Yes	Yes	Yes	No	Samples from 3 factories	Unclear
A36	Yes	No	No	No	Yes	Pilot	Yes	Yes	Yes	Yes	No	Patented intervention	Unclear
A38	Yes	No	No	No	Yes	Pilot	Yes	Yes	Yes	Yes	No	Patented intervention	Low
A40	Yes	No	Yes	No	Yes	Factory	Yes	Yes	Yes	Yes	Yes	None	Low
A42	Yes	No	No	No	Yes	Pilot	Yes	Yes	No	Yes	No	Groups of Salmonella serovars assessed	Unclear
A45	Yes	No	No	No	Yes	Pilot	Yes	Yes	Yes	Yes	No	Genetically featherless, artificial contamination	Unclear
A5	Yes	No	No	No	Yes	Factory	Yes	Yes	Yes	Yes	No	None	Low
A50	Yes	No	No	No	Yes	Factory	Yes	Yes	Yes	Yes	No	Cross-factory	Unclear
A52	Yes	No	No	No	Yes	Pilot	Yes	Yes	Yes	Yes	No	Artificial contamination	Low
A54	Yes	No	No	No	Yes	Lab	Yes	Yes	Yes	Yes	No	Artificial contamination	Unclear
A55	Yes	No	No	No	Yes	Lab	No	Yes	Yes	Yes	No	None	Low
A56	Yes	No	No	No	Yes	Pilot	Yes	Yes	Yes	Yes	No	Artificial contamination	Low
A57	Yes	No	No	No	Yes	Factory	Yes	Yes	Yes	Yes	No	None	Low
A58	Yes	No	No	No	No	Lab	Yes	Yes	Yes	Yes	No	Artificial contamination	Unclear
A59	Yes	No	No	No	No	Lab	Yes	Yes	Yes	Yes	No	Artificial contamination	Low

A6	Yes	No	No	No	No	Factory	Yes	Yes	Yes	Yes	Yes	None	Low
A60	Yes	No	No	No	No	Pilot	Yes	Yes	Yes	Yes	No	Artificial contamination	Unclear
A61	Yes	No	No	No	Yes	Factory	Yes	Yes	Yes	Yes	No	Different factories	Low
A62	Yes	No	No	No	Yes	Pilot	No	Yes	Yes	Yes	No	Artificial contamination	Unclear
A63	Yes	No	Yes	No	Yes	Pilot	Yes	Yes	Yes	Yes	No	Patented intervention	Unclear
A9	Yes	No	No	No	No	Factory	Yes	Yes	Yes	Yes	No	None	Low

Section G: Data extraction tool for a systematic-review meta-analysis investigating the change in prevalence and concentration of *Salmonella* spp. in broiler chickens during primary processing

Variable	Description	Entry
Article ID	Brief description of article	Author, year, country
Sampling point	Point where samples were collected	Sampling point
Intervention type	Decontamination intervention done	Intervention type
Intervention details	Detailed description of the decontamination intervention	Technique, inoculum, exposure time, exposed part
Microbial sampling	Samples collection	Type of analysed sample
Microbial analysis	Description of steps done for microbial analysis	Non-selective enrichment, selective enrichment, isolation media, purification media, confirmation
Counts/ prevalence	Findings of the trial	Initial concentration (log counts)/ prevalence, variability (Standard deviation/ standard error)

Section H: Extracted data for the systematic review meta-analysis on the effectiveness of processing interventions along broilers abattoirs on *Salmonella*

Article ID	Count ry	Samplin g	Interventi on type	Techn ique	Inoculum type	Expos ure time (min)	Expo sed part	Type of analys ed sample	Conc/ prev	Effect	SD	N	R o B
A32	USA	Scalding & Defeath ering	High temperatu re	immer sion	Soft scald (50°C for 90 s) at pH of 11.0 \rightarrow Hard scald (56.6°C for 45 s) at pH of 11.0	45	WC	WCR	Conc	0.75	0.07	50	L
A32	USA	Scalding & Defeath ering	High temperatu re	immer sion	High pH (NaOH) Soft scald (50°C for 90 s) at pH of 11.0→High pH (NaOH) Hard scald (56.6°C for 45 s) at pH of 11.0	45	WC	WCR	Conc	0.3	0.06	50	L
A45	USA	Scalding & Defeath ering	Forced Cloacal Fecal Expulsion	cloaca treatm ent	Washing→ squeeze only	<1	WC	WCR	Conc	-4.9	0.30	9	U
A45	USA	Scalding & Defeath ering	Forced Cloacal Fecal Expulsion	cloaca treatm ent	Washing→ Squeeze + Wash	<1	WC	WCR	Conc	-3.5	0.30	9	U
A62	Norw ay	Eviscera tion	Steam pasteuriza tion	Steam	Steam at 95 C from 3 to 5 secs	<1	WC	CCS	Conc	0.73	0.45	7	U
A62	Norw ay	Eviscera tion	Steam pasteuriza tion	Steam	Steam at 95 C from 3 to 5 secs	<1	WC	CCS	Conc	0.71	0.33	7	U

A62	Norw ay	Eviscera tion	Steam pasteuriza tion	Steam	Steam at 95 C from 3 to 5 secs	<1	WC	CCS	Conc	0.54	0.18	7	U
A62	Norw ay	Eviscera tion	Steam pasteuriza tion	Steam	Steam at 120 C from 3 to 5 secs	<1	WC	CCS	Conc	0.94	0.50	7	U
A62	Norw ay	Eviscera tion	Steam pasteuriza tion	Steam	Steam at 120 C from 3 to 5 secs	<1	WC	CCS	Conc	0.43	0.26	7	U
A62	Norw ay	Eviscera tion	Steam pasteuriza tion	Steam	Steam at 120 C from 3 to 5 secs	<1	WC	CCS	Conc	0.42	0.16	7	U
A25	USA	Inside- Outside Carcass wash	Electrolyz ed water	spray	EO (electrolyzed oxidising water) pH 2.4, oxidation reduction potential of 1,180 mV containing 50 mg/L of total chlorine	10	WC	WCR	Conc	2.7	0.55	10	U
A25	USA	Inside- Outside Carcass wash	Sodium hypochlor ite	spray	50 mg/L of HOCl solution (pH 8.0)	10	WC	WCR	Conc	2.4	0.58	10	U
A54	USA	Inside- Outside Carcass wash	Chlorine	spray	0 ppm→50 ppm Chlorine, water temperature 21.1°C	5	WC	WCR	Conc	0.1	0.62	4	U
A54	USA	Inside- Outside Carcass wash	Chlorine	spray	0 ppm→50 ppm Chlorine, water temperature 43.3°C	5	WC	WCR	Conc	0.3	0.62	4	U
A54	USA	Inside- Outside Carcass wash	Chlorine	spray	0 ppm→50 ppm Chlorine, water temperature 54.4°C	5	WC	WCR	Conc	0	0.63	4	U
A56	USA	Inside- Outside	Trisodium phosphate	spray	control- water spray→10% TSP, pH	17	WC	WCR	Conc	1.36	0.18	10	L

