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Abstract
Understanding the regional impact of future climate change is one of the major global challenges of this century. This study 
investigated possible effects of climate change on malaria in West Africa in the near future (2006–2035) and the far future 
(2036–2065) under two representative concentration pathway (RCP) scenarios (RCP4.5 and RCP8.5), compared to an 
observed evaluation period (1981–2010). Projected rainfall and temperature were obtained from the coordinated regional 
downscaling experiment (CORDEX) simulations of the Rossby Centre Regional Atmospheric regional climate model 
(RCA4). The malaria model used is the Liverpool malaria model (LMM), a dynamical malaria model driven by daily time 
series of rainfall and temperature obtained from the CORDEX data. Our results highlight the unimodal shape of the malaria 
prevalence distribution, and the seasonal malaria transmission contrast is closely linked to the latitudinal variation of the 
rainfall. Projections showed that the mean annual malaria prevalence would decrease in both climatological periods under 
both RCPs but with a larger magnitude of decreasing under the RCP8.5. We found that the mean malaria prevalence for the 
reference period is greater than the projected prevalence for 6 of the 8 downscaled GCMs. The study enhances understanding 
of how malaria is impacted under RCP4.5 and RCP8.5 emission scenarios. These results indicate that the southern area of 
West Africa is at most risk of epidemics, and the malaria control programs need extra effort and help to make the best use 
of available resources by stakeholders.

1  Introduction

Several vector-borne diseases such as malaria are very sen-
sitive to climate and weather conditions (Tompkins and 
Ermert 2013, Abiodun et al. 2016, Abiodun et al. 2017; 

Abiodun et al. 2018). When unusual conditions prevail, for 
example, during heavy rainfall periods, mosquito popula-
tions can multiply and trigger epidemics. In desert regions 
and highlands bordering malaria epidemic areas, transmis-
sion is unstable, and the human population is not immune 
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(Pascual et al. 2006; Menne and Bertollini 2000; Wandiga 
et al. 2010; Alonso et al. 2011). Climate variability and 
change have been linked with malaria transmission in most 
West African countries: Benin, Burkina Faso, Cabo Verde, 
Côte D’Ivoire, Gambia, Ghana, Guinea, Guinea-Bissau, 
Liberia, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra 
Leone, and Togo (Ayanlade et al. 2020, Diouf et al. 2020; 
Makinde et al. 2021). For example, severe epidemics can 
occur when atmospheric conditions (precipitation and tem-
perature) become favorable for transmission. Malaria risk 
fluctuations have been associated over time with changes 
in rainfall in relation to El Niño (Poveda et al. 2001; Gag-
non et al. 2002; Kovats et al. 2003; Mabaso et al. 2007; 
Hanf et al. 2011).

In the climate-health issue, many studies have investi-
gated the influence of climatic parameters on the epidemi-
ology of malaria (Gupta and Hill 1998). Climate change 
can modulate malaria transmission through increased tem-
perature (Freeman et al. 1996). High temperatures also 
reduce the duration of the parasite’s reproductive cycle 
inside the mosquito (Tompkins and Ermert 2013). Distur-
bances in the intensity and frequency of the precipitation 
system may modulate the development of the mosquito 
population (Abiodun et al. 2016, 2018).

Rainfall is another key factor determining the exist-
ence of the Anopheles species, their abundance, and the 
duration of the malaria transmission season (Lindsay and 
Birley 1996; Besancenot et al. 2004; Abiodun et al. 2016). 
West Africa experienced the worst floods during the last 
50 years which caused several damages to human settle-
ment (Magadza 2000; Armah et al. 2010;  Nka et al. 2015). 
Contrarily, since the 1970s in the Sahel and Senegal, rain-
fall has decreased by almost 30% with persistent droughts 
in 1972 to 1983 and 1991 to 1992 (Hulme 1992; Newby 
et al. 2015). According to Mouchet et al. (1996), paradoxi-
cally, drought in the Sahel has considerably reduced the 
distribution and abundance of mosquitoes, without being 
associated with a drastic reduction of malaria. A concur-
rent reduction in the effectiveness of malaria treatment 
drugs justifies this observation (Newby et al. 2015).

