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ABSTRACT
A significant public concern is how technologies that emit electromagnetic 
waves interact and affect the biota because they are linked to the dysregula-
tion of genes involved in neurotransmission, oxidative stress, and normal 
cellular function. Standard methods have been used to study how the combi-
nation of electromagnetic waves from 5 GHz radio and computed tomography 
(CT) irradiation affects whole blood parameters, neurobehavioural profiles, 
genomic DNA, and p53 gene expression in Wistar rats grouped into five, 
namely, I-Negative control, II-sham, III-5 GHz only, IV-5 GHz + CT, V-CT. The 5  
GHz router was connected to the internet using an ethernet cable and the 
specific absorbance rate (SAR) was measured as 0.54W/kg and 24 V/0.5A power 
density, while CT parameters were set at 140 K.v, 300 mA, 5.3 cv at a 1.0-s speed 
for 60 s. Genomic DNA was isolated from rats’ cerebral cortex, while target 
gene and internal control primers (GAPDH) were synthesized for tumor sup-
pressor (p53) gene expression and electrophoresed on a 1.2% agarose gel. We 
found that CT irradiation had gross effects on platelets, white blood cell counts, 
memory, hepatic and testicular histoarchitectures compared to the 5 GHz-only 
group. However, there was a loss of p53 (exons 5–7) gene bands in electro-
phoresed data with increased micronucleated polychromatic erythrocyte 
count in the 5 GHz group. Regardless of the interferential interaction in the 
combination group, the deleterious effects of non-ionizing and ionizing irra-
diation in the single and combined exposure groups predict functional 
abnormalities and dysregulated cellular processes from high electromagnetic 
fields exposure in biological systems.
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Introduction

In recent years, there has been a significant global 
surge in the utilization of non-ionizing and ioniz-
ing radiofrequency (RF) electromagnetic fields 
(EMFs) for a diverse array of applications in daily 
life, including communication, diagnostics, thera-
peutics, and various other areas [1]. These sources 
of RF emissions encompass established wireless 
network systems, the contentious 5 G wireless 
network, ultraviolet and infrared radiation, as 
well as X-rays used in computed tomography 
scans. These technologies are rapidly evolving 
and hold paramount importance in the sustain-
ability and advancement of societal structures 
and systems on a global scale. Sensitivity and 
intolerance to non-native EMF emissions, which 
manifest in a manner contingent upon the level of 
exposure, have been associated with a range of 
symptoms such as tinnitus, headaches, dizziness, 
irregular heartbeats, memory issues, and sleep 
disturbances. This condition is commonly referred 
to as ‘Electromagnetic Hypersensitive Syndrome 
(EHS)’ or ‘Electromagnetic Field Intolerance 
Syndrome (EMFIS)’ [2,3]. Moreover, extended 
exposure to EMF radiation has been linked to 
various physiological alterations, impacting both 
the central nervous system and the male repro-
ductive system [4–6]. It has also been associated 
with adverse effects on stress hormones, sperm 
cells [7,8], as well as oxidative stress and the gen-
eration of reactive oxygen species [9] in animal 
studies. In-vivo studies have provided evidence of 

impairment of motor coordination, locomotor 
behavior and increased genetic material damage, 
and disruption of cholinergic pathway genes, 
resulting from prolonged exposure to EMF 
waves [10–12]. Furthermore, some studies have 
suggested a potential connection between non- 
native EMF wave exposure and genes governing 
cell proliferation, potentially increasing the risk of 
cancer and other health issues [13,14]. The tumor 
suppressor protein p53 plays a pivotal role in 
regulating cellular responses to radiation. 
Accumulation of p53 within cells is triggered by 
DNA damage, and it serves as a multifunctional 
nuclear transcription factor that regulates pro-
cesses such as cell maturation, proliferation, meta-
bolism, immune response, and more. The 
induction of p53 in response to mutagenic or 
genotoxic factors, including radiation, promotes 
protein translation, which is implicated in the 
pathogenesis of various types of cancer. 
Additionally, mutant p53 has been implicated as 
an inhibitory factor for autophagy and pro-
grammed cell death in the cytoplasm [15]. 
Mitochondrial health is maintained through the 
process of autophagy, which removes damaged 
and permeabilized mitochondria from cells 
[16,17]. However, in the presence of mutagenic 
factors such as radiation, this crucial process may 
become dysregulated. Consequently, there has 
been a heightened focus on research efforts in 
recent years to comprehensively investigate the 
effects of increased exposure to both ionizing and 
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non-ionizing radiation. Hence, the endeavors to 
contribute to the development of evidence-based 
solutions in the field of EMF exposure and their 
potential impact on human health and biology. 
Therefore, the present study investigated the phy-
siological and genetic consequences of single and 
combined ionizing and non-ionizing radiation 
exposure on complete blood count, memory, 
cognition, p53 exons 5–7 bands detection, histo-
pathological indices and micronucleus formation 
in rats.