		Carcass wash			12.3, spray for 17 secs, temperature 35C, spraying pressure at 413 kPa, setting time 60 secs, then rinsed with water at a pressure of 551 kPa for 17 s to remove chemical residue								
A56	USA	Inside- Outside Carcass wash	Lactic acid	spray	control- water spray $\rightarrow 2\%$ lactic acid, spray for 17 secs, temperature 35C, spraying pressure at 413 kPa, setting time 60 secs, then rinsed with water at a pressure of 551 kPa for 17 s to remove chemical residue	17	WC	WCR	Conc	1.21	0.15	10	L
A56	USA	Inside- Outside Carcass wash	Cetylpyri dinium chloride	spray	control- water spray \rightarrow 0.5% cetylpyridinium chloride (CPC) spray for 17 secs, temperature 35C, spraying pressure at 413 kPa, setting time 60 secs, then rinsed with water at a pressure of 551 kPa for 17 s to remove chemical residue	17	WC	WCR	Conc	1.62	0.20	10	L
A56	USA	Inside- Outside Carcass wash	Sodium bisulfate	spray	control- water spray→5% sodium bisulfate (SBS) spray for 17 secs, temperature 35C, spraying pressure at 413 kPa, setting time 60 secs, then rinsed with water at a	17	WC	WCR	Conc	1.47	0.18	10	L

A24	Irelan d	Post- IOCW & Pre- Chill	Trisodium phosphate	immer sion	pressure of 551 kPa for 17 s to remove chemical residue Portable water→10% (wt/vol) TSP	15	WC	CCS	Conc	0.56	0.08	5	L
A10	USA	Chilling	Immersio n→air chilling	immer sion → air chillin g	ice and potable water mixture (approximately 0.6 C), 2 rpm, 50-min \rightarrow continuous flow of air with velocity 3.5 m/s, air less than 0 C, for 150 mins	9000	WC	WCR	Conc	0.4	0.35	18	L
A23	USA	Chilling	Immersio n→air chilling	immer sion \rightarrow air chillin g	air velocity 3.6 m/min, temperature of 0°C and RH of 72%, chilling time 120 min \rightarrow 0.5 to 1.1°C water with 5 mg/kg of free chlorine with birds exposed to air agitation during the first 25 min. total immersion time 80 min	<1	WC	WCR	Conc	0.57	0.02	10	U
A23	USA	Chilling	Immersio n- air combi	air → immer sion- air combi	air velocity 3.6 m/min, temperature of 0°C and RH of 72%, chilling time 120 min \rightarrow 0.5 to 1.1°C water with 5 mg/kg of free chlorine with birds exposed to air agitation during the first 25 min. total immersion time 80 min \rightarrow Step 1: 4 tanks with temp at 8, 5, 5, and 2°C, respectively. Time 20	<1	WC	WCR	Conc	0	0.00	10	U

					s (1st tank), 40 s (2nd tank), 80 s (3rd tank), and 80 s (4th tank). Drain time between tanks 30, 60, and 60 s. Step 2: air chill- velocity 3.6 m/min, 0°C and RH of 72%, for 120 mins								
A23	USA	Chilling	Immersio n- air combi	immer sion → Immer sion- air combi	0.5 to 1.1°C water with 5 mg/kg of free chlorine with birds exposed to air agitation during the first 25 min. total immersion time 80 min \rightarrow Step 1: 4 tanks with temp at 8, 5, 5, and 2°C, respectively. Time 20 s (1st tank), 40 s (2nd tank), 80 s (3rd tank), and 80 s (4th tank). Drain time between tanks 30, 60, and 60 s. Step 2: air chill- velocity 3.6 m/min, 0°C and RH of 72%, for 120 mins	<1	WC	WCR	Conc	0.57	0.02	10	U
A36	USA	Chilling	Chlorine	immer sion	chlorine treatment (pH 7.34, 51.9 ppm of free chlorine) - Inoculated drummette	2700	CC	CCR	Conc	0.38	0.12	20	U
A36	USA	Chilling	Chlorine	immer sion	chlorine stabilizer (T-128) based on phosphoric acid– propylene glycol (pH 2.99, 0.00 ppm of free chlorine) - Inoculated drummette	2700	CC	CCR	Conc	0.27	0.12	20	U
A36	USA	Chilling	Chlorine	immer sion	chlorine with chlorine stabilizer (T-128) based on	2700	CC	CCR	Conc	0.7	0.12	20	U

					phosphoric acid– propylene glycol (pH 3.59, 50.5 ppm of free chlorine) - Inoculated drummette								
A36	USA	Chilling	Chlorine	immer sion	Chlorine treated with 0.01% H3PO4 (pH 3.42, 50.5 ppm of free chlorine)→ chlorine treated with phosphoric acid–propylene glycol chlorine stabilizer (pH 3.55, 50.6 ppm of free chlorine) - Inoculated drummette	2700	CC	CCR	Conc	0.15	0.05	20	U
A36	USA	Chilling	Chlorine	immer sion	chlorine treatment (pH 7.34, 51.9 ppm of free chlorine) - uninoculated drummette	2700	CC	CCR	Conc	0.57	0.13	20	U
A36	USA	Chilling	Chlorine	immer sion	chlorine stabilizer (T-128) based on phosphoric acid– propylene glycol (pH 2.99, 0.00 ppm of free chlorine) - uninoculated drummette	2700	CC	CCR	Conc	0.25	0.13	20	U
A36	USA	Chilling	Chlorine	immer sion	chlorine with chlorine stabilizer (T-128) based on phosphoric acid– propylene glycol (pH 3.59, 50.5 ppm of free chlorine) - uninoculated drummette	2700	CC	CCR	Conc	1.15	0.13	20	U
A36	USA	Chilling	Chlorine	immer sion	Chlorine treated with 0.01% H3PO4 (pH 3.42, 50.5 ppm of free chlorine)→ chlorine treated with phosphoric acid–propylene glycol	2700	CC	CCR	Conc	0.56	0.08	20	U

					chlorine stabilizer (pH 3.55, 50.6 ppm of free chlorine) - Uninoculated drummette								
A42	USA	Chilling	Sodium hypochlor ite	immer sion	control- tap water→sodium hypochlorite (50 ppm)	3600	WC	WCR	Conc	-0.01	0.07	30	U
A42	USA	Chilling	Monochlo ramine	immer sion	control- tap water→monochloramine (50 ppm)	3600	WC	WCR	Conc	0.02	0.07	30	U
A49	USA	Chilling	Peracetic acid	immer sion	0.003% chlorine→0.0025% peracetic acid	<1	WC	WCR	Conc	0.8	0.69	100	L
A49	USA	Chilling	Peracetic acid	immer sion	0.003% chlorine $\rightarrow 0.01\%$ peracetic acid	<1	WC	WCR	Conc	1.1	0.69	100	L
A49	USA	Chilling	Peracetic acid	immer sion	0.003% chlorine→0.02% peracetic acid	<1	WC	WCR	Conc	1.2	0.69	100	L
A52	USA	Chilling	Portable water	immer sion	No treatment \rightarrow distilled water, chilled to 4C	<1	WC	WCR	Conc	-0.5	0.52	4	L
A52	USA	Chilling	Electrolyz ed water	immer sion	control- distilled water \rightarrow EO water (pH 2.4 to 2.7, 1,150 mV ORP, 50 ppm free CL), chilled to 4C	<1	WC	WCR	Conc	1.33	0.43	4	L
A52	USA	Chilling	Acetic acid	immer sion	control- distilled water \rightarrow 2% acetic acid, chilled to 4C	<1	WC	WCR	Conc	1.91	0.41	4	L
A52	USA	Chilling	Trisodium phosphate	immer sion	control- distilled water \rightarrow 10% TSP, chilled to 4C	<1	WC	WCR	Conc	1.91	0.41	4	L
A52	USA	Chilling	Sodium hypochlor ite	immer sion	control- distilled water→20 ppm sodium hypochlorite, chilled to 4C (chlorine)	<1	WC	WCR	Conc	0.45	0.43	4	L