The potential impact of 1.5 °C and 2 °C global warm-
ing on consecutive dry and wet days has recently been 
investigated over the region (Klutse et al. 2018). As shown 
in other studies in Senegal at local and national scales 
(Diouf et al. 2013, 2017), Benin (Ayanlade et al. 2020), 
Nigeria (Makinde et al. 2021), Tourre et al. 2017 and over 
West Africa (Diouf et al. 2020). The risk of malaria trans-
mission is primarily associated with climate parameters, 
particularly rainfall and temperature, with a 2-month lag 
observed between the rainfall peak in August and the peak 
in malaria cases in October.

In general, Diouf et al. 2020 showed particular interest 
in the predictability of high malaria occurrences in Senegal 

and West Africa. Many other studies have been carried out 
on the vector-borne disease in many areas in West Africa 
as part of projects targeted in the framework of climate 
change and health (AMCEN 2011; Caminade et al. 2011; 
Caminade et al. 2014; UNEP 2013). For instance, Gadiaga 
et al. (2011) studied conditions of malaria transmission in 
Dakar, Senegal, from 2007 to 2010 through an extensive 
entomological survey that was conducted in 45 zones. These 
authors found strong spatial and temporal heterogeneity of 
Anopheles gambiae s.l. larval density, HBR (human bit-
ing rate), and malaria transmission in Dakar. The work of 
Githeko and Ndegwa (2001) focused on East Africa, show-
ing that the warm phase of ENSO (e.g., El Niño) led to 
floods and malaria outbreaks in Kenya. Large-scale modes 
of climate variability, including the El Niño southern oscil-
lation (ENSO), have been shown to significantly impact 
mosquito-borne diseases in the tropics, including malaria 
(Kreppel et al. 2019).

Yamana and Eltahir (2013) assessed the effect of cli-
mate change on malaria transmission in West Africa using 
Hydrology, Entomology, and Malaria Transmission Simula-
tor (HYDREMATS) with climate projections from general 
circulation models. Their findings highlighted the impor-
tance of rainfall in shaping the impact of climate change 
on malaria transmission in future climates. However, the 
climate data obtained from global climate models (GCMs) 
is usually at a fairly coarse resolution and often of limited 
application in regional studies. In comparison, regional 
climate models (RCMs) which focus over a smaller area 
of interest can provide climate data at higher resolutions 
(e.g., 25–50 km). The present study utilizes the Coordinated 
Regional Climate Downscaling Experiment (CORDEX) 
simulations dataset in the Liverpool malaria model (LMM) 
to project impacts of climate change on malaria prevalence 
(e.g., the influence on malaria zone) in West Africa in the 
future. The study enhances our understanding on how these 
regional climates are impacted under RCP4.5 and RCP8.5 
emission scenarios, as well as the timings of the changes. 
Hence, the primary aim of the study is to evaluate the abil-
ity of CORDEX simulations to reproduce historical malaria 
features and investigate projected changes across the West 
African domain.

The main reason to focus our study over West Africa is 
that according to the WHO in its report 2018, in 2016, about 
90% of the 200 million infections and 91% of the 455,000 
annual deaths linked to malaria disease were found in sub-
Saharan Africa including West Africa. This fact shows that 
malaria is endemic in West Africa. This disease also has 
a high impact on the economy because, according to the 
WHO, malaria slows economic growth by causing heavy 
expenditure of around 25% on household income and consti-
tutes 40% of public health expenditure. West African coun-
tries are not yet ready to face the consequences of climate 
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change. They lack strong evidence of the links between 
health and climate. In most West African countries, the 
capacities needed to understand climate and environmental 
information are not yet up to par. This problem prevents 
having concrete results for decision-making and resource 
management. This work is part of a contribution to research 
on the impact of climate change which is a real problem 
influencing the transmission of malaria in West Africa.