Materials and methods

Animals and study design

Male virgin Wistar rats (50–60 days old) weigh-
ing 120 ± 30 g were supplied by the animal 
breeding unit at the College of Medicine, Afe 
Babalola University. All rats were kept in stan-
dard laboratory conditions with a 12:12 photon 
periodism light–dark regimen and tap water 
and food given ad libitum. Animal groupings 
[n = 6] were i) negative control, ii) Sham irra-
diated, iii) 5-GHz irradiated, iv) 5 GHz + CT irra-
diated, and v) CT only irradiated.

Non-native electromagnetic field exposure

Radiofrequency (RF) generator setup
An off-the-shelf commercially available wireless 
router [M5 airMax 16dBi CPE,25 V:0.5A PoE] was 
used with a multiple-input multiple-output 
(MIMO) transmission protocol set at 5 GHz fre-
quency band. The irradiated electric field density 
was set at 100 cm measured a median of 11 V/m. 
The router was connected to the internet using 
an ethernet cable, no Wi-Fi repeater was used. 
The specific absorbance rate (SAR) was mea-
sured as 0.54W/kg.

Rats RF irradiation setup
Rats in groups III and IV were kept 100 cm away 
from the router to allow for a whole-body RF-far- 
field irradiation zone from 9 am to 5 pm. In 
a separate room, two groups of negative control 

rats were placed in UV-blocking plexiglass cages, 
while rats in the sham group were placed in the 
same housing condition as rats in 5 GHz exclud-
ing irradiation, in another room.

Rats CT irradiation setup
On day 14 of exposure, fractionated computed 
tomography (CT) scans at a dose rate of 196 
mGy and 73.68 mGy for 60 s were given at 100  
cm distance from the beam exit to rats in groups 
IV and V at scanning parameters: 140 K.v, 300 mA, 
5.3 cv at a 1.0-s speed for 60 s while group II was 
CT-sham irradiated. The field size of the LINAC 
accelerator was 40 × 40 cm2. This procedure was 
carried out at the Radiology Unit, ABUAD 
Multisystem Hospital.

Y-maze and novel object recognition  
(NOR) tests

The spontaneous alternation test (Y-maze) was 
used to assess spatial working memory perfor-
mance by measuring experimental rats’ ten-
dency to alternate arm entries, locomotor 
activity through arm entry frequency and num-
ber of triads at 14 days post 5 GHz and 24-h CT 
irradiation exposure. The NOR tests were also 
carried out as described by Lueptow [18].

Haematology estimation

Animals were sacrificed upon completion of 
behavioral assays by anesthetic overdose, and 
blood was collected via cardiac puncture in 
labeled sterile EDTA vacutainers. An automated 
hematology analyzer (Mindray, BC 6000) was 
used for whole blood count bioassays (red 
blood cell, white blood cell, lymphocyte, hemo-
globin, red blood cell, and mean corpuscular 
volume, etc.).

DNA extraction and fragmentation 
analyses

Genomic DNA was isolated from rats’ brain cor-
tex using ZymoResearch tissue DNA extraction 
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kit. Purity assessment and nucleic acid quanti-
fication were carried out immediately after 
extraction with 1 µl of sample in Nanodrop 
2.0. Two microliters of isolated DNA were 
loaded with 1kb DNA ladder and dye in 1.2% 
agarose gel stained with ethidium bromide 
and ran at 100 V/cm for 1 hr at room tempera-
ture. The bands were captured with a UV tran-
silluminator. Isolated DNA was stored in 
aliquots at −20°C until further use for further 
analyses.

Polymerase chain reaction and p53 agarose 
gel electrophoresis profiles in rats’ brain 
tissue

The PCR amplifications of p53 exons 5–7 were 
performed at 95°C for 5 min (denaturation), 
annealing for 1 min, and then extension at 
72°C for 1 min for 40 cycles, while each included 
denaturation at 95°C for 1 min. The amplicons 
were loaded into 1.2% agarose gel and run at 
75 V for 1 hr at room temperature. Gel visualiza-
tion was carried out in a UV transilluminator, 
while thermal cycling for p53 exons and GAPDH 
(internal control) were run separately based on 
different annealing temperatures using 
sequenced primers in Table 1.

