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Abstract
Comparative bioavailability studies often involve multiple groups of subjects for a variety of reasons, such as clinical capacity 
limitations. This raises questions about the validity of pooling data from these groups in the statistical analysis and whether a 
group-by-treatment interaction should be evaluated. We investigated the presence or absence of group-by-treatment interac-
tions through both simulation techniques and a meta-study of well-controlled trials. Our findings reveal that the test falsely 
detects an interaction when no true group-by-treatment interaction exists. Conversely, when a true group-by-treatment inter-
action does exist, it often goes undetected. In our meta-study, the detected group-by-treatment interactions were observed at 
approximately the level of the test and, thus, can be considered false positives. Testing for a group-by-treatment interaction 
is both misleading and uninformative. It often falsely identifies an interaction when none exists and fails to detect a real one. 
This occurs because the test is performed between subjects in crossover designs, and studies are powered to compare treat-
ments within subjects. This work demonstrates a lack of utility for including a group-by-treatment interaction in the model 
when assessing single-site comparative bioavailability studies, and the clinical trial study structure is divided into groups.
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Introduction

Comparative bioavailability (BA) studies, designed to dem-
onstrate bioequivalence (BE) between two products, are an 
essential part of the generic approval process (1–5), bridging 
an innovator’s product from the formulation used in clinical 

phase III to the to-be-marketed formulation (6), in the case 
of major variations of an approved product (7), to assess 
potential food effects (8) or drug-drug interactions (9, 10), 
and dose-proportionality (6). Such studies often involve 
multiple groups of subjects. This division is usually neces-
sitated by logistical constraints, such as the limited capacity 
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of available beds or staffing levels at a single site. In many 
cases, groups are admitted in a staggered manner over the 
course of a few days but are recruited from the same subject 
pool. Studies conducted across multiple sites are beyond the 
scope of this research.

Given the close temporal proximity and the shared sub-
ject pool, one would generally not expect a relevant group 
effect to be introduced. However, deviations in point esti-
mates could indicate a true group-by-treatment interaction, 
meaning that the treatment effect is not independent of the 
group. This observation could also be a result of chance. 
The validity of naïvely pooling data across these staggered 
groups can still be questioned.

We assessed the relevance and impact of group-by-treat-
ment interactions through simulations and a meta-study 
comprising over 240 well-controlled trials.

Methods and Materials

The simulations and evaluation of datasets in the meta-study 
were performed in R 4.3.1 (11).

Models

The following linear models of  loge-transformed pharma-
cokinetic (PK) responses with all fixed effects were used:

(1) group, sequence, treatment, subject(group × sequence), 
period(group), group × sequence, group × treatment

(2) group, sequence, treatment, subject(group × sequence), 
period(group), group × sequence

(3) sequence, subject(sequence), period, treatment

First public information about the use of Model 1 to test 
for a group-by-treatment interaction for the 2-treatment 
2-sequence 2-period crossover design (2 × 2 × 2) by the US 
Food and Drug Administration (FDA) became available in 
1999 (12), where subject(group × sequence) was consid-
ered a random effect. It must be mentioned that due to the 
group × treatment term, the main effect of treatment can-
not be interpreted and, hence, must not be used to assess 
bioequivalence. The FDA suggested testing the group-by-
treatment interaction at the 0.1 level (12, 13). If significant, 
data of groups must not be pooled, and bioequivalence can 
be demonstrated in one of the groups by Model 3, provided 
that the group meets the minimum requirements for a com-
plete BE study that might also lead to the paradoxical situ-
ation that BE is demonstrated in a small group but fails in 
larger ones. If not significant, pooled data can be analyzed 
by Model 2. More details were given by the FDA later (14, 
15), but without specifying a level of the test.

Model 2 takes the multi-group nature of the study into 
account and provides an unbiased estimate of the treatment 
effect. In the Eurasian Economic Union, Model 2 is manda-
tory, unless a justification to use Model 3 is stated in the 
protocol and discussed with the competent authority (16). 
Health Canada and the FDA recommend mixed-effects mod-
els, where subject-related effects are random and all oth-
ers are fixed (2, 12, 14). Model 3 is the standard model for 
bioequivalence (e.g., 4, 5) with all effects fixed (analysis of 
variance, ANOVA).