A52	USA	Chilling	Ozonated	immer	control- distilled		WC	WCR	Conc	1.24	0.45	4	L
			water	sion	water \rightarrow 10 mg/L ozonated	<1							
					water (OZ), chilled to 4 C	<1							
					(ozone)								
A52	USA	Chilling	Portable	spray	No treatment \rightarrow distilled	15	HC	HCR	Conc	0.87	0.14	4	L
			water		water, chilled to 4C	15							
A52	USA	Chilling	Electrolyz	spray	control- distilled		HC	HCR	Conc	-0.28	0.16	4	L
			ed water		water \rightarrow EO water (pH 2.4								
					to 2.7, 1,150 mV ORP, 50	15							
					ppm free CL), chilled to								
					4C								_
A52	USA	Chilling	Acetic	spray	control- distilled		HC	HCR	Conc	-0.04	0.13	4	L
			acid		water→2% Acetic Acid								
					sprayed 15 s at 85 psi (100	15							
					oscillations per min) using								
		<u></u>			a carcass washer					0.00	0.1.1		
A52	USA	Chilling	Trisodium	spray	control-distilled		HC	HCR	Conc	0.03	0.14	4	L
			phosphate		water $\rightarrow 10\%$ TSP sprayed	1.7							
					15 s at 85 psi (100	15							
					oscillations per min) using								
A52	USA	Chilling	Sodium		a carcass washer		НС	HCR	Carra	-0.04	0.18	4	T
A52	USA	Chilling		spray	control- distilled		HC	HCK	Conc	-0.04	0.18	4	L
			hypochlor ite		water \rightarrow 20 ppm sodium								
			ne		hypochlorite, sprayed 15 s at 85 psi (100 oscillations	15							
					per min) using a carcass								
					washer								
A52	USA	Chilling	Ozonated	spray	control- distilled		HC	HCR	Conc	-0.28	0.16	4	L
1132	USIA	Cinning	water	spray	water $\rightarrow 10 \text{ mg/L ozonated}$		ne	nen	Cone	-0.20	0.10	-	
			water		water OZ] sprayed 15 s at								
					85 psi (100 oscillations	15							
					per min) using a carcass								
					washer								
A52	USA	Chilling	Electrolyz	spray	basic electrolyzed	~1	WC	WCR	Conc	2.11	0.39	4	L
			ed water	\rightarrow	oxidizing water spray	<1							

A52	USA	Chilling	(basic + acidic) Acetic acid + sodium hypochlor	immer sion spray → immer sion	treatment (25 mL basic EO water (pH 11.6, -795 mV ORP), followed by immersion in acidic EO water (pH 2.4 to 2.7, 1,150 mV ORP, 50 ppm free CL) 25 mL of 2% Acetic acid spray, followed by immersion in 50 ppm sodium hypochlorite	<1	WC	WCR	Conc	2	0.54	4	L
A52	USA	Chilling	ite Trisodium phosphate + sodium hypochlor ite	$\begin{array}{c} \text{spray} \\ \rightarrow \\ \text{immer} \\ \text{sion} \end{array}$	25 mL of 10% TSP spray, followed by immersion in 50 ppm sodium hypochlorite	<1	WC	WCR	Conc	1.95	0.44	4	L
A60	USA	Chilling	Visible fecal or ingesta	immer sion	no fecal → fecal contamination during immersion chilling	2700	HC	HCR	Conc	0.1	0.10	24	U
A63	USA	Chilling	Peracetic Acid	immer sion	Post-evscreation dip at 400 ppm followed by immersion in stationary chill tank at 25 ppm	60	WC	WCR	Conc	0.785	0.13	10	U
A63	USA	Chilling	Peracetic Acid	immer sion	Post-evscreation dip at 400 ppm followed by immersion in stationary chill tank at 45 ppm	60	WC	WCR	Conc	0.518	0.17	10	U
A63	USA	Chilling	Peracetic Acid	immer sion	Post-evscreation dip at 600 ppm followed by immersion in stationary chill tank at 25 ppm	60	WC	WCR	Conc	0.492	0.18	10	U
A63	USA	Chilling	Peracetic Acid	immer sion	Post-evscreation dip at 600 ppm followed by	60	WC	WCR	Conc	0.782	0.13	10	U

					immersion in stationary chill tank at 45 ppm								
A27	USA	Post- Chill	Portable water	immer sion	Portable water	20	WC	WCR	Conc	0.6	0.41	10	L
A27	USA	Post- Chill	Chlorine	immer sion	Portable water $\rightarrow 0.004\%$ (40 ppm) Chlorine	20	WC	WCR	Conc	0.2	0.42	10	L
A27	USA	Post- Chill	Peracetic acid	immer sion	Portable water $\rightarrow 0.04\%$ (400 ppm) peracetic acid (PAA)	20	WC	WCR	Conc	1.4	0.41	10	L
A27	USA	Post- Chill	Peracetic acid	immer sion	Portable water $\rightarrow 0.1\%$ (1000 ppm) peracetic acid (PAA)	20	WC	WCR	Conc	1.5	0.40	10	L
A27	USA	Post- Chill	Lysozyme	immer sion	Portable water $\rightarrow 0.1\%$ (1000 ppm) lysozyme	20	WC	WCR	Conc	0.2	0.40	10	L
A27	USA	Post- Chill	Lysozyme	immer sion	Portable water $\rightarrow 0.5\%$ (5000 ppm) lysozyme	20	WC	WCR	Conc	0.3	0.39	10	L
A52	USA	Post- Chill	Portable water	immer sion	No treatment \rightarrow distilled water, chilled to 4C	<1	WC	WCR	Conc	0.35	0.63	4	L
A52	USA	Post- Chill	Electrolyz ed water	immer sion	control- distilled water→EO water (pH 2.4 to 2.7, 1,150 mV ORP, 50 ppm free CL), chilled to 4C- (7 days post-chill after immersion chill with chemical antimicrobials)	<1	WC	WCR	Conc	0.63	0.56	4	L
A52	USA	Post- Chill	Acetic acid	immer sion	control- distilled water→2% acetic acid to 4C- 7 days post-chill after immersion chill with chemical antimicrobials	<1	WC	WCR	Conc	0.63	0.56	4	L
A52	USA	Post- Chill	Trisodium phosphate	immer sion	control- distilled water→10% TSP 7 days post-chill after immersion chill with chemical antimicrobials	<1	WC	WCR	Conc	0.63	0.56	4	L