Histopathological analysis

Testes and livers of rats stored in 10% formo- 
saline were processed using established labora-
tory protocols. Processed tissues were sec-
tioned (5 µm thick) on slides and stained using 
the Hematoxylin and Eosin (H&E) technique.

Micronucleus count

Bone marrow cells were excised from the 
femurs of rats using hypodermic needles con-
taining 0.05 mL of fetal calf serum. Smears on 
microscopic slides were stained with May- 
Grunwald (5 min) and Giemsa (10 min) accord-
ingly. Slides were scored with an Olympus 
X microscope.

Histopathological analysis

Testes and livers of rats stored in 10% formo- 
saline were processed using established 
laboratory protocols. Processed tissues were 
sectioned (5 µm thick) on slides and stained 
using the Hematoxylin and Eosin (H&E) 
technique.

Micronucleus count

Bone marrow cells were excised from the 
femurs of rats using hypodermic needles con-
taining 0.05 mL of fetal calf serum. Smears on 
microscopic slides were stained with May- 
Grunwald (5 min) and Giemsa (10 min) accord-
ingly. Slides were scored with an Olympus 
X microscope.

Results

Memory and cognition indices  
in irradiated rats

Percentage alternation and number of entries 
were significantly reduced in the single (5 GHz) 
and combined (5 GHz + CT) groups in the 
Y-maze apparatus (<60%,p < 0.05) (Figure 1), 
lowest number of entries was recorded in the 
CT exposed rats (p < 0.01).

As seen in Figure 2, NOR was significantly 
higher in negative control and sham-irradiated 
rats (p < 0.001). Gross NOR impairments were 
observed in the CT-irradiated rats (p < 0.001) 
compared to the single 5 GHz and combined 
(5 GHz + CT) groups.

Table 1. Sequenced primers for p53 gene expression.
Gene Primer

P53 exon 5 F: GACCTTTGATTCTTTCTCCTCTCC 
R: GGGAGACCCTGGACAACCAG

P53 exon 6–7 F: CTGGTTGTCCAGGGTTCTCC 
R: CCCAACCTGGCACACAGCTT

GAPDH F: ACCACAGTCCATGCCATCAC 
R: TCCACCACCCTGTTGCTGTA
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Effects of 5 GHz and/or CT radiation on rats’ 
haematology

Figure 3 shows abnormally high platelets count 
in the CT group (p < 0.0001) and combined 5  
GHz + CT rats (p < 0.01), while an inverse effect 
(abnormally low levels) was seen in the 5 GHz 
group (p < 0.001). Granulocyte count was sig-
nificantly higher in 5 GHz (p < 0.01), while lym-
phocyte count was significantly decreased (p <  
0.05) in the CT group. Reduced white blood cell 
counts were observed for rats exposed to 5  
GHz, CT, and 5 GHz + CT.

Genomic DNA fragments in irradiated rats

Intact gDNA band sizes were observed in the 
control, combined radiation group and CT com-
pared to the sham-irradiated group and 

degraded DNA bands profiles in the 5 GHz 
group (Figure 4a). The PCR amplification of 
exon 5–7 produced 260 bp, 300 bp and 175 
bp amplicon sizes, respectively (Figs B&C). 
A complete loss of p53 (ex 5–7) bands were 
seen in the 5 GHz group, while indistinct exon 
7 bands were observed in the combined (5 GHz  
+ CT) and CT-only groups.

Degeneration of hepatocytes

Distinct normal arrangement of the hepato-
cytes (black arrow) is seen in control and 
sham groups compared to the irradiated 
groups (Figure 5, ***p < 0.001). The 5 GHz 
group reveals vacuolation and moderate 
degeneration of hepatocytes (black arrow). 
The CT-irradiated group reveals necrosis and 
severe degeneration of the hepatocytes 

Figure 1. Single and combined effects of 5GHz and CT irradiation on cognition in rats. (Key: # = low)

Figure 2. Single and combined effects of 5 GHz and CT nor indicates in rats. (Key: * = high, # = low)
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(black arrow: degenerated hepatocytes). The 
5 GHz + CT group reveals a statistically signif-
icant decrease in liver cell count when com-
pared to the 5 GHz group only (***p < 0.001).