In Model 2, the residual degrees of freedom (df) is ∑
ni − 2 − (nG − 1) , where ni is the number of subjects in 

sequence i, and nG is the number of groups, and in Model 3 
df =

∑
ni − 2 . In both models, the back-transformed (1-2α) 

confidence interval (CI) is calculated as

where logexT  and logexR  are the means of the 
 loge-transformed responses of the test and reference treat-
ments, t is the t-value for df degrees of freedom at level α 
(commonly 0.05), m is the design constant (e.g., 1/2 in a 
2 × 2 × 2 crossover design, 3/8 in a two-sequence three-period 
full replicate design, 1/4 in a two-sequence four-period full 
replicate design, 1/6 in a three-sequence three-period partial 
replicate design), MSE is the residual mean squares error, s 
is the number of sequences, and ni is the number of subjects 
in sequence i.

It must be mentioned that the MSE is generally slightly 
different in Models 2 and 3, whereas the point estimate (PE) 
is identical if sequences are balanced and group sizes are 
identical, but different in the case of imbalanced sequences 
and unequal group sizes. Due to the fewer degrees of free-
dom, the CI of Model 2 is consistently wider than that of 
Model 3.

It should be mentioned that in comparative BA stud-
ies, subjects are uniquely coded (17, 18). Thus, sequence 
and related nested effects — as recommended in all guide-
lines — lead to over-specified models and can be removed 
entirely, without affecting the estimated treatment effect and 
its associated MSE.

Simulation Scenarios

Monte-Carlo simulations were performed based on the 
fact that the mean μ follows a lognormal distribution 
and the variance s2 follows a χ2-distribution with n–2 
degrees of freedom (19). We simulated 100,000 stud-
ies in each scenario using the pseudo-random number 
generator Mersenne-Twister (20) with a fixed seed of 
123456 to support reproducibility and assessed them 

CI = 100exp
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for the group-by-treatment interaction. In scenarios 
1–12, we simulated 2 × 2 × 2 designs with two groups. 
In scenarios 1–10, we simulated a sample size of 48 
subjects to achieve ≥ 90% power for a geometric mean 
ratio (GMR) = 1 and CVw = 33.5%. This sample size was 
selected to align closely with the median sample size 47 
in the meta-study (see below). In scenarios 11 and 12, we 
simulated a sample size of 80 subjects to achieve ≥ 80% 
power for GMR = 0.90. To simulate unequal variances of 
groups, variance ratios of 0.667 and 1.5 were explored.

The level of the test of the group-by-treatment interac-
tion was set to 0.05 (21). If no true group-by-treatment 
interaction was simulated, the fraction of studies with 
p(G × T) ≤ 0.05 represents empirical α, whereas if a true 
group-by-treatment interaction was simulated, it represents 
empirical power. The p-values of the group-by-treatment 
interaction tests are expected to follow a standard uniform 
distribution with ∈ {0, 1} and were assessed by the Kol-
mogorov–Smirnov test. Supplementary graphs illustrating 
the distribution of these p-values for each scenario are 
included to complement the Kolmogorov–Smirnov test 
findings, and the R-script to reproduce the simulations is 
provided in the Online Resource.

Table I presents a summary of simulation scenarios, 
categorizing them based on multiple parameters such as 
group sizes (n), whether the data exhibit equal or unequal 
variances of groups, and the corresponding CV, the GMR 
for each group involved in the scenarios, and indicating 
the presence or absence of true group-by-treatment inter-
action. Below is a detailed breakdown of these scenarios:

 (1) Two groups of 24 subjects each, equal variances of 
groups, GMR = 1 in both groups, no group-by-treat-
ment interaction

 (2) Two groups of 24 subjects each, unequal variances 
of groups (variance-ratio 0.667), GMR = 1 in both 
groups, no group-by-treatment interaction

 (3) Two groups of 24 subjects each, unequal variances of 
groups (variance-ratio 1.5), GMR = 1 in both groups, 
no group-by-treatment interaction