A52	USA	Post-	Sodium	immer	control- distilled		WC	WCR	Conc	-0.07	0.65	4	L
		Chill	hypochlor ite	sion	water \rightarrow 20 ppm sodium hypochlorite- (chlorine) 7								
			ne		days post-chill after	<1							
					immersion chill with								
					chemical antimicrobials								
A52	USA	Post-	Ozonated	immer	control- distilled		WC	WCR	Conc	0.63	0.56	4	L
		Chill	water	sion	water $\rightarrow 10 \text{ mg/L}$ ozonated								
				~~~~	water (OZ) ozone 7 days								
					post-chill after immersion	<1							
					chill with chemical								
					antimicrobials								
A52	USA	Post-	Portable	spray	No treatment $\rightarrow$ distilled	15	HC	HCR	Conc	1.65	0.21	4	L
		Chill	water		water, chilled to 4C	15							
A52	USA	Post-	Electrolyz	spray	control- distilled		WC	HCR	Conc	-0.59	0.20	4	L
		Chill	ed water		water $\rightarrow$ EO water (pH 2.4								
					to 2.7, 1,150 mV ORP, 50								
					ppm free CL) sprayed 15 s								
					at 85 psi (100 oscillations	15							
					per min) using a carcass								
					washer 7 days post-chill								
					after spray chill with								
					chemical antimicrobials								
A52	USA	Post-	Acetic	spray	control- distilled		WC	HCR	Conc	0.66	0.18	4	L
		Chill	acid		water→2% Acetic acid								
					sprayed 15 s at 85 psi (100								
					oscillations per min) using	15							
					a carcass washer- 7 days	10							
					post-chill after spray chill								
					with chemical								
					antimicrobials								
A52	USA	Post-	Trisodium	spray	control- distilled		WC	HCR	Conc	0.52	0.21	4	L
		Chill	phosphate		water $\rightarrow 10\%$ TSP sprayed	15							
					15 s at 85 psi (100	10							
					oscillations per min) using								

					a carcass washer- 7 days post-chill after spray chill with chemical antimicrobials								
A52	USA	Post- Chill	Sodium hypochlor ite	spray	control- distilled water→20 ppm sodium hypochlorite, sprayed 15 s at 85 psi (100 oscillations per min) using a carcass washer- 7 days post-chill after spray chill with chemical antimicrobials	15	WC	HCR	Conc	-0.29	0.19	4	L
A52	USA	Post- Chill	Ozonated water	spray	control- distilled water→10 mg/L ozonated water OZ] sprayed 15 s at 85 psi (100 oscillations per min) using a carcass washer- 7 days post-chill after spray chill with chemical antimicrobials	15	WC	HCR	Conc	-0.05	0.20	4	L
A52	USA	Post- Chill	Electrolyz ed water (basic + acidic)	spray → immer sion	basic electrolyzed oxidizing water spray treatment (25 mL basic EO water (pH 11.6, -795 mV ORP), followed by immersion in acidic EO water (pH 2.4 to 2.7, 1,150 mV ORP, 50 ppm free CL)	<1	WC	WCR	Conc	3.81	0.42	4	L
A52	USA	Post- Chill	Acetic acid + sodium hypochlor ite	$\begin{array}{c} \text{spray} \\ \rightarrow \\ \text{immer} \\ \text{sion} \end{array}$	25 mL of 2% Acetic acid spray, followed by immersion in 50 ppm sodium hypochlorite	<1	WC	WCR	Conc	3.13	0.45	4	L

A52	USA	Post- Chill	Trisodium phosphate + sodium hypochlor ite	$\begin{array}{l} \text{spray} \\ \rightarrow \\ \text{immer} \\ \text{sion} \end{array}$	25 mL of 10% TSP spray, followed by immersion in 50 ppm sodium hypochlorite	<1	WC	WCR	Conc	2.67	0.39	4	L
A58	USA	Post- Chill	Binary Ionization Technolo gy (BIT) spray	spray	BIT spray (30 mL/min, 15,000 V) for 60 s. Control carcasses were sprayed with sterile water for 60 s, also at 30 mL/min.	60	WC	CCS	Conc	1.17	0.49	10	U
A58	USA	Post- Chill	Binary Ionization Technolo gy (BIT) spray	spray	BIT spray (30 mL/min, 15,000 V), 4 intervals of 15 s with 5 to 10 s between each interval. Control carcasses were sprayed with sterile water for 60 s, also at 30 mL/min.	60	WC	CCS	Conc	1.93	0.38	10	U
A58	USA	Post- Chill	Binary Ionization Technolo gy (BIT) spray	spray	BIT spray (30 mL/min, 15,000 V), 3 intervals of 12 s and sprayed with air for 12 to15 s between each interval. Control carcasses were sprayed with sterile water for 60 s, also at 30 mL/min.	60	WC	CCS	Conc	3.25	0.66	10	U
A59	Turke v	Post- Chill	Portable water	immer sion	Control- sterile tap water	15	BS	CCS	Conc	0.1	0.09	3	L
A59	Turke y	Post- Chill	Acidified sodium chlorite	immer sion	Control- sterile tap water→0.1% ASC- Acidified using citric acid	15	BS	CCS	Conc	1.3	0.07	3	L
A59	Turke y	Post- Chill	Trisodium phosphate	immer sion	Control- sterile tap water→10.0% TSP	15	BS	CCS	Conc	1.4	0.07	3	L

A59	Turke	Post- Chill	Trisodium phosphate	immer sion	Control- sterile tap water $\rightarrow 0.1\%$ ASC		BS	CCS	Conc	1.5	0.07	3	L
	У	Cinii	+ Acidified	51011	followed by 10.0% TSP	15							
			sodium chlorite										
A59	Turke y	Post- Chill	Trisodium phosphate + Acidified sodium chlorite	immer sion	Control- sterile tap water→10.0% TSP followed by 0.1% ASC	15	BS	CCS	Conc	1.5	0.07	3	L
A59	Turke y	Post- Chill	Portable water	immer sion	Control- sterile tap water + 1 day post-chill storage	15	BS	CCS	Conc	0.2	0.15	3	L
A59	Turke y	Post- Chill	Acidified sodium chlorite	immer sion	Control- sterile tap water $\rightarrow 0.1\%$ ASC- Acidified using citric acid + 1 day post-chill storage	15	BS	CCS	Conc	1.4	0.11	3	L
A59	Turke y	Post- Chill	Trisodium phosphate	immer sion	Control- sterile tap water $\rightarrow$ 10.0% TSP + 1 day post-chill storage	15	BS	CCS	Conc	1.9	0.12	3	L
A59	Turke y	Post- Chill	Trisodium phosphate + Acidified sodium chlorite	immer sion	Control- sterile tap water→0.1% ASC followed by 10.0% TSP + 1 day post-chill storage	15	BS	CCS	Conc	1.6	0.11	3	L
A59	Turke y	Post- Chill	Trisodium phosphate + Acidified sodium chlorite	immer sion	Control- sterile tap water→10.0% TSP followed by 0.1% ASC + 1 day post-chill storage	15	BS	CCS	Conc	1.5	0.11	3	L
A59	Turke y	Post- Chill	Portable water	immer sion	Control- sterile tap water + 3 day post-chill storage	15	BS	CCS	Conc	0.3	0.10	3	L