Fig. ‘5’. Liver of rat from I) negative control 
showing normal histoarchitecture and arrange-
ment of hepatocytes (black arrow) II) sham 
group showing moderate vacuolation and 

Figure 3. Single and combined effects of 5 GHz and CT-irradiation radiation on rats’blood parameters. 
GenomicDNA fragments in irradiated rats. (Key: * = high, # = low)

a-Isolated gDNA banding pattern     b-  p53 exon 5 gene bands c-p53 exons 6 and 7 gene bands 

Figure 4. Agarose gel electrophoresis of gDNA (a) and p53 exon 5–7 (b & c) gene expression in rats. Key: L = 
Ladder (1kb plus size), C = Control, SH = sham, CT = CT irradiated,5 G = 5 GHz waves exposed, CT5G = combined 
5 G and CT exposure, NTC = no template control

Figure 5. Histological alteration of the liver cells (hepatocytes) following exposure to 5 GHz, CT-irradiation, 5 GHz  
+ CT irradiation. Photomicrographs at 800Xmagnification (scale bar: 41 µm), using H&E staining.

840 A. O. OBAJULUWA ET AL.



normal arrangement of hepatocytes III) 5 GHz 
irradiated group showed moderate degenera-
tion of hepatocytes IV) CT irradiated groups 
showing indistinct arrangement and necrosis 
of hepatocytes, while V) 5 GHz + CT irradiated 
group shows hepatocytes degeneration with 
a p < 0.001 level of statistical significance 
when compared to other groups (H&E scale 
bar 41 μm).

Degeneration of seminiferous tubules 
epithelium (STE) and Leydig cell count

The normal arrangement of STE, clusters of 
sperm cells at the lumen and a statistically sig-
nificant increase in Leydig cells (***p < 0.001) is 
seen in control and sham groups. The 5 GHz 
irradiation group reveals mild degeneration of 
STE, loss of sperm cells at the lumen, and 
degeneration of the interstitial cells. The CT- 
irradiation group revealed severe degeneration 
of STE, loss of sperm cells at the lumen and 
a statistically significant reduction of the 
Leydig cells. The 5 GHz + CT group reveals 
a moderate loss of STE and a statistical reduc-
tion of interstitial cells.

Figure 6 Testis of rat from I) negative control, 
showing the normal histological structure of 

seminiferous tubules with normal spermatogonial 
cells and complete spermatogenesis with sperm 
production, II) Sham irradiated group same as in 
control. III) 5 GHz irradiated group showing mild 
degeneration of spermatogonial cells IV) CT- 
irradiated group showing marked degeneration, 
necrosis of spermatogonial cells lining seminifer-
ous tubules and exfoliation of germ cells, V) 5 GHz 
+ CT irradiated group reveals moderate STE loss 
and interstitial edema. Photomicrographs at 800× 
magnification (scale bar: 41 µm), using H&E stain-
ing (Green arrow: spermatids, Yellow arrow: 
myoid cells).

BONE MARROW CYTOLOGY

Abundant normochromatic erythrocytes (NCE- 
arrow) and sparse polychromatic erythrocytes 
(PCE) were seen in control and sham groups 
(Figure 7). The 5 GHz group shows increased 
PCE (green arrow) and numerous micronu-
cleated cells(red arrow). The CT-irradiation 
group reveals abundant polychromatic and 
micronucleated cells count. Moderate NCE 
(green arrow) and micronucleated cells(red 
arrow) is seen in 5 GHz + CT group.

Fig. ‘7’. MayGrunwald & Giemsa staining of 
excised bone marrow cells from I) Negative 

Figure 6. Histological alteration of the testis (seminiferous tubules) following exposure to 5 GHz, CT-irradiation, 5  
GHz + CT irradiation. Photomicrographs at800× magnification (scale bar: 41 µm), using H&E staining.
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control group showing moderate normochro-
matic II) Sham irradiated group showing relatively 
normal arrangements of normochromatic and 
polychromatic erythrocytes III) 5 GHz irradiated 
group showing abnormally increased polychro-
matic and micronucleated polychromatic erythro-
cytes count, IV) CT-irradiated group showing high 
polychromatic and micronucleated erythrocytes 
and V) 5 GHz + CT showing moderate polychro-
matic and normochromatic erythrocytes count.