 (4) n1 = 38, n2 = 10,equal variances of groups, GMR = 1 
in both groups, no group-by-treatment interaction

 (5) Two groups of 24 subjects each, equal variances of 
groups, GMR = 0.95 in the first group, GMR = 1.0526 
in the second group, true group-by-treatment interac-
tion; pooled GMR = 1

 (6) Two groups of 24 subjects each, unequal variances 
of groups (variance-ratio 0.667), GMR = 0.95 in the 
first group, GMR = 1.0526 in the second group, true 
group-by-treatment interaction; pooled GMR = 1

 (7) Two groups of 24 subjects each, unequal variances of 
groups (variance-ratio 1.5), GMR = 0.95 in the first 
group, GMR = 1.0526 in the second group, true group-
by-treatment interaction; pooled GMR = 1

 (8) n1 = 38, n2 = 10, equal variances of groups, GMR = 0.95 
in the first group, GMR = 1.0526 in the second group, 
true group-by-treatment interaction; weighted GMR = 1

 (9) n1 = 38, n2 = 10, unequal variances of groups (var-
iance-ratio 0.667), GMR = 0.95 in the first group, 
GMR = 1.0526 in the second group, true group-by-
treatment interaction; weighted GMR = 1

Table I  Simulation Scenarios

= Equal variances of groups
≠ Unequal variances of groups
*Absolute value of max(GMR1–i) / min(GMR1–i)

Scen Design Group size 
(n1, n2,…)

Type CV (%) GMR/group |ΔGMR|* Pooled/
weighted 
GMR

G × T

1 2 × 2 × 2 24, 24  = 33.5, 33.5 1.0, 1.0 1.0000 1.0000 No
2 2 × 2 × 2 24, 24  ≠ 29.8, 36.9 1.0, 1.0 1.0000 1.0000 No
3 2 × 2 × 2 24, 24  ≠ 36.9, 29.8 1.0, 1.0 1.0000 1.0000 No
4 2 × 2 × 2 38, 10  = 33.5, 33.5 1.0, 1.0 1.0000 1.0000 No
5 2 × 2 × 2 24, 24  = 33.5, 33.5 0.95, 1.0526 1.1080 1.0000 Yes
6 2 × 2 × 2 24, 24  ≠ 29.8, 36.9 1.0526, 0.95 1.1080 1.0000 Yes
7 2 × 2 × 2 24, 24  ≠ 36.9, 29.8 0.95, 1.0526 1.1080 1.0000 Yes
8 2 × 2 × 2 38, 10  = 33.5, 33.5 1.0605, 0.8 1.3256 1.0000 Yes
9 2 × 2 × 2 38, 10  ≠ 29.8, 36.9 1.0605, 0.8 1.3256 1.0000 Yes
10 2 × 2 × 2 38, 10  ≠ 36.9, 29.8 1.0605, 0.8 1.3256 1.0000 Yes
11 2 × 2 × 2 40, 40  = 30.0, 30.0 0.9, 0.9 1.0000 1.0000 No
12 2 × 2 × 2 64, 16  ≠ 33.0, 26.7 0.8290, 1.25 1.5078 0.9000 Yes
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 (10) n1 = 38, n2 = 10, unequal variances of groups (var-
iance-ratio 1.5), GMR = 0.95 in the first group, 
GMR = 1.0526 in the second group, true group-by-
treatment interaction; weighted GMR = 1

 (11) n1 = n2 = 40, equal variances of groups (CVw = 30%), 
GMR = 0.90 in both groups, no group-by-treatment 
interaction

 (12) n1 = 64, n2 = 16, unequal variances of groups (var-
iance-ratio 1.5), GMR = 0.8290 in the first group, 
GMR = 1.2500 in the second group, true group-by-
treatment interaction; weighted GMR = 0.9000