A59	Turke	Post-	Acidified	immer	Control- sterile tap		BS	CCS	Conc	1.6	0.10	3	L
	у	Chill	sodium	sion	water→0.1% ASC-	15							
			chlorite		Acidified using citric acid	15							
					+ 3 day post-chill storage								
A59	Turke	Post-	Trisodium	immer	Control- sterile tap		BS	CCS	Conc	2.4	0.09	3	L
	У	Chill	phosphate	sion	water $\rightarrow 10.0\%$ TSP + 3	15							
1.50		D.	II		day post-chill storage		DC		G	1.5	0.00	2	Ţ
A59	Turke	Post-	Trisodium	immer	Control- sterile tap		BS	CCS	Conc	1.7	0.09	3	L
	У	Chill	phosphate	sion	water $\rightarrow 0.1\%$ ASC								
			+ Acidified		followed by 10.0% TSP + 3 day post-chill storage	15							
			sodium		5 day post-chin storage								
			chlorite										
A59	Turke	Post-	Trisodium	immer	Control- sterile tap		BS	CCS	Conc	1.9	0.09	3	L
	у	Chill	phosphate	sion	water→10.0% TSP								
			+		followed by 0.1% ASC +	15							
			Acidified		3 day post-chill storage	15							
			sodium										
			chlorite										
A59	Turke	Post-	Portable	immer	Control- sterile tap water	15	BS	CCS	Conc	0.3	0.12	3	L
1.50	<u>y</u>	Chill	water	sion	+ 5 day post-chill storage		DC		9	1.7	0.10	-	-
A59	Turke	Post-	Acidified	immer	Control- sterile tap		BS	CCS	Conc	1.5	0.12	3	L
	У	Chill	sodium chlorite	sion	water $\rightarrow 0.1\%$ ASC- Acidified using citric acid	15							
			cilionte		+ 5 day post-chill storage								
A59	Turke	Post-	Trisodium	immer	Control- sterile tap		BS	CCS	Conc	2.6	0.13	3	L
1109	y	Chill	phosphate	sion	water $\rightarrow 10.0\%$ TSP + 5	15	25	005	cone	2.0	0.12	5	-
	5		FF		day post-chill storage								
A59	Turke	Post-	Trisodium	immer	Control- sterile tap		BS	CCS	Conc	1.7	0.13	3	L
	У	Chill	phosphate	sion	water→0.1% ASC								
			+		followed by 10.0% TSP +	15							
			Acidified		5 day post-chill storage	15							
			sodium										
			chlorite										

A59	Turke y	Post- Chill	Trisodium phosphate + Acidified sodium chlorite	immer sion	Control- sterile tap water→10.0% TSP followed by 0.1% ASC + 5 day post-chill storage	15	BS	CCS	Conc	1.6	0.13	3	L
A9	Austr alia	Post- Chill	Acidified sodium chlorite	immer sion	Control- No treatment → 900 mg/kg sodium chlorite, pH 2.5–2.6, acidified using citric acid	20	WC	WCR	Conc	0.05	0.14	30	L
A21	USA	Scalding	Additiona l washers	brush	prescald brush washer (conventional)	<1	WC	WCR	Prev	-4	0.00	5	L
A31	USA	Scalding	High temperatu re	immer sion	24 C during the first 40-s scalding tank in a three- tank scalding system. Control temperature in first tank is 57 C.	40	WC	WCR	Prev	0	0.00	24	L
A32	USA	Scalding	High temperatu re	immer sion	Soft scald (50°C for 90 s) at pH of 11.0 $\rightarrow$ Hard scald (56.6°C for 45 s) at pH of 11.0	45	WC	WCR	Prev	20	0.00	50	L
A32	USA	Scalding	High pH + High Temperat ure	immer sion	High pH (NaOH) Soft scald (50°C for 90 s) at pH of 11.0→High pH (NaOH) Hard scald (56.6°C for 45 s) at pH of 11.1	45	WC	WCR	Prev	13	0.00	50	L
A38	USA	Scalding	Acidic copper sulfate	immer sion	pH 2.0, with 2.0 mg/L of copper sulfate in 2 mins countercurrent flow scalder	120	WC	WCR	Prev	30	0.00	10	L
A38	USA	Scalding	Acidic copper sulfate	immer sion	pH 2.0, with 2.0 mg/L of copper sulfate in 2 mins countercurrent flow scalder, then also 10-12	132	WC	WCR	Prev	5	0.00	10	L

					sec post-pluck dip application								
A5	USA	Scalding	High pH	immer sion	↑pH using lime slurry (calcium hydroxide): Control pH(6.88) →high pH (9.89)	207	WC	WCR	Prev	17.8	0.00	30	L
A61	Cana da	Scalding	High Temperat ure	Immer sion	From 225 birds/mins speed, 3 scald tanks, temperature 53.33-57.22, scalding time 90 secs, pluck for 35 mins to 230 birds/min speed, 2 scald tanks, temperature 50- 61.7, scald time 80 secs, pluck for 26 mins	<1	WC	WCR	Prev	6.1	0.00	40	L
A2	USA	Scalding	Chlorine dioxide	spray	portable water→50 ppm of ClO2	<1	WC	WCR	Prev	33.333 3333	0.00	10	L
A21	USA	Scalding	Additiona l washers	spray	post-defeathering spray washer	<1	WC	WCR	Prev	8	0.00	5	L
A33	USA	Scalding	Additiona 1 washers	spray	20 - 50 ppm chlorine	<1	WC	WCR	Prev	8	0.00	75	U
A5	USA	Scalding	Chlorine + high pH	immer sion	High chlorine dip (83.3 mg/kg) after normal pH scalding (mean pH 6.04) →High chlorine dip (83.3 mg/kg) after high pH scald (mean pH 9.89)	5	WC	WCR	Prev	-51.25	0.00	30	L
A30	USA	Eviscera tion	Portable water	immer sion	Tap water dipping (TWD) (25 C, 45 s) followedby second TWD (25 C, 45 s)	90	WC	CCS	Prev	0	0.00	15	L
A30	USA	Eviscera tion	Trisodium phosphate	immer sion	Tap water dipping (TWD) (25 C, 45 s) followedby second TWD (25 C, 45 s) $\rightarrow$ Tap Water Dip (45 secs) followed by 8%	90	WC	CCS	Prev	40	0.00	15	L

					(wt/vol) trisodium phosphate dipping at 25 C (45 secs) -(TWD/TSP)								
A30	USA	Eviscera tion	High temperatu re	immer sion	Tap water dipping (TWD) (25 C, 45 s) followedby second TWD (25 C, 45 s) $\rightarrow$ TWD (45 secs) followed by hot water dipping at 71 C (45 secs) (TWD/HWD)	90	WC	CCS	Prev	20	0.00	15	L
A30	USA	Eviscera tion	Trisodium phosphate + High temperatu re Dip	immer sion	Tap water dipping (TWD) (25 C, 45 s) followedby second TWD (25 C, 45 s) $\rightarrow$ 8% trisodium phosphate dipping at 25 C (45 secs) followed by hot water dipping at 71 C (45 secs) (TSP/HWD)	90	WC	CCS	Prev	53.3	0.00	15	L
A30	USA	Eviscera tion	Brushing	brush + immer sion	Brushing when Tap Water Dip (25 C, 45 s) followed by TWD (25 C, 45 s) with intermittent manual brushing (5 s on/5 s off).	90	WC	CCS	Prev	27	0.00	30	L
A30	USA	Eviscera tion	Brushing +Hot water dip	brush + immer sion	Brushing when TSP dipping (25 C, 45 s) followed by HWD (71 C, 45 s) with intermittent manual brushing (5 s on/5 s off)	90	WC	CCS	Prev	3	0.00	30	L
A33	USA	Eviscera tion	Additiona l washers	spray	20 - 50 ppm chlorine	<1	WC	WCR	Prev	9	0.00	75	U
A16	Brazil	IOCW	High pressure	spray	Trimming using a knife→High pressure spray (HPS)	5	WC	WCR	Prev	0.1242 236	0.00	805	U