Discussion

Ultimately, we found gross impairments of mem-
ory, cognition, platelets, granulocyte, white blood 
cell and lymphocyte counts, and p53 gene exons 
5–7 banding AGE patterns in the single ionizing 
and non-ionizing groups, hepatocytes degenera-
tion and reduced Leydig cells count. Intact work-
ing memory in rats can be assessed using 
measures of spatial working memory, through 
their exploratory activity in the three arms of the 
Y-maze. Hence, the reduced percentage alterna-
tion and number of entries in the single and com-
bined irradiation groups in this study indicates 
impairment of rats’ working memory with the 
gross impact on the CT-irradiated rats. There 
have been reports of a significant irradiation effect 

on rats’ locomotor activities where irradiation at 
20 Gy resulted in a transient impairment of the 
cognitive functions at 7 and 20 days [19]. Elevated 
platelet counts in the CT- and 5 G+CT-irradiated 
rats, with reduced white blood cell counts in the 
same and 5 GHz group confirms platelets’ dysre-
gulating effects of ionizing radiation. This is con-
sistent with Torres Filho et al.’s [20] findings of 
abnormally elevated platelet levels following 
a three-day 0–75 Gy X-irradiation in rats. 
However, the abnormally low platelet levels 
observed in the non-ionizing radiation group (5  
GHz) could be a result of platelet production 
defects induced by auto-antibodies generation 
under conditions of stress as described by 
Semple et al. [21]. A significant reduction in lym-
phocyte count in the CT group indicates altera-
tions in lymphocyte viability due to ionizing 
radiation exposure, which is in line with Sanzari 
et al.‘s findings (2011) of acute lymphocyte dys-
function and compromised immune response as 
a function of ionizing radiation exposure coupled 
with hypogravity in mice at a dose rate of 0.45 Gy/ 
min. Our study revealed ‘gene deletion’ effects of 
exon 5–7 in the p53 gene following 14-day 5 G 
irradiation of rats. Additionally, the necrotized/ 
degraded p53 (exon 7) expression in the CT and 
5 G+CT groups suggests deleterious gene- 

Figure 7. Photomicrographs at 100× magnification, using MayGrunwald & Giemsa staining, showing erythrocytes, 
polychromatic and micronucleated cells.
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damaging effects of these radiations over 
extended periods. The significance of these find-
ings is underscored by the role of p53 as a master 
regulator of cellular response to stress and its 
implication in genomic instability and cancer risk. 
Similar genotoxic effects have been validated in 
prenatal low-dose radiation studies [22]. The 
tumor suppressor p53 is a master regulator of 
cellular response to stress, and the activation of 
its transcriptional targets are both responsible for 
the diversity of radiation response in vivo. Hence, 
radiation-induced genomic instability such as this 
can predispose cells to dysregulated proliferation 
and maturation promoting events leading to can-
cer. Histological alteration of the liver cells (hepa-
tocytes) and testicular architecture following 
exposure to ionizing and non-ionizing sources, 
especially in the CT-irradiated rats align with the 
association between radiation and liver damage 
reported in other in-vivo systems [23]. The gross 
degeneration of seminiferous tubules epithelium, 
loss of sperm, and Leydig cells in irradiated rats, 
especially the CT group, suggests the induction of 
p53 and its role in promoting deleterious nuclear 
transcriptional factors. This disruption of normal 
processes associated with spermatogenesis is 
consistent with findings by Nazıroğlu et al. [24] 
on radiation-induced damaging effects on sperm 
cells. A linear relationship was established 
between radiation exposure and aberrant, 
increased micronucleated erythrocyte count in 
our study, indicating genotoxic damage and chro-
mosomal aberrations in irradiated rat profiles. This 
observation aligns with research by Bhageri et al. 
[25] and Smith-Roe et al. [26] on increased micro-
nucleus formation in rats exposed to radiation.

Conclusion

We conducted one of the initial comprehensive 
investigations into the combined and individual 
effects of ionizing and non-ionizing radiation on 
rats exposed to 5 GHz MIMO waves before CT- 
irradiation. The individual radiation exposures 
resulted in various effects, such as increased plate-
let and granulocyte levels, memory and cognition 

impairments, p53 gene deletions, degenerated 
hepatocytes, and reduced Leydig cell counts. 
Additionally, when high doses of ionizing radia-
tion were combined with 5 GHz waves, mutant 
cells were specifically targeted for cell death. 
Therefore, it is crucial to consider the setup and 
calibration of research environments in electro-
magnetic field (EMF) studies, encompassing fac-
tors like specific light spectrum, flicker rates, 
location, placement, and calibration of wireless 
transmitters. Neglecting permissible limits on 
EMF radiation dosimetry could result in even 
a slight increase in the incidence of hazard zones 
or diseases stemming from EMF radiation expo-
sure, carrying far-reaching consequences for pub-
lic health, societal costs, and the economy.
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