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a b s t r a c t 

Time-dependent partial differential equations of parabolic type are known to have a lot of 

applications in biology, mechanics, epidemiology and control processes. Despite the use- 

fulness of this class of differential equations, the numerical approach to its solution, espe- 

cially in high dimensions, is still poorly understood. Since the nature of reaction-diffusion 

problems permit the use of different methods in space and time, two important approxi- 

mation schemes which are based on the spectral and barycentric interpolation collocation 

techniques are adopted in conjunction with the third-order exponential time-differencing 

Runge-Kutta method to advance in time. The accuracy of the method is tested by consid- 

ering a number of time-dependent reaction-diffusion problems that are still of current and 

recurring interests in one and high dimensions. 
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This is an open access article under the CC BY-NC-ND license 
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Introduction 

Most meaningful practical and real-life problems such as Burgers, Robertson, Fisher, Gray-Scott, Allen-Cahn, Korteweg-de 

Vries (KdV), Schrodinger, Kadomtsev-Petviashvili, Kuramoto–Sivashinsky, Navier-Stokes, Davey-Stewartson equations, among 

many others which are often encountered in engineering and applied sciences exist in the form of partial differential equa- 

tions (PDEs) [1–5] . Mathematical modelling of various physical scenarios in applied mathematics and ecology which include 

pattern formation process, elasticity, hydrodynamics, electromagnetic theory, nonlinear optics, acoustics, plasma physics, 

Bose-Einstein condensates, and quantum mechanics among others, also involves PDEs. 

Due to nonlinearity nature of the type of chaotic or dispersive equations [6] , to obtain their analytical solutions is al-

most impossible, and where it is possible it may requires rigorous mathematical techniques to obtain a solution. In view 
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of the importance of these equations and the open mathematical questions that may arise, efficient and robust numerical 

algorithms are required to enable extensive numerical studies of the PDEs. 

A specific interest of study in this paper is the parabolic-type of PDE which has been used to describe a variety of

time-dependent phenomena such as wave propagation, particle diffusion, heat conduction, ocean acoustic propagation, and 

pricing of derivative investment instruments [7,8] . 

Over the last few decades, much attention has been given to the challenges of finding numerical solution to this class

of time-dependent parabolic PDEs [1,9,10] . However, a number of numerical methods have been proposed for finding the 

approximate solutions for this class of differential equations written in the form 

u t = L u + F(u, t) (1) 

where L and F (which represents the biological or chemical reaction kinetics) denote the linear and nonlinear operators, 

respectively. 

The coupled reaction-diffusion equations take the form 

(u i ) t = d i L i u i + f i (t, x, u i ) , i = 1 , 2 , . . . , t ∈ (0 , T ] , x ∈ � (2)

subject to the boundary and initial conditions 

∂u i 

∂ ν
= 0 , u i (0 , x ) = αi (x ) , for 1 , 2 , . . . t ∈ (0 , T ] , x ∈ � (3)

where d i is the diffusion coefficients of species u i for i = 1 , 2 , . . . , � is the bounded domain in R 

n (n = 1 , 2 , . . . ) , ∂� is the

boundary of �, ∂ /∂ ν is the outward normal derivative on ∂�. 

In reality, many time-dependent PDEs as in (1) combines low-order nonlinear parts with the higher-order linear parts. 

When (1) is discretized in space with either finite difference or spectral methods, one obtains a system of coupled linear

ordinary differential equations in time. The resulting system of ODEs is known to be stiff [11,12] . The linear parts are pri-

marily responsible for the stiffness with rapid exponential decay of some modes or a rapid oscillation of some modes, as

with the case of a chaotic or dissipative PDEs, respectively. 