Meta‑study

The meta-study included a total of 328 datasets of AUC  
and 331 of Cmax from 249 comparative BA studies (BE, 
food effect, drug-drug interaction, dose-proportionality), 
157 analytes; 242 2 × 2 × 2 designs, 33 two-sequence 
four-period full replicate designs, three partial replicate 
design, as well as 46 incomplete block designs extracted 
from six-sequence three-period and four-sequence four-
period Williams’ designs. The studies consisted of two to 
seven groups, with a median sample size of 47 subjects 
(15–176) and a median interval separating groups of six 
days (1 to 62 days). It should be noted that the extreme 
interval of 2 months in one study was due to COVID-
19 restrictions. The next largest interval was 18 days. In 
76.3% of the studies, the interval was 1 week or less; in 
30.8%, it was only 1 or 2 days. There are more datasets 
than studies because some contain more than one analyte 
(fixed-dose combinations or parent and metabolite). The 
datasets were assessed by all models. Since in some of the 
datasets bioequivalence of Cmax was assessed by reference-
scaling or with wider fixed limits, only AUC  targeting BE 
with conventional limits of 80–125% was assessed by a 
recently proposed method (22), where

• a “concordant quantitative interaction” was defined as 
when the treatment effect is overall equivalent as well as 
in all groups but differs in magnitude,

• a “concordant qualitative interaction” was defined as 
when the treatment effect is overall and in at least one 
group equivalent, in at least one group not equivalent, 
and the treatment effects in all groups are in the same 
direction, and

• a “discordant qualitative interaction” was defined as 
when the overall treatment effect is equivalent, the treat-
ment effect in some groups is not equivalent, and the 
treatment effect in some groups can be in opposite direc-
tions.

We restricted the method to two groups, because more 
would result in a multidimensional problem. Of note, a 
manipulation (i.e., an undocumented interim analysis after 
the first group and switching Test (T) with reference (R) in 
the second) would be only possible if groups are separated 
by a long interval. Such suspected manipulation could be 
easily detected by plotting T/R-ratios against subject ID. 
Details of the datasets are given in the Online Resource.

Results

Simulations

Table II presents the result of simulation scenarios, indicat-
ing the presence or absence of a true group-by-treatment 
interaction by empirical α or power (i.e., the fraction of 
studies with a significant group-by-treatment interaction in 
Model 1 if no or a true group-by-treatment interaction was 
simulated), and p-values of the Kolmogorov–Smirnov test.

To provide a clearer and more synthesized understanding 
of our simulation results in Table II, we have categorized 
the key findings regardless of the study design (crossover or 
parallel) as follows:

(1) Simulations without group-by-treatment interaction 
(Scenarios 1–4, and 11): In these scenarios, where no 
group-by-treatment interaction was introduced, the pro-
portion of studies detecting a statistically significant 
interaction was close to the anticipated significance 
level of approximately 0.05.

(2) Crossover design simulations with group-by-treatment 
interaction (Scenarios 5–10, and 12): When a group-by-
treatment interaction was introduced into these simula-
tions, the empirical power increased in relation to the 

Table II  Results of 100,000 Simulated Studies in each Scenario

Scen Design G × T Empirical α Empirical power p(unif.)

1 2 × 2 × 2 No 0.0497 – 0.756
2 2 × 2 × 2 No 0.0497 – 0.894
3 2 × 2 × 2 No 0.0499 – 0.927
4 2 × 2 × 2 No 0.0502 – 0.584
5 2 × 2 × 2 Yes – 0.117  < 2.2·10–16

6 2 × 2 × 2 Yes – 0.117  < 2.2·10–16

7 2 × 2 × 2 Yes – 0.117  < 2.2·10–16

8 2 × 2 × 2 Yes – 0.348  < 2.2·10–16

9 2 × 2 × 2 Yes – 0.402  < 2.2·10–16

10 2 × 2 × 2 Yes – 0.294  < 2.2·10–16

11 2 × 2 × 2 No 0.0499 – 0.733
12 2 × 2 × 2 Yes – 0.944  < 2.2·10–16
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absolute value of the difference between the population 
means of the two groups.

In our first simulation scenario, used as an illustrative 
example in Fig. 1, we observed that the interaction was 
detected in about 4.97% of cases, even without a true group-
by-treatment interaction. This detection rate is around/simi-
lar to the upper 95% significance limit of the binomial test 
(0.0511), indicating a low rate of false positives. Addition-
ally, the uniformity of the p-values, validated by the Kol-
mogorov–Smirnov test (p = 0.756), suggests that their dis-
tribution aligns with the expected uniform pattern under the 
null hypothesis.