A16	Brazil	IOCW	High pressure	spray	High pressure spray (HPS), Carcass with NO visible gastrointestinal	5	WC	WCR	Prev	- 1.6560 51	0.00	785	U
A16	Brazil	IOCW	High pressure	spray	High pressure spray (HPS), Carcass WITH visible gastrointestinal	5	WC	WCR	Prev	- 0.7643 312	0.00	785	U
A21	USA	IOCW	Additiona 1 washers	spray	pre IOBW spray washer	<1	WC	WCR	Prev	12	0.00	5	L
A21	USA	IOCW	Additiona 1 washers	brush	post IOBW brush washer	<1	WC	WCR	Prev	-4	0.00	5	L
A33	USA	IOCW	Additiona 1 washers	spray	20 - 50 ppm chlorine (IOBW 1)	<1	WC	WCR	Prev	5	0.00	75	U
A33	USA	IOCW	Additiona 1 washers	spray	20 - 50 ppm chlorine (IOBW 2)	<1	WC	WCR	Prev	4	0.00	75	U
A40	USA	Prechill	Acidified sodium chlorite	proces s realig nment	offline reprocessing of visibly contaminated carcasses with visble fecal and ingesta→Continous online processing of visibly contaminated carcasses with visble fecal and ingesta using: spray 1,100 ppm sodium chlorite and 9,000 ppm citric acid. pH 2.5 +/- 0.05, temperature 14 to 18C, time 15 sec, volume sprayed per carcass 147 to 237ml	<1	WC	WCR	Prev	21.6	0.00	107 0	L
A55	USA	Prechill	NaOH	immer sion	High pH 8.5 (using NaOH) to mimic TSP pH	5	WC	EWC	Prev	-16	0.00	50	L
A55	USA	Prechill	Trisodium phosphate	immer sion	High pH 8.5 (using NaOH)→TSP treatment pH 8.5	5	WC	EWC	Prev	14	0.00	50	L

A55	USA	Prechill	TSP + HCl	immer sion	TSP treatment -pH 8.5→Neutral (pH 7.0) adjusted TSP dip using HCl	5	WC	EWC	Prev	-4	0.00	50	L
A20	USA	Prechill	Cetylpyri dinium chloride	spray	cetylpyridinium chloride	<1	WC	WCR	Prev	11.29	0.00	15	U
A21	USA	Prechill	Additiona 1 washers	spray	Pre-chill spray washer	<1	WC	WCR	Prev	8	0.00	5	L
A29	USA	Prechill	Chlorine	immer sion	Control- 500ml water drench→500-mL solution containing 500 mg/kg of chlorine (Residual chlorine = 4.33 mg/kg)	60	WC	WCR	Prev	0	0.00	26	U
A29	USA	Prechill	Chlorine	immer sion	Control- 500ml water drench→500-mL solution containing 500 mg/kg of chlorine (pH adjusted to 7 so as to increase Residual chlorine = 8.18 mg/kg)	60	WC	WCR	Prev	-4	0.00	21	U
A33	USA	Prechill	Chlorine dioxide	spray	acidified 500 to 1,200 ppm sodium chlorite using citric acid to pH 2.5 to 2.9	<1	WC	WCR	Prev	8	0.00	75	U
A33	USA	Prechill	Trisodium phosphate	spray	8 to 12% TSP	<1	WC	WCR	Prev	7	0.00	75	U
A18	USA	Chilling	Immersio n→air chilling	immer sion → air chillin g	120 min in an air-chilling room in two stages, with temperatures of -7.7 to - 5.5°C and -4.4 to -1.1°C, respectively.→three-stage countercurrent immersion chiller for a total time of 85 min. 1st stage water at 17.2°C, second stage water at 5.6 to 6.7°C, and	5100	WC	WCR	Prev	6	0.00	150	L

					third stage water at -1.1 to 0°C. Chlorine in chiller approximately 40 ppm.								
A20	USA	Chilling	Immersio n→air chilling	immer sion → air chillin g	150 mins at 1.0 m/s cold (1.0 +/- 0.2 C) after disinfection with cetylpyridinium chloride $\rightarrow$ 50 mins; Total chlorine concentration in the chilling water (50- 90 ppm), free chlorine (0.4- 0.8 ppm), water temperature 0.5 +/- 0.4 C	3000	WC	WCR	Prev	-12.91	0.00	15	U
A23	USA	Chilling	Immersio n→air chilling	immer sion → air chillin g	0.5 to 1.1°C water with 5 mg/kg of free chlorine with birds exposed to air agitation during the first 25 min. total immersion time 80 min	4800	WC	WCR	Prev	-31	0.00	10	U
A23	USA	Chilling	Air- immersio n/air combi	$air \rightarrow$ immer sion- air combi	air velocity 3.6 m/min, temperature of 0°C and RH of 72%, chilling time 120 min	7200	WC	WCR	Prev	-7	0.00	10	U
A23	USA	Chilling	Immersio n- Imersion/ air combi	immer sion → Immer sion- air combi	Step 1: 4 tanks with temp at 8, 5, 5, and 2°C, respectively. Time 20 s (1st tank), 40 s (2nd tank), 80 s (3rd tank), and 80 s (4th tank). Drain time between tanks 30, 60, and 60 s. Step 2: air chill- velocity 3.6 m/min, 0°C and RH of 72%, for 120 mins	7570	WC	WCR	Prev	-38	0.00	10	U

A33	USA	Chilling	Chlorine	immer	20 to 50 ppm chlorinated	<1	WC	WCR	Prev	-2	0.00	75	U
				sion	water, pH 6.5 to 7.0	<b>N</b>							
A33	USA	Chilling	Chlorine	immer	combination of ClO2		WC	WCR	Prev	-10	0.00	75	U
			dioxide	sion	(prepared by acidifying 50								
					to 150 ppm sodium								
					chlorite with citric acid to	<1							
					pH 2.8 to 3.2) and 20 to 50								
					ppm chlorinated water								
					(chiller was operated at								
					pH 6.5 to 7.0)								
A33	USA	Chilling	Chlorine	spray	At chiller exit- 20 to 50	<1	WC	WCR	Prev	0	0.00	75	U
					ppm chlorinated water	~1							<u> </u>
A50	USA	Chilling	Visible	immer	chilled without visible		WC	WCR	Prev	0.36	0.00	270	U
			fecal or	sion	ingesta→chilled with	<1							
			ingesta		visible ingesta								
A57	USA	Chilling	Peracetic	immer	30 ppm chlorine→85 ppm		WC	WCR	Prev	34.93	0.00	100	L
			acid +	sion	of PAHP (peracetic acid	<1							
			hydrogen		and hydrogen peroxide)								
1 0		~	peroxide						_	10.00			
A60	USA	Chilling	Visible	immer	no fecal $\rightarrow$ fecal		HC	HCR	Prev	-18.33	0.00	24	U
			fecal or	sion	contamination during	2700							
			ingesta		immersion chilling				_				
A61	Cana	Chilling	Immersio	immer	From dry air chilling at -3		WC	WCR	Prev	-42.5	0.00	40	L
	da		n→air	sion	to 2 C, for 90 mins, with								
			chilling	$\rightarrow$ air	Cetylpyridinium chloride,								
				chillin	and water layover of	90							
				g	35L/min to a crossflow								
					immersion chilling, tem 1-								
					3 C for 90 minswith no								
1 1	~	<u></u>			chemical decontaminant				-		0.00	10	<u> </u>
A61	Cana	Chilling	Immersio	immer	From dry air chilling at		WC	WCR	Prev	-5.1	0.00	40	L
	da		n→air	sion	0,6 C, for 107 mins, with	110							
			chilling	$\rightarrow$ air	Cetylpyridinium chloride,	110							
				chillin	and water layover of 110								
				g	L/min to a counterflow								