The traditional way of solving this type of problems is by applying the known finite difference method, finite-element 

method, finite volume method, and Fourier spectral method [13–17] . There are other approaches which had been applied to 

deal precisely with the equations of the form (1) with a linear stiff term as implicit-explicit (IMEX) scheme [18–20] , time

splitting and integrating factor (IF) schemes [21] as well as sliders and exponential time differencing [11,22,23] . B-spline 

collocation method has been used to solve many PDEs [24,25] . Likewise the meshless barycentric interpolation collocation 

method had solved a range of elliptic and parabolic PDEs [26,27] . Apart from the methods discussed here, a number of nu-

merical techniques which has been applied to solve time-dependent PDEs can be found in [28–31] , and references therein.

This work adapts two trending numerical schemes that are based on the spectral and barycentric interpolation colloca- 

tion methods in conjunction with the novel third-order exponential time differencing Runge-Kutta scheme to explore high 

dimensional patterns in time-dependent reaction-diffusion problems of parabolic type. 

The remainder part of this paper is organized as follows. Some preliminaries such as definitions and useful results are 

presented in Section 2 . The main numerical methods in space and time and described in Section 3 with numerical example

to justify their suitability. Several numerical examples such as the Allen-Cahn bistable equation and coupled predator-prey 

model are experimented in Section 4 with a view to explore their dynamic richness in one, two and three dimensional

spaces. Conclusion is finally drawn with the last section. 

Preliminaries 

In this section, some useful definitions and results are briefly reported. Barycentric interpolation collocation method is 

known to be of high precision and efficiency numerical scheme for solving linear differential equations. In most cases where 

BICM is applied, the nonlinear terms are converted to linear differential equations. Recall that the general time-dependent 

problem (1) can be broken into linear and nonlinear terms as 

L u (x, t) + F u (x, t) = f (x, t) (4) 

where L and F represent the operator for the linear and nonlinear terms, respectively, and f (x, t) is any local kinetic.

Assuming u 0 (x, t) is given, then the above equation becomes 

L u (x, t) + F u 0 (x, t) = f (x, t) (5) 

which means that (4) has been transformed to a linear equation as in (5) . It is possible to obtain a new function u 1 (x, t) for

solving (5) , and have a linear iterative method 

L u n (x, t) + F u n −1 (x, t) = f (x, t) . (6) 

If u n (x, t) → u (x, t) as n → ∞ , we say that the linear iterative method (6) is convergent. 

Theorem 2.1 [32] . Suppose that the linear operator L is bounded, and F is a Frechet differentiable operator. If the exact and

numerical solution of (1) are denoted by u (x, t) and u n (x, t) , respectively, then L u n (x s , t) for s = 1 , 2 , . . . , N and lim 

n →∞ 

u n (x, t) =
u (x, t) . 
2 
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Let P(x ) be the Lagrange interpolation function for approximating u (x ) .based on interpolation remainder theorem, we 

get 

ε(x ) := u (x ) − P(x ) = 

u 

k +1 (τi ) 

(k + 1)! 

k ∏ 

i =0 

(x − x i ) . 

Based on the above estimates, the following results are given. 

Lemma 2.2 [33] . If u (x ) ∈ C k +1 ([ a, b]) , then the estimates for function ε(x ) is defined as ⎧ ⎪ ⎨ 

⎪ ⎩ 

| ε(x ) | ≤ C 1 ‖ u 

(k +1) ‖ ∞ 

(
εh x 
2 k 

)k 
, 

| ε ′ (x ) | ≤ C ∗1 ‖ u 

(k +1) ‖ ∞ 

(
εh x 

2(k −1) 

)k −1 
, 

| ε ′′ (x ) | ≤ C ∗∗
1 ‖ u 

(k +1) ‖ ∞ 

(
εh x 

2(k −2) 

)k −2 
, 

(7) 

where C 1 , C 
∗
1 
, C ∗∗

1 
are constants which are independent of x , εdenotes a natural algorithm, and h x stands for the length of [ a, b] 

Also, for two-dimensional case, if P(x, y ) is the Lagrange interpolation function of u (x, y ) which satisfies P(x k , y n ) =
u (x k , y n ) . Then we define the error function as 

ε(x, y ) : = u (x, y ) − P(x k , y n ) 

= u (x, y ) − P(x k , y ) + P(x, y ) − P(x k , y n ) 

= 

∂ (k +1) 
x u (τi , y ) 

(k + 1)! 

k ∏ 

i =0 

(x − x i ) + 

∂ (n +1) 
y u (x k , τ j ) 

(n + 1)! 

n ∏ 

j=0 

(y − y j ) (8) 

Then we present the following results. 