2 � Materials and methods

2.1 � Study area

This study is focused on the western region of Africa. The 
region according to classification by the African Union con-
sists of 15 member countries that include Benin, Burkina 
Faso, Cabo Verde, Côte D'Ivoire, Gambia, Ghana, Guinea, 
Guinea-Bissau, Liberia, Mali, Mauritania, Niger, Nigeria, 
Senegal, Sierra Leone, and Togo having a total of about 410 
million population (UNWPP 2019) (see Fig. 1). About 394 
million people living in the countries of West Africa are at 
high risk of malaria except for Cabo Verde which had zero 
indigenous cases since February 2018 (WHO, malaria report 
2020). Malaria is transmitted in the region all year round 
and largely due to P. falciparum, with strong seasonality. 
The region is reported to have recorded about 112 million 
malaria cases and about 196 000 associated deaths. Given 
a large population, Nigeria (54%), Burkina Faso (7%), Côte 
d’Ivoire (7%), Niger (7%), and Mali (6%) account for about 
81% of the reported malaria cases (WHO, malaria report 

2020). The region has distinct two seasons known as the wet 
and dry seasons resulting from the interaction of two migrat-
ing air masses: the hot, dry tropical continental air mass and 
the moisture-laden, tropical maritime or equatorial air mass. 
The prevailing climatic conditions such as high temperatures 
and rainfall that characterize the region all year round create 
an ambient environment including vegetation that favors the 
breeding and survival of the malaria vectors.

2.2 � Climate data and methods

In this study, we have used climate data from the RCA4 
regional climate model forced by ERA-Interim reanalysis 
(Dee et al. 2011) and eight (8) global circulation models. 
The RCA4 regional climate model (Jones et al. 2011a, b; 
Dieterich et al. 2013) used in this study was developed at 
the Swedish Meteorological and Hydrological Institute and 
has provided nearly 120 simulations in the CORDEX project 
(Coordinated Regional Climate Downscaling Experiment). 
The model considers the physical, chemical, and biological 
processes by which ecosystems affect climate through vari-
ous spatial and temporal scales. In the evaluation run, the 
ERA-Interim data were used as boundary conditions for the 
RCA4 model to evaluate the ability of the model to simulate 
observed conditions were evaluated (Gbobaniyi et al. 2014 
and Klutse et al. 2016 for an evaluation of the RCA4 model 
over West Africa). The RCA4-downscaled GCMs are pro-
vided in Table 1.

We use the climate data from the RCA4-downscaled 
GCMs to develop malaria indices in three climatological 

Fig. 1   Map of the study area 
showing the 15 member coun-
tries; 2020 population distribu-
tions (UNWPP 2019) overlaid 
on the normalized difference 
vegetation index (NDVI)

855Impact of future climate change on malaria in West Africa



1 3

periods, namely historical (1980–2005), the near future 
(2006–2035), and the far future (2036–2065) using historical 
experiments and RCP4.5 and RCP8.5 scenarios. The base 
resolution of the domain is at 0.44° × 0.44° for an equato-
rial rotated coordinate system, resulting in a quasi-regular 
resolution of ~ 50 km. The LMM takes climate data at this 
native resolution. The CORDEX-Africa data used in this 
work were obtained from the Earth System Grid Federation 
server (https://​esgf-​data.​dkrz.​de/​proje​cts/​esgf-​dkrz/). The 
data process was performed using a MATLAB language 
that includes several functions for mapping NetCDF data 
and organizing time series to be easily used within the box 
plot function.

2.3 � Liverpool malaria model (LMM)

The LMM is a dynamical malaria model driven by daily 
time series of rainfall and temperature. The various compo-
nents of the malaria transmission model and the parameter 
settings are further described by Hoshen and Morse (2004) 
and Ermert et al. (2011). The LMM is a mathematical-bio-
logical model of parasite dynamics, which comprises the 
weather-dependent within vector stages and the weather-
independent within host stages. The mosquito population is 
simulated using larval and adult stages, with the number of 
eggs deposited into breeding sites and the larval mortality 
rate depending on the previous 10 days’ rainfall. The adult 
mosquito mortality rate and the egg-laying/biting cycle (so-
called gonotrophic cycle) also depend on temperature.