					immersion chilling, tem 1 C for 110 mins with Peracetic acid								
A14	UK	Postchill ing	Dry ice	spray	Dry ice blast (liquid CO2) for 15 secs	15	WC	CCS	Prev	66.6	0.00	18	U
A14	UK	Postchill ing	Dry ice	immer sion	Dry ice immersion (liquid CO2) for 15 secs	15	WC	CCS	Prev	44.4	0.00	18	U
A33	USA	Postchill ing	Chlorine	spray	post-chill wash- 20 to 50 ppm chlorinated	<1	CC	CCR	Prev	6	0.00	75	U
A33	USA	Postchill ing	Chlorine	spray	dropped carcass wash- 20 to 50 ppm chlorinated water	<1	WC	WCR	Prev	8	0.00	75	U
A33	USA	Postchill ing	Chlorine	spray	dropped product wash- 20 to 50 ppm chlorinated water	<1	CC	CCR	Prev	3	0.00	75	U
A33	USA	Postchill ing	Acidified sodium chlorite	immer sion	Product dip- acidified 500 to 1,200 ppm sodium chlorite with citric acid to pH 2.5 to 2.9	<1	CC	CCR	Prev	28	0.00	75	U
A58	USA	Postchill ing	Binary Ionization Technolo gy (BIT) spray	spray	BIT- administered at 10,000 V sprayed for 4 secs. Control sprayed with sterile water for 5 sec	4	WC	WCR	Prev	5	0.00	20	U
A58	USA	Postchill ing	Binary Ionization Technolo gy (BIT) spray	spray	BIT- administered at 10,000 V sprayed for 8 secs. Control sprayed with sterile water for 5 sec	8	WC	WCR	Prev	15	0.00	20	U
A58	USA	Postchill ing	Binary Ionization Technolo gy (BIT) spray	spray	BIT- administered at 10,000 V. sprayed 3 times for 4 s with 4 s between pulses. Control sprayed with sterile water for 5 sec	12	WC	WCR	Prev	15	0.00	20	U

A9	Austr	Postchill	Acidified	immer	Control- No treatment $\rightarrow$		WC	WCR	Prev	80	0.00	30	L
	alia	ing	sodium	sion	900 mg/kg sodium	20							
		-	chlorite		chlorite, pH 2.5–2.6,	20							
					acidified using citric acid								

Exposed part: WC- Whole Carcass CC- Carcass cuts HC- Half carcass BS- Breast skin Type of analyzed sample WCR- Whole carcass rinse CCR- Carcass cuts rinse CCS- Carcass cuts swab HCR- Half carcass rinse EWC- Enriched whole carcass RoB- Risk of Bias L-Low RoB U- Unclear RoB

A2	(Berrang <i>et al.</i> , 2011)
A5	(Berrang, Windham and Meinersmann, 2011)
A6	
A9	(Sexton <i>et al.</i> , 2007)
A10	(Huezo <i>et al.,</i> 2007)
A14	(Uyarcan and Kayaardı, 2018)
A16	(Giombelli <i>et al.,</i> 2015)
A18	(Sanchez <i>et al.,</i> 2002)
A20	(Zhang <i>et al.</i> , 2011)
A21	(Berrang and Bailey, 2009)
A23	(Demirok <i>et al.</i> , 2013)
A24	(Whyte <i>et al.</i> , 2001)
A25	(Northcutt <i>et al.,</i> 2007)
A27	(Nagel <i>et al.</i> , 2013)
A29	(Bartenfeld <i>et al.,</i> 2014)
A30	(Singh <i>et al.,</i> 2017)
A31	(Cason, Buhr and Hinton, 2001)
A32	(McKee, Townsend and Bilgili, 2008)
A33	(Stopforth <i>et al.</i> , 2007)
A36	(Schambach et al., 2014)
A38	(Russell, 2008)
A40	(Kemp <i>et al.</i> , 2001)
A42	(Russell and Axtell, 2005)
A45	(Northcutt <i>et al.,</i> 2008)
<mark>A49</mark>	(L. J. Bauermeister <i>et al.,</i> 2008)
A50	(Bilgili <i>et al.,</i> 2002)
A52	(Fabrizio <i>et al.,</i> 2002)
A54	(Northcutt <i>et al.,</i> 2005)
A55	(Bourassa et al., 2005)
A56	(Yang, Li and Slavik, 1998)
A57	(Laura J. Bauermeister <i>et al.,</i> 2008)
A58	(Higgins <i>et al.</i> , 2005)
A59	(Özdemir and Pamuk, 2006)
A60	(Smith, Cason and Berrang, 2005)
A61	(Boubendir et al., 2021)
A62	(Kure et al., 2020)
A63	(Feye et al., 2019)

#### List of References

- 1. Bartenfeld, L.N. *et al.* (2014) 'The effect of high-level chlorine carcass drench on the recovery of Salmonella and enumeration of bacteria from broiler carcasses', *Poultry Science*, 93(11), pp. 2893–2899. Available at: https://doi.org/10.3382/ps.2014-04051.
- 2. Bauermeister, L. J. *et al.* (2008) 'The microbial and quality properties of poultry carcasses treated with peracetic acid as an antimicrobial treatment', *Poultry Science*, 87(11), pp. 2390–2398. Available at: https://doi.org/10.3382/ps.2008-00087.
- 3. Bauermeister, Laura J. *et al.* (2008) 'Validating the Efficacy of Peracetic Acid Mixture as an Antimicrobial in Poultry Chillers', *Journal of Food Protection*, 71(6), pp. 1119–1122. Available at: https://doi.org/10.4315/0362-028X-71.6.1119.
- 4. Berrang, M.E. *et al.* (2011) 'Application of chlorine dioxide to lessen bacterial contamination during broiler defeathering', *Journal of Applied Poultry Research*, 20(1), pp. 33–39. Available at: https://doi.org/10.3382/japr.2010-00178.
- Berrang, M.E. and Bailey, J.S. (2009) 'On-line brush and spray washers to lower numbers of Campylobacter and Escherichia coli and presence of Salmonella on broiler carcasses during processing', *Journal of Applied Poultry Research*, 18(1), pp. 74–78. Available at: https://doi.org/10.3382/japr.2008-00067.
- Berrang, M.E., Windham, W.R. and Meinersmann, R.J. (2011) 'Campylobacter, Salmonella, and Escherichia coli on broiler carcasses subjected to a high pH scald and low pH postpick chlorine dip', *Poultry Science*, 90(4), pp. 896–900. Available at: https://doi.org/10.3382/ps.2010-00900.
- Bilgili, S.F. *et al.* (2002) 'Visible ingesta on prechill carcasses does not affect the microbiological quality of broiler carcasses after immersion chilling', *Journal of Applied Poultry Research*, 11(3), pp. 233–238. Available at: https://doi.org/10.1093/japr/11.3.233.
- 8. Bourassa, D. V. *et al.* (2005) 'Recovery of salmonellae following pH adjusted preenrichment of broiler carcasses treated with trisodium phosphate', *Poultry Science*, 84(3), pp. 475–478. Available at: https://doi.org/10.1093/ps/84.3.475.
- 9. Cason, J.A., Buhr, R.J. and Hinton, A. (2001) 'Unheated water in the first tank of a three-tank broiler scalder', *Poultry Science*, 80(11), pp. 1643–1646. Available at: https://doi.org/10.1093/ps/80.11.1643.
- 10. Centre for Reviews and Dissemination (2009) *Systematic reviews: CRD's guidance for undertaking reviews in health care.* York.
- Demirok, E. *et al.* (2013) 'Quality and safety of broiler meat in various chilling systems', *Poultry Science*, 92(4), pp. 1117–1126. Available at: https://doi.org/10.3382/ps.2012-02493.
- Fabrizio, K.A. *et al.* (2002) 'Comparison of Electrolyzed Oxidizing Water with Various Antimicrobial Interventions to Reduce Salmonella Species on Poultry', *Poultry Science*, 81, pp. 1598–1605. Available at: https://doi.org/10.1016/j.meatsci.2004.04.013.
- Giombelli, A. *et al.* (2015) 'High pressure spray with water shows similar efficiency to trimming in controlling microorganisms on poultry carcasses', *Poultry Science*, 94(10), pp. 2589–2595. Available at: https://doi.org/10.3382/ps/pev235.
- 14. Higgins, S.E. *et al.* (2005) 'Application of ionized reactive oxygen species for disinfection of carcasses, table eggs, and fertile eggs', *Journal of Applied Poultry*

*Research*, 14(4), pp. 716–720. Available at: https://doi.org/10.1093/japr/14.4.716.