Theorem 2.3 [34] . Suppose u ∈ C 0 ([0 , T ]) , C k̄ +1 ([ a, b] × [ c, d]) , where k̄ = max { k, n } , let u (x k , y n , t) : 
∏ 

u (x k , y n , t) = 0 and as-

sume the function f (u ) satisfies the Lipschitz condition, we obtain 

| u (x, y, t) − u (x k , y n , t) | ≤ C ∗∗
1 

∥∥∂ (k +1) 
x u 

∥∥
∞ 

(
εh x 

2(M − 2) 

)M−2 

+ C ∗∗
2 

∥∥∂ (n +1) 
y u 

∥∥
∞ 

(
εh y 

2(N − 2) 

)N−2 

. (9) 

Methods of approximation in space and time 

Generally speaking, the nature of time-dependent reaction-diffusion equations permit the use of different numerical 

methods in space and time. For instance, the authors in [14,22,35–40] applied finite difference, finite element and spectral 

methods to discretize a range of reaction-diffusion problems in space, and the resulting systems of ODEs was advanced 

with different explicit time solvers. Hence, this paper applied both the spectral interpolation collocation method and the 

barycentric interpolation collocation method in space. The resulting systems of ODEs is advanced in time with the novel 

exponential time-differencing Runge-Kutta scheme [11] . 

Spectral interpolation collocation method (SICM) 

In this segment, the k th order spectral differential matrix is adapted to discretize equation of the form (1) . By following

the idea in [32] , we write the interpolation function P N u (x ) of the sequence u 1 , u 2 , . . . , u N as 

u (x ) ∼ P N u (x ) = 

N ∑ 

m =1 

u m 

�N (x − x m 

) (10) 

where 

�N (x ) = 

sin (πx/h ) 

tan (x/ 2)(L/h ) 
, L 
 0 , 

P N denotes the interpolation operator for any function u (x ) in interval [0 , L ] , u n = u (nh ) , n = 1 , 2 , . . . , N, x n − x m 

= (n − m ) h ,

we span the interpolation space { �N (x − nh ) , n = 1 , 2 , . . . , N} . 
At point x n = nh , the expression for the k th derivative of operator P N u (x ) can be derived as 

P N u 

(k ) (x n ) = 

N ∑ 

m =1 

u m 

�(k ) 
N 

(x n − x m 

) 
3 
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where we denote 

D 

(k ) 
N 

(x n ) = [�(k ) 
N 

(x n − x m 

)] n,m =1 , 2 , ... ,N 

Working in two-dimensional space, we consider a square spatial domain size � = [0 , L ] × [0 , L ] , and define the space grid

points N 2 over � as 

(x i , y n ) = (ih, nh ) , i, n = 1 , 2 , . . . , N 

where step size h = L/h for N ∈ N . By applying (10) , the interpolation function P N u (x, y, t) of function u (x, y, t) becomes 

u (x, y, t) ∼ P N u (x, y, t) = 

N ∑ 

i =1 

N ∑ 

n =1 

�N (x − x i )�N (y − y i ) u (x i , y n , t) 

with u i,n = u (x, y, t) , i, n = 1 , 2 , . . . , N. Then at collocation points (x a , y b ) , the following relations hold: 

u (x a , y b , t) ∼ P N u (x a , y b , t) = 

N ∑ 

i =1 

N ∑ 

n =1 

�N (x a − x i )�N (y b − y i ) u (x i , y n , t) (11)

Bear in mind that the second-order spatial derivatives in the directions x and y and time t is expressed as 

∂ 2 u (x a , y b , t) 

∂x 2 
= u 

(2 , 0) (x a , y b , t) ∼ P N u 

(2 , 0) (x a , y b , t) = 

N ∑ 

i =1 

N ∑ 

n =1 

�(2) 
N 

(x a − x i )�N (y b − y i ) u (x i , y n , t) 

and 

∂ 2 u (x a , y b , t) 

∂y 2 
= u 

(0 , 2) (x a , y b , t) ∼ P N u 

(0 , 2) (x a , y b , t) = 

N ∑ 

i =1 

N ∑ 

n =1 

�N (x a − x i )�
(2) 
N 

(y b − y i ) u (x i , y n , t) . 