The process of parasite transmission between humans 
and mosquitoes is modeled with temperature dependencies 
for the replication rate of the parasite within the mosquito 
(sporogonic cycle) and the mosquito biting rate. Both cycles 
evolve as a function of the number of “degree days” above 
a specific temperature threshold. Respectively, the gono-
trophic and the sporogonic cycles take approximately 37 
and 111 degree days with a threshold of 9 °C (18 °C) (Cami-
nade et al. 2011). The LMM is very sensitive to the climate 
data inputs and the disease model parameterization. Studies 

about climate and health have used LMM simulations in 
southern Africa, including Zimbabwe and Botswana, and 
for the whole African continent (Morse et al. 2005, Jones 
and Morse 2010).

The LMM model is forced by daily rainfall and daily tem-
perature of the RCM model, e.g., SMHI-RCA4 driven by 
8 RCA4-downscaled GCMs, for the RCP4.5 and RCP8.5 
emission scenarios separately.

3 � Results and discussion

3.1 � Malaria prevalence and GCM models

Figure 2 represents the box-and-whisker plots of the pro-
jected mean annual cycle of the malaria prevalence in West 
Africa for the period 2006–2100 for the RCP85 (see figure 
for RCP45 in supplementary material). It is an average over 
time and space. The RCA4-downscaled GCMs reproduce 
the seasonal cycle of malaria prevalence as measured against 
the ERA-Interim evaluation runs. They highlight a decrease 
in mean annual cycles and prevalence in April–June and 
peaks in September–November. However, the decrease is 
more associated with the RCA4-downscaled GCMs such 
as RCA4/CanESM2, RCA4/CNRM, and RCA4/IPSL than 
RCA4/GFDL and RCA4/NorESM1 in both scenarios.

Figure 2 shows the simulations of the different climate 
models in the period from 1976 to 2065, for the RCP8.5 
scenario, illustrating the annual cycle of the malaria preva-
lence by box-whisker plots. A difference exists between 
the models on the amplitude of the maximum: two models 
have median maxima that do not even exceed 30–35% in 
the historical, the near future, and the far future (CanESM2 
and IPSL), but all the other models have median maxima 
which greatly exceed this value in these different periods 
(around 42%). The annual cycle is well reproduced in this 
scenario by all eight (8) models forcing the RCA4 regional 
model. The median maximum is obtained either in October 
(Fig. 2 a, c, and h) with the respective models CanESM2, 
CSIRO, and NorESM1 or in November (Fig. 2 b, d, e, 
f, and g) with the CNRM, GFDL, HadGEM2, IPSL, and 
MIROC models for the historical period (1976–2005). For 
the period of the near future (2006–203) as well as the 
far future (2035–2065), all the models predict the peak 
of the prevalence in the same month as that of the his-
torical period. Some models show the peak in October 
and other models in November as found in the historical 
period. A decrease in the peak of the prevalence of malaria 
is predicted by all models in the distant future. The mag-
nitude of the decline in peak malaria prevalence for the 
distant future varies from model to model; for example, 

Table 1   List of the global circulation models (GCMs) used in the 
study

Model name Country Resolution Literature

CanESM2m Canada 2.8° × 2.8° Arora et al. (2011)
CNRM-CM5 France 1.4° × 1.4° Voldoire et al. (2013)
CSIRO-Mk3 Australia 1.9° × 1.9° Rotstayn et al. (2013)
IPSL-CM5A-MR France 1.9° × 3.8° Hourdin et al. (2013)
MIROC5 Japan 1.4° × 1.4° Watanabe et al. (2011)
MPI-ESM-LR Germany 1.9° × 1.9° Ilyina et al. (2013)
NorESMI-M Norway 1.9° × 2.5° Tjiputra et al. (2013)
GFDL-ESM2M USA 2.0° × 2.5° Dunne et al. (2012)
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it is more marked with the models CanESM2 (Fig. 2a), 
CSIRO (Fig. 2c), IPSL (Fig. 2f).