Meta‑study

In 15 (4.57%) of the AUC  datasets and 18 (5.44%) of the 
Cmax datasets, a significant (p < 0.05) group-by-treatment 
interaction was detected, which is approximately the level 
of the test and does not exceed the upper 95% significance 
limits of the binomial test (0.0731 for n = 328 and 0.0725 for 
n = 331). See also Figs. 2 and 3, as well as Table III. Neither 
concordant nor discordant interaction was detected in the 
eligible AUC  datasets (Fig. 4). In the dataset with the larg-
est interval of 62 days separating groups, the PE in the first 
group was 95.37% and in the second 100.92%. The subjects’ 
T/R-ratio showed no trend (see the Online Resource).

Discussion

As demonstrated in the simulations, significant group-by-
treatment interactions were detected at approximately the 
level of the test, although none was simulated. Conse-
quently, these cases are considered false positives. When 

true group-by-treatment interactions were simulated, in most 
cases, the test failed to detect them, i.e., showed low empiri-
cal power. Only with large sample sizes and extremely dif-
ferent group sizes is a true group-by-treatment interaction 
correctly detected with sufficient power. Heteroscedasticity 
did not affect the results, which is not surprising since the 
pooled data models assume homoscedasticity.

The simulations underscored a crucial consideration in 
the context of group-by-treatment interaction testing, reveal-
ing that the smaller the true group-by-treatment interaction, 
the more challenging it becomes to detect. This prompts 
a thoughtful reflection on the definition of what is “small 
enough to be ignored for practical purposes.” Conversely, 
the findings emphasize that a substantial group-by-treat-
ment interaction is necessary for the test to be valuable in 
studies designed to demonstrate bioequivalence. This is 

Fig. 1  p(G × T) = 0.0497, p(unif.) = 0.756 (simulation scenario 1)

Fig. 2  AUC , p(G × T) = 0.0457, p(unif.) = 0.661 (meta-study, n = 328)

Fig. 3  Cmax, p(G × T) = 0.0544, p(unif.) = 0.483 (meta-study, n = 331)



 The AAPS Journal (2024) 26:5050 Page 6 of 8

corroborated by the empirical power results presented in 
Table II and Fig. 13 of the Online Resource.

Based on the meta-analysis of well-controlled studies, 
it appears that significant group-by-treatment interactions 
are detected merely due to chance and can be considered 
“statistical artifacts” or false positives. Although only 226 
datasets of AUC  with two groups were eligible for a recently 
proposed method (22), neither concordant nor discordant 
interaction was detected. Testing for a group-by-treatment 
interaction to detect data manipulation is limited, since there 
is no evidence that manipulation is linked with clinic groups.

When the datasets of the meta-study were evaluated by 
Model 2, about 6.4% less than with Model 3 passed the 
conventional limits for BE of 80.00–125.00%. This differ-
ence can be attributed to potential bias in the estimation of 
the treatment effect introduced by group-related terms (i.e., 
subject(group × sequence), period(group), group × sequence) 
and fewer degrees of freedom leading to slightly wider con-
fidence intervals. However, this observation might not only 
be due to fewer degrees of freedom, but also mainly due to 
different residual errors and imbalanced sequences together 

with unequal group sizes. This finding is similar to another 
meta-study (23), where fewer studies passed with the carryo-
ver term in the model than without the term. It is impossible 
to predict whether the additional group terms by Model 2 
can “explain” part of the variability, i.e., its residual MSE 
may be smaller or larger than that of Model 3.

In light of these results, we consider that Model 1 origi-
nally proposed by the FDA (12, 13) as a pre-test should be 
avoided due to the risk of type I error inflation. Well-known 
examples where a pre-test inflates the type I error are assess-
ing variance homogenicity (24) and testing for a sequence 
effect in comparative bioavailability (25, 26). For this rea-
son, our recommendation is to use Model 2 (or 3) instead. 
This investigation is reminiscent of the discussion of the 
subject-by-formulation variance component, with a similar 
result: The estimate for this variance component was posi-
tively biased, leading to substantial false-positive tests (27). 
In analogy, none of the published adaptive sequential meth-
ods contains a “poolability criterion” (28–34). Instead, data 
are always pooled, regardless of the results of the stages. As 
recently recommended, the planned model and procedures 
should be unambiguously stated in the protocol (5, 14, 15). 
Subgroup results should always be interpreted cautiously 
(35). In order to increase power, Bayesian shrinkage analysis 
of subgroups (36) must only be applied if specified a priori 
and not post hoc (i.e., after detecting a significant group-by-
treatment interaction). Data-driven post hoc analysis is also 
discouraged by the International Council of Harmonisation 
(5).

It must be mentioned that in frequentist statistics, the out-
come of any level α-test is dichotomous: The null hypothesis 
is either rejected or not rejected, not something that can be 
represented with a probability. It is a common fallacy to 
regard the p-value as the probability that the null hypothesis 
is true — or the alternative hypothesis is false (37, 38). It 
is well known that the more sophisticated interaction terms 
have a higher standard error than those of the main effects. 
Moreover, even more so in this case, since they involve a 
comparison between subjects instead of the main compari-
son which is within subjects, with a lower residual vari-
ance. On the other hand, the main analysis in an equivalence 
study is based on a Neyman-Pearson (NP) test, designed 

Table III  Results of the Meta-
study

a Above the significance limit of the binomial test at the 0.05 level (0.0731, 0.0725)
b Below the significance limit of the Kolmogorov–Smirnov test at the 0.05 level
c Passing 80–125% when evaluated by Model 3
d Passing 80–125% when evaluated by Model 2
e Relative loss in passing rate when evaluated by Model 2 compared to Model 3

PK metric Datasets p(G × T) signif.a p (unif.) signif.b 3c 2d Losse

AUC 328 0.0457 No 0.661 No 86.9% 81.7% 5.96%
Cmax 331 0.0544 No 0.483 No 71.0% 66.2% 6.81%

Fig. 4  PEs of AUC , analysis of interaction (22) (meta-study, n = 226 
targeting BE by Model 3; center square quantitative, yellow areas 
concordant qualitative, orange areas discordant qualitative, 95% con-
fidence ellipse in green, unity line in bright green)
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with a review of the evidence (either published or not) in 
favor of {θ1, θ2}, the limits of the “not clinically relevance” 
margin. That is, the alternative hypothesis H1 is an inter-
val θ1 < μT–μR < θ2. Furthermore, the sample size has been 
determined to obtain the desired power, taking into account 
the standard error of the estimator of the main comparison. 
This higher standard error leads to a lower power for the 
interaction, which, added to the lack of prior support for Δ, 
explains the results obtained in this study, which summarizes 
the well-known joke “Enjoy your unexpectedly significant 
results, … because you will not see them again.”

In order to recapitulate, the standard significance test 
lacks both power and prior support for H1, leading to (39) 
— which respects the NP test. Therefore, we must distin-
guish between NP and significance testing (39), as well as 
remember the advice about lack of power and prior support 
for H1 (40).

Conclusion

Testing for a group-by-treatment interaction is neither use-
ful nor appropriate. When a group-by-treatment interaction 
does not exist in the data, it will incorrectly be detected at 
the level of the test. Even when a true group-by-treatment 
interaction exists, it will likely not be detected — except in 
the case of large sample sizes and extremely different group 
sizes — because in crossover designs, T vs. R is tested with 
a greater sample size than the G × T interaction; in the for-
mer, all subjects are used, whereas, for G × T, the subjects 
are split into groups and tested between them. Since the test 
has low power but will be significant at the α level even in 
the absence of true group-by-treatment interaction, it is not 
in any way clear how this test could contribute to regulatory 
decision-making. This work demonstrates a lack of utility for 
including a group-by-treatment interaction in the model for 
assessment of single-site comparative bioavailability studies 
when the clinical trial study structure is divided into groups 
for logistical reasons. The authors thus see no particular 
merit in this test for regulatory submissions anywhere.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1208/ s12248- 024- 00921-x.
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