- Huezo, R. *et al.* (2007) 'Effect of Dry Air or Immersion Chilling on Recovery of Bacteria from Broiler Carcasses', *Journal of Food Protection*, 70(8), pp. 1829–1834. Available at: https://doi.org/10.4315/0362-028X-70.8.1829.
- 16. Kemp, G.K. *et al.* (2001) 'Continuous online processing of fecal- and ingestacontaminated poultry carcasses using an acidified sodium chlorite antimicrobial intervention.', *Journal of Food Protection*, 64(6), pp. 807–12. Available at: https://doi.org/10.1016/j.bbr.2004.08.018.
- McKee, S.R., Townsend, J.C. and Bilgili, S.F. (2008) 'Use of a scald additive to reduce levels of Salmonella Typhimurium during poultry processing', *Poultry Science*, 87(8), pp. 1672–1677. Available at: https://doi.org/10.3382/ps.2008-00061.
- Moher, D. *et al.* (2015) 'Preferred reporting items for systematic review and metaanalysis protocols (PRISMA-P) 2015 statement', *Systematic Reviews*, 4(1), pp. 1–9. Available at: https://doi.org/10.1186/2046-4053-4-1.
- 19. Nagel, G.M. *et al.* (2013) 'Salmonella and Campylobacter reduction and quality characteristics of poultry carcasses treated with various antimicrobials in a post-chill immersion tank', *International Journal of Food Microbiology*, 165(3), pp. 281–286. Available at: https://doi.org/10.1016/j.ijfoodmicro.2013.05.016.
- 20. Northcutt, J.K. *et al.* (2005) 'Microbiological impact of spray washing broiler carcasses using different chlorine concentrations and water temperatures.', *Poultry science*, 84(10), pp. 1648–1652.
- 21. Northcutt, J.K. *et al.* (2007) 'Recovery of bacteria from broiler carcasses after spray washing with acidified electrolyzed water or sodium hypochlorite solutions', *Poultry Science*, 86(10), pp. 2239–2244. Available at: https://doi.org/10.1093/ps/86.10.2239.
- Northcutt, J.K. *et al.* (2008) 'Microbial recovery from genetically featherless broiler carcasses after forced cloacal fecal expulsion', *Poultry Science*, 87(11), pp. 2377–2381. Available at: https://doi.org/10.3382/ps.2007-00426.
- 23. Özdemir, H. and Pamuk, S. (2006) 'Acidified Sodium Chlorite, Trisodium Phosphate and Populations of Salmonella Typhimurium and Staphylococcus Aureus on Chicken-Breats Skin', *Journal of Food Processing and Preservation*, 30(2006), pp. 110–117.
- 24. Russell, S.M. (2008) 'The effect of an acidic, copper sulfate-based commercial sanitizer on indicator, pathogenic, and spoilage bacteria associated with broiler chicken carcasses when applied at various intervention points during poultry processing', *Poultry Science*, 87(7), pp. 1435–1440. Available at: https://doi.org/10.3382/ps.2007-00339.
- 25. Russell, S.M. and Axtell, S.P. (2005) 'Monochloramine versus sodium hypochlorite as antimicrobial agents for reducing populations of bacteria on broiler chicken carcasses.', *Journal of food protection*, 68(4), pp. 758–63. Available at: https://doi.org/10.4315/0362-028X-68.4.758.
- 26. Sanchez, M.X. *et al.* (2002) 'Microbial Profile and Antibiotic Susceptibility of Campylobacter spp. and Salmonella spp. in Broilers Processed in Air-Chilled and Immersion-Chilled Environments', *Journal of Food Protection*, 65(6), pp. 948–956. Available at: https://doi.org/10.4315/0362-028X-65.6.948.
- 27. Schambach, B.T. *et al.* (2014) 'Chemical Additive To Enhance Antimicrobial Efficacy of Chlorine and Control Cross-Contamination during Immersion Chill of

Broiler Carcasses', *Journal of Food Protection*, 77(9), pp. 1583–1587. Available at: https://doi.org/10.4315/0362-028X.JFP-14-092.

- 28. Schünemann, H.J. *et al.* (2011) 'Interpreting results and drawing conclusions', in *Cochrane Handbook for Systematic Reviews of Interventions*, pp. 359–387.
- Sexton, M. *et al.* (2007) 'Effect of acidified sodium chlorite treatment on chicken carcases processed in South Australia', *International Journal of Food Microbiology*, 115(2), pp. 252–255. Available at: https://doi.org/10.1016/j.ijfoodmicro.2006.10.023.
- Singh, P. *et al.* (2017) 'Trisodium phosphate dip, hot water dip, and combination dip with/without brushing on broiler carcass decontamination', *Food Control*, 77, pp. 199–209. Available at: https://doi.org/10.1016/j.foodcont.2017.02.015.
- Smith, D.P., Cason, J.A. and Berrang, M.E. (2005) 'Effect of fecal contamination and cross-contamination on numbers of coliform, *Escherichia coli, Campylobacter*, and *Salmonella* on immersion-chilled broiler carcasses.', *Journal of food protection*, 68(7), pp. 1340–1345. Available at: https://doi.org/10.4315/0362-028X-68.7.1340.
- 32. Stopforth, J.D. *et al.* (2007) 'Validation of individual and multiple-sequential interventions for reduction of microbial populations during processing of poultry carcasses and parts', *Journal of Food Protection*, 70(6), pp. 1393–1401. Available at: https://doi.org/10.4315/0362-028X-70.6.1393.
- Uyarcan, M. and Kayaardı, S. (2018) 'Effects of a dry-ice process on surface and carcase decontamination in the poultry industry', *British Poultry Science*, 59(2), pp. 141–148. Available at: https://doi.org/10.1080/00071668.2017.1403565.
- 34. Whyte, P. *et al.* (2001) 'Quantitative Investigation of the Effects of Chemical Decontamination Procedures on the Microbiological Status of Broiler Carcasses during Processing', *Journal of Food Protection*, 64(2), pp. 179–183. Available at: https://doi.org/10.4315/0362-028X-64.2.179.
- 35. Yang, Z.P., Li, Y.B. and Slavik, M. (1998) 'Use of antimicrobial spray applied with an inside-outside birdwasher to reduce bacterial contamination on prechilled chicken carcasses', *Journal of Food Protection*, 61(7), pp. 829–832. Available at: https://doi.org/10.4315/0362-028X-61.7.829.
- 36. Zhang, L. *et al.* (2011) 'Microbiological Quality of Water Immersion–Chilled and Air-Chilled Broilers', *Journal of Food Protection*, 74(9), pp. 1531–1535. Available at: https://doi.org/10.4315/0362-028X.JFP-11-032.