The results of this study showed that the peak of malaria 
occurs in September–October with a lag of about 1 to 
2 months from the known peak of rainfall in West Africa 
(July–August–September). In general, the malaria season 
usually occurs between September and November, with 
a clear peak in October. Malaria transmission takes place 
toward the end of the rainy season in West Africa, following 
both heavy and frequent monsoon rains (Diouf et al 2020). 
Transmission generally continues until the beginning of the 
dry season during unusual wet years depending on the dura-
tion of the temporary ponds. This result was consistent with 
previous studies using surveillance malaria data for Senegal 
(Diouf et al 2017). For Mali also, there were similar peaks in 
malaria cases from September to November (Coulibaly et al 

2014) and a 3-month lag following the rainy season peak, 
which is also noted for Niger (Sissoko et al 2017).

These models generally underestimate the annual cycle of 
the malaria prevalence compared to the ERA-Interim dataset 
during the low malaria season and are closer to the evalu-
ation curve in the high malaria season. However, RCA4/
CSIRO, RCA4/HadGEM2, and RCA4/MIROC show a more 
coherent result with ERA-Interim. Although both scenarios 
produced closely identical results, the decrease in malaria 
prevalence in the far future is more pronounced in RCP8.5 
than RCP4.5. In addition, RCP8.5 provides more temporal 
variability as the variability appears smoother in the RCP4.5 
scenario.

Figure 3 represents the Hovmöller diagram of the pro-
jected mean annual cycle for the period 2006–2099 of the 
prevalence in West Africa (see figure for RCP45 in supple-
mentary material). In line with Fig. 2, the malaria prevalence 

Fig. 2   Box-and-whisker plot 
of the projected mean annual 
cycle of the prevalence in West 
Africa. The whiskers and the 
maximum/minimum outliers are 
shown. The boxes mark the 25th 
and 75th percentile ranks, while 
the whiskers give the minimum 
and maximum values. The mean 
annual cycle for evaluation 
(black curve), historical (gray 
curve), near future (blue curve), 
and far future (red line) of the 
prevalence in West Africa is 
superposed. The position of 
the first quartile, third quartile, 
and the median is highlighted. 
The LMM model is forced by 
rainfall and temperature from 
the regional climate model 
SMHI-RCA4, respectively, 
driven by 8 global models: a 
CanESM2, b CNRM, c CSIRO, 
d GFDL, e HadGEM2, f IPSL, 
g MIROC, h NorESM1 for the 
RCP85 scenario emission

857Impact of future climate change on malaria in West Africa



1 3

shows a maximum between September and November, while 
the rainfall usually peaks between July and September in 
West Africa (Folland et al. 1986; Sultan and Janicot 2003; 
Louvet 2008; Gbobaniyi et al. 2014). Regarding the spatial 
variability (y-axis), all the RCA4-downscaled GCMs show 
a latitudinal gradient with a stronger signal in the southern 
latitudes.

In addition, they, except RCA4/MIROC and RCA4/NorS-
ESM1, show similar signals of prevalence in both scenarios. 
RCA4/MIROC shows a stronger and more extended signal in 
RCP4.5 than RCP8.5 and vice versa for RCA4/NorSESM1.

Figure 4 represents the intra- and interannual variability 
(2006–2099) of malaria prevalence in West Africa (see fig-
ure for RCP45 in supplementary material). Again, all models 
downscaled show similar predominant decreases in interan-
nual variability and during the seasonal maximum malaria 
incidence in September–November.

However, in both RCP scenarios, RCA4/GFDL and 
RCA4/MIROC show the highest prevalence, while RCA4/
CanESM2 and RCA4/IPSL give the least prevalence even 
during periods of high malaria occurrence. Also, the 
prevalence signal is noticeably strong for RCA4/MIROC 
throughout the year and during September to November. 
This reinforcement results from climatic parameters spe-
cific to the RCA4/MIROC model, intrinsically based on 
various components such as atmosphere, earth, river, ice, 
and ocean (Barnett et al. 2008). Although the decrease 
is less visible for the RCA4/CanESM2 and RCA4/IPSL, 
considering the intra and interannual variability, RCP8.5 
shows a clearly stronger signal for all models compared 
to RCP4.5.

The latitudinal gradient highlighted in Fig. 3 is better 
exhibited in Fig. 5 representing the averaged (along the lon-
gitude) prevalence in West Africa.

Fig. 3   Hovmöller diagram 
of the projected mean annual 
cycle for the period 2006–2100 
(2006–2099 for HadGM2) of 
the prevalence in West Africa: 
simulations of the LMM model 
based on the outputs of the 
regional climate model SMHI-
RCA4, respectively, driven by 
global models: a CanESM2, b 
CNRM, c CSIRO, d GFDL, e 
HadGEM2, f IPSL, g MIROC, 
h NorESM1 for the RCP85 
scenario emission
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A net decrease of malaria prevalence is found from south-
ern to northern latitudes in all the RCA4-downscaled GCMs. 
In addition, this Fig. 5 confirms the results in Fig. 2 on the 
comparison of different periods including the evaluation 
with ERA-Interim dataset (black curve) by distinguish-
ing the historical period (gray curve), the near future (blue 
curve), and the far future (red line) for each model. In line 
with Fig. 2, RCA4/CanESM2, CNRM, and RCA4/IPSL, 
more than RCA4/GFDL and RCA4/NorESM1, underesti-
mate prevalence compared to the ERA-Interim dataset in 
both scenarios. Again, RCA4/HadGEM2, RCA4/GFDL, 
and RCA4/MIROC produced more consistent results with 
observed data in RCP4.5 and RCP8.5.

Figure 6 presents the differences between the models and 
the evaluations runs of the malaria prevalence, respectively, 
for the RCP8.5 scenario (see figure for RCP45 in supple-
mentary material) compared to the ERA-Interim dataset 
(evaluation).

The difference is calculated by comparing the evalu-
ation climatological period: Prevalence for the model 
(1981–2010) minus evaluation for the climatological period 
(1980–2010). In general, the pattern of malaria prevalence 
change under both RCPs is one of an increase in the south 
of the domain, a decrease in the Sahel region and a marginal 
decrease to little change in the north of the domain. There 
are differences in spatial extent as well as in the magnitude 
of the change, however, the pattern is consistent in seven of 
the eight models except for model (RCA4/CSIRO).

3.2 � Malaria prevalence and GCM ensemble

The simulated prevalence using ensembles of the RCA4/
GCMs for both RCP4.5 and RCP 8.5 scenarios is shown in 
Fig. 7 (see figure for RCP45 in supplementary material). 
Both scenarios indicate that malaria prevalence in the near 
and far future falls below evaluation and historical values. In 

Fig. 4   Intra- and interannual 
variability (2006–2099) of the 
prevalence in West Africa: The 
LMM model is forced by rain-
fall and temperature from the 
regional climate model SMHI-
RCA4, respectively, driven by 
global models: a CanESM2, b 
CNRM, c CSIRO, d GFDL, e 
HadGEM2, f IPSL, g MIROC, 
h NorESM1 for the RCP85 
scenario emission
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addition, September–November is identified as a transmis-
sion period with the peak between September and Novem-
ber, even though the intensity is more pronounced in RCP 
8.5 than RCP 4.5 scenario.

However, the intensity becomes more trivial in the far 
future for both scenarios. For instance, in the high transmis-
sion period (September–November) for RCP 4.5 scenario 
(see figure for RCP45 in supplementary material), malaria 
prevalence falls above 40% in 2006–2057; the prevalence 
falls within 35–40% thereafter. Meanwhile, the intensity 
falls below 35% as early as 2042 for RCP 8.5. More inter-
estingly, the intensity is limited to the southern part of the 
study region with time.

The findings here suggest that malaria transmission is not 
expected to increase due to climate change in the far future 
over West Africa. The prevalence will gradually decrease 
with time. This is in line with other studies (Yamana and 
Eltahir 2013; Caminade and Jones 2016; Yamana et al. 
2016). In these studies, it was concluded that malaria is 

expected to fall in West Africa with time. The high trans-
mission period is consistent with the findings of Diouf et al 
(2017) over Senegal. In addition to these findings, our results 
show that malaria prevalence is expected to be shifted to 
the southern part of West Africa in the far future. In par-
ticular, the southern region of Cote d’Ivoire, Ghana, Togo, 
Benin, and Nigeria could experience more malaria intensity 
in future due to climate change.

4 � Conclusion

Malaria transmission is known to be linked to seasonal 
rainfall with a lag of 1 to 2 months. In West Africa, while 
the rainfall season is at its peak in July–August–September, 
the peak of the malaria outbreak season occurs in Septem-
ber–October–November. Another important meteorologi-
cal variable that influences malaria is temperature. Using 
the Liverpool malaria model, we have evaluated the ability 

Fig. 5   Averaged (along the 
longitude) prevalence in West 
Africa. The LMM model is 
forced by rainfall and tempera-
ture from the regional climate 
model SMHI-RCA4, respec-
tively, driven by global models: 
a CanESM2, b CNRM, c 
CSIRO, d GFDL, e HadGEM2, 
f IPSL, g MIROC, h NorESM1 
for the RCP85 scenario emis-
sion
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of CORDEX-driven simulations to reproduce historical 
malaria features over the West African domain and quan-
tify projected changes under two RCPs, namely RCP.45 
and RCP8.5. We examine each individual RCA4/GCM and 
LMM downscaling as well as the multi-model ensemble 
to improve our understanding of the timing and magnitude 
of regional malaria change over West Africa. Our findings 
show some similarities between RCP 4.5 and 8.5; however, 
we find malaria prevalence under RCP 8.5 is more substan-
tial than that of RCP 4.5 especially when considering the 
RCA4/GCM and LMM ensemble.

In general, our results show that malaria prevalence will 
gradually diminish over West Africa in our near and far 
future periods, with the magnitude of the decrease higher 
in the far future. Such a decrease in malaria over the far 
future period seems to be associated with climate change 
(Gething et al. 2010; Beguin et al. 2011). However, this 
study highlights that malaria prevalence is expected to 
increase in the southern part of the study region in the 
future. This agrees with earlier findings in previous studies 

over West Africa such as Peterson (2009) who showed epi-
demic fringe shifted southward for most malaria models. It 
is expected that over the 2080s, climate would become so 
unsuitable in the northern part of the Sahel, with no more 
additional people at risk (Caminade et al. 2014). Beguin 
et al. (2011) showed an opposing effect of climate change 
on the global distribution of malaria, and they show 
a decrease in the simulated malaria behaviors over the 
Sahel whatever time period and scenario considered which 
is related to a temperature effect. So warm temperatures 
could impact on the adult mosquito survival scheme start-
ing to kill a lot of adult mosquitoes in the model and that 
implies decrease in malaria transmission. Otherwise, the 
large-scale migration of populations from areas in which 
malaria is endemic into receptive areas will play an impor-
tant role in the dynamics of the disease (WHO 1974). The 
health impacts of climate change will not be distributed 
evenly (Costello et al. 2009), and the distribution of the 
most severe health burdens is almost opposite to the global 
distribution of greenhouse gas emissions.

Fig. 6   Distribution of the 
prevalence for the model 
(1980–2010) minus evalu-
ation for the climatological 
period (1980–2010): The LMM 
model is forced by rainfall and 
temperature from the regional 
climate model SMHI-RCA4, 
respectively, driven by global 
models: a CanESM2, b 
CNRM, c CSIRO, d GFDL, e 
HadGEM2, f IPSL, g MIROC, 
h NorESM1 for the RCP85 
scenario emission
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Indeed, some uncertainties driven by the RCA/GCMs 
but also by the impact model (LMM) might be taken into 
account in these findings. The change in malaria risk as 
simulated must be interpreted within the framework of 
local conditions and developments, such as the health 
services, the parasite reservoir, and mosquito densities. 
Therefore, the extent of an increase in malaria risk will 
be superimposed on the change in malaria transmission 
associated with socioeconomic development, population 
growth, and the effectiveness of control measures.

In the context of climate change, these results are 
expected to be useful for decision-makers who plan public 
health measures in affected countries in West Africa and 
elsewhere. These results can be useful for stakeholders in 
order to develop mitigation and vector control strategies.

The findings from this study are limited to the latest 
version of LMM and use climate drivers from only one 
RCM. In future work, we would like to use other malaria 
models such as VECTRI and HYDREMATS and other 
CORDEX downscaling to further explore the uncertainty 
envelope of projected malaria prevalence over West Africa 
and the rest of the continent.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00704-​021-​03807-6.
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