It should be noted that 

u = [ u 11 , u 21 , . . . , u N1 , u 12 , u 22 , . . . , u N2 , u 1 N , . . . , u NN ] 
T (12)

In matrix form, Eq. (11) can be written as 

u 

(2 , 0) = D 

(2 , 0) 
N 

u, u 

(0 , 2) = D 

(0 , 2) 
N 

u (13) 

where 

D 

(2 , 0) 
N 

u = D 

(2) 
N 

� E N , D 

(0 , 2) 
N 

u = E N � D 

(2) 
N 

, D 

(0 , 0) 
N 

= E N � E N (14) 

where � is the usual matrix Kronecker product, and E N denotes N−order unit matrix. 

When (12) and (13) is applied to multicomponent system (2) with i = 1 , 2 , we have 

∂ 

∂t 

(
u 1 

v 2 

)
= 

(
d 1 D 0 

0 d 2 D 

)(
u 1 

u 2 

)
= 

(
f 1 (u 1 , u 2 ) 
f 2 (u 1 , u 2 ) 

)
(15) 

Note that 

[ u 1 , u 2 ] = [ u 1 , 11 , . . . , u 1 ,N1 , u 1 , 12 , . . . , u 1 ,N2 , u 1 , 1 N , . . . , u 1 ,NN ] 

D = D 

(2 , 0) 
N 

+ D 

(0 , 2) 
N 

= D 

(2) 
n � E N + E N � D 

(2) 
N 

Similarly for the reaction term vector, we have 

f 1 (u 1 , u 2 ) , f 2 (u 1 , u 2 ) = [ f 1 (u 1 , 11 , u 2 , 11 ) , . . . , f 1 (u 1 ,NN , u 2 ,NN ) , f 2 (u 1 , 11 , u 2 , 11 ) , . . . , f 2 (u 1 ,NN , u 2 ,NN )] . 

Barycentric interpolation collocation method (BICM) 

For the discretization scheme here, we choose a rectangular domain size � = [ a, b] × [ c, d] , these two intervals are par-

titioned into M + 1 , N + 1 distinct Chebyshev nodes a = x 0 < x 1 < · · · < x M 

= b, c = y 0 < y 1 < y 2 < · · · < y N = d. By following

[34] we denote u (x i , y, t) = u i (y, t) , i = 0 , 1 , 2 , . . . , M and fix variable y . In barycentric interpolation form, one can write the

unknown function u (x, y, t) as 

u (x, y, t) = 

M ∑ 

n =0 

ϕ n (x ) u n (y, t) , (16) 
4 
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where ϕ n (x ) is the basis function in the x −direction. By using (16) in (1) or one-component case of system (2) at the nodes

x i , i = 0 , 1 , 2 , . . . , M, we obtain 

M ∑ 

n =0 

ϕ n (x i ) 
∂u n (y, t) 

∂t 
−

M ∑ 

n =0 

ϕ 

′′ 
n (x i ) u n (y, t) −

M ∑ 

n =0 

ϕ n (x i ) 
∂ 2 u n (y, t) 

∂y 2 

+ f 

( 

M ∑ 

n =0 

ϕ n (x i ) u n (y, t) 

) 

= 0 . (17) 

where 

ϕ 

′′ 
n (x i ) = 

d 2 ϕ n (x i ) 

dx 2 
= D 

(2) 
in 

. 

Conveniently, the above equation can be transformed into matrix of the form ⎛ 

⎜ ⎜ ⎜ ⎝ 

∂u 0 (y,t) 
∂t 

∂u 1 (y,t) 
∂t 
. . . 

∂u M (y,t) 
∂t 

⎞ 

⎟ ⎟ ⎟ ⎠ 

−

⎛ 

⎜ ⎜ ⎜ ⎝ 

D 

(2) 
00 

D 

(2) 
01 

· · · D 

(2) 
0 M 

D 

(2) 
10 

D 

(2) 
11 

· · · D 

(2) 
1 M 

. . . 
. . . 

. . . 

D 

(2) 
M0 

D 

(2) 
M1 

· · · D 

(2) 
MM 

⎞ 

⎟ ⎟ ⎟ ⎠ 

⎛ 

⎝ 

u 0 (y, t) 

u 1 (y, t) 
. . . 

u M 

(y, t) 

⎞ 

⎠ −

⎛ 

⎜ ⎜ ⎜ ⎝ 

∂ 2 u 0 (y,t) 
∂y 2 

∂ 2 u 1 (y,t) 
∂y 2 

. . . 
∂ 2 u M (y,t) 

∂y 2 

⎞ 

⎟ ⎟ ⎟ ⎠ 

+ 

⎛ 

⎜ ⎜ ⎝ 

f (u 0 (y, t)) 
f (u 1 (y, t)) 

. . . 
f (u M 

(y, t)) 

⎞ 

⎟ ⎟ ⎠ 

= 0 

(18) 

In the same manner, let u i (y k , t) = u ik . This implies that u i (y, t) has the barycentric interpolation of the form 

u i (y, t) = 

N ∑ 

j=0 


 j (y ) u i j (t) , (19) 


 j (y ) in the barycentric interpolation stands for the basis function on y −direction. By substituting for (19) in (18) at the

nodes y k , k = 0 , 1 , 2 , . . . , N, one-component form of (2) results to the following system of ordinary differential equations ⎛ 

⎜ ⎜ ⎜ ⎝ 

∑ N 
j=0 
 j (y k ) 

∂u 0 (y,t) 
∂t ∑ N 

j=0 
 j (y k ) 
∂u 1 (y,t) 

∂t 

. . . ∑ N 
j=0 
 j (y k ) 

∂u M (y,t) 
∂t 

⎞ 

⎟ ⎟ ⎟ ⎠ 

−

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

D 

(2) 
00 

D 

(2) 
01 

· · · D 

(2) 
0 M 

D 

(2) 
10 

D 

(2) 
11 

· · · D 

(2) 
1 M 

. . . 
. . . 

. . . 

D 

(2) 
M0 

D 

(2) 
M1 

· · · D 

(2) 
MM 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎝ 

∑ N 
j=0 
 j (y k ) u 0 j (t) ∑ N 
j=0 
 j (y k ) u 1 j (t) 

. . . ∑ N 
j=0 
 j (y k ) u M j (t) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

−

⎛ 

⎜ ⎜ ⎜ ⎝ 

∑ N 
j=0 


′′ 
j 
(y k ) u 0 j (t) ∑ N 

j=0 

′′ 
j 
(y k ) u 1 j (t) 

. . . ∑ N 
j=0 


′′ 
j 
(y k ) u M j (t) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

+ 

⎛ 

⎜ ⎜ ⎜ ⎝ 

f 
(∑ N 

j=0 
 j (y k ) u 0 j (t) 
)

f 
(∑ N 

j=0 
 j (y k ) u 1 j (t) 
)

. . . 

f 
(∑ N 

j=0 
 j (y k ) u M j (t) 
)

⎞ 

⎟ ⎟ ⎟ ⎠ 

= 0 (20) 

where 


 ′′ 
j (y k ) = 

d 2 
 j (y k ) 

dy 2 
= D 

(2) 
jk 

. 

Finally, we write (20) in matrix form 

dU 

dt 
− (D 

(2) 
� I N ) U − (I M 

� D 

(2) ) U + f (U ) = 0 (21) 

where 

U = [ u 

T 
0 (t) , u 

T 
1 (t) , u 

T 
2 (t ) , . . . , u 

T 
M 

(t )] T , 

= [ u 00 (t) , u 01 (t) , . . . , u 0 N (t) , u 10 (t) , u 11 (t) , . . . , u 1 N (t) , · · · , u M0 (t) , u M1 (t) , . . . , u MN (t)] T , 

u i (t) = [ u i 0 (t) , u i 1 (t) , . . . , u iN (t)] T , 

D 

(2) is the second-order differential matrix on equally spaced nodes x 0 , x 1 , x 2 , . . . , x M 

, while D 

(2) represents second-order 

differential matrix in the y -direction with nodes y 0 , y 1 , y 2 , . . . , y N . I M 

and I N are the identity matrices with orders M + 1 and

N + 1 , respectively. And, � remains as earlier defined. It should be noted that at this stage, any explicit solver can be applied

to advance in time. 
5 
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Exponential time-differencing Runge-Kutta method 

The explicit numerical method considered in this work is exponential time-difference (ETD) scheme of Runge-Kutta type 

which are known for a long time in the field of computational electrodynamics [41] , a detailed review of the class of ETD

schemes and their history can be found in [42] . Ever since its inception, a lot of research attention has been paid to its for-

mulation and application to solve a range of real-life phenomena [11,22] . The idea of exponential time-differencing methods 

is similar to that of the Integrating factor method in the sense that both sides of a differential equation is multiplied by

the integrating factor. To allow the solution of the linear part, a change of variable is made and any numerical method of

interest is applied to transform nonlinear part. 

When system (1) is discretized in space,it results to system of ODEs of the form 

u t = L u + F (u, t) . (22) 

Next, we multiply the above equation with the integrating factor term e −L t to yield 

e −L t u t = e −L t L u + e −L t F (u, t) , (23) 

or 

e −L t u t − e −L t L u = e −L t F (u, t) . (24) 

If we let v t = e −L t u t − e −L t L u , then (24) becomes 

v t = e −L t F (v , t) . (25) 

Obviously, at this stage the stiff linear part is vanished, which means any time-stepping method of choice can be applied. 

For the modified ETD case, instead of changing the variable, we follow description in [22] and integrate (24) over a single

time-step h to have 

u n +1 = e L h u n + e L h 
∫ h 

0 

e −L ξ F (u (t n + ξ ) , t n + ξ ) dξ . (26) 

Now, various ETD schemes can be obtained depending on how one approximates the integral (26) . In [11] , the authors

formulated a set of schemes based on Runge-Kutta time solver,which are popularly referred to as the ETDRK schemes. In 

this paper only the third-order scheme, denoted as ETD3RK is considered as: 

φn = u n e 
L h/ 2 + 

(
e L h/ 2 − 1 

)
F n / L , 

ϕ n = u n e 
L h + 

(
e L h − 1 

)
(2 F (φn , t n + h/ 2) − F n ) / L , 

u n +1 = u n e 
L h + 

{
((L 2 h 

2 − 3 L h + 4) e L h − L h − 4) F n 

+4((L h − 2) e L h + L h + 2) F (φn , t n + h/ 2) 

+((−L h + 4) e L h − L 2 h 

2 − 3 L h − 4) F (ϕ n , t n + h ) 
}
/ (L 3 h 

2 ) . (27) 

where terms φn and ϕ n is used for the approximation of u -values at points t n + h/ 2 and t n + h , respectively. The time-

stepping formula (27) is the quadrature method for integral (26) which is derived from quadratic interpolation via the 

points t n , t n + h/ 2 and t n + h . Details of stability and convergence properties of ETD schemes can be found in [22,43,44] . 

To test the accuracy and applicability of the SICM and BICM when used in conjunction with the ETD3RK method, we

consider the following problem 

−u 

′′ (x ) + βu (x ) = f (x ) , x ∈ [0 , 1] , u (0) = u (1) = 0 . (28)

Here function f and real number β are assigned in such a way that there exists a unique solution. Equation (28) has been

used to model a number of phenomena, for instance the concentration of chemical species transported in a fluid with 

velocity β . With f (x ) = cos (απx ) we compute the numerical result of the convection-diffusion equation in Fig. 1 (a). In

plot (b) we compute the absolute error with f (x ) = (π2 + 130) sin (πx ) cos (10 x ) + 20 π cos (πx ) sin (10 x ) , the true solution is

given as U e = sin (πx ) cos (10 x ) . It is obvious that both schemes compete very well with the exact solution. Absolute error

results computed for different N and step-size h is presented in Table 1 . 

Numerical experiments 

The aim of this section is based on the numerical solution of time-dependent reaction-diffusion equations, using the 

numerical methods as derived in Section 3 . A range of nontrivial problems of reaction-diffusion systems which are still of

current and recurring interests are taken from literature is chosen to demonstrate the effectiveness of the numerical schemes 

in one and high dimensions. All computations are carried out in MATLAB R2013a software package. 
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Fig. 1. Solution of problem (28) showing the performance of the schemes. 

Table 1 

Absolute errors for problem (28) for different step-size h and N with β = 

25 . 

N h SICM CPU BICM CPU 

0.25 2.961684e-06 0.14s 1.039433e-06 0.16s 

64 0.125 2.284839e-07 0.13s 2.266685e-07 0.14s 

0.0625 2.539635e-07 0.12s 1.361448e-07 0.11s 

0.25 1.316938e-06 0.12s 7.207915e-06 0.13s 

128 0.125 1.678102e-07 0.13s 9.258809e-07 0.11s 

0.0625 1.934009e-07 0.15s 6.645236e-07 0.12s 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bistable Allen-Cahn equation 

The bistable Allen-Cahn equation is an example of time-dependent nonlinear reaction-diffusion equation 

u t = γ u xx + u − u 

3 , (x, y, z) ∈ �, t > 0 , 
∂u 

∂n 

| ∂� = 0 , (29)

where the second-order spatial derivative is expressed in one, two and three dimensions as u xx = 

∂ 2 u 
∂x 2 

, u xx = 

(
∂ 2 u 
∂x 2 

+ 

∂ 2 u 
∂y 2 

)
and u xx = 

(
∂ 2 u 
∂x 2 

+ 

∂ 2 u 
∂y 2 

+ 

∂ 2 u 
∂z 2 

)
, respectively. 

Ever since the introduction of Allen-Cahn equation in 1979 by Allen and Cahn [45] , it has been used to model a num-

ber of useful phenomena in image analysis, crystal growth, curvature flow rate, and also to model a number of biological

populations [46–48] . Equation (29) has three steady states, u − = −1 , u 0 = 0 and u + = 1 . Obviously, the middle state refers

to extinction and unstable, but the two feasible or nontrivial states u = ±1 are attracting which make solutions to exhibit

flat areas. Though the dynamic behavior of this equation depends on the choice of initial conditions. In the experiment, we

shall explore various dynamical structures for different instances of initial conditions in one and high dimensions. 

Consider 1D Allen-Cahn equation in � = [ −L, L ] for L 
 0 chosen to allow the waves to propagate with simulation param-

eters γ ∈ (0 . 1 , 1) , �t = 0 . 125 , N = 200 . We allow initial condition to be varied as shown in the figures captions. In Fig. 2 (a),

the boundary condition is clamped to the extremes of domain � = [ −1 , 1] with initial condition computed as 

u 0 = 0 . 53 x (2 : ω − 1) + 0 . 47 sin (−1 . 5 πx (2 : ω − 1)) , (30)

where ω is the length of x ∈ [ −1 , 1] with γ = 0 . 5 . Simulation runs for t = 100 . In plot (b) the effect of diffusion coefficient

γ is observed using the initial condition 

u 0 = (x < −1) exp (7(x + 1)) + (x > 1) exp (−7(x − 1)) + sech (7 x ) 2 , (31)

with L = 3 . Plots (c) and (d) correspond to γ = 0 . 1 and γ = 0 . 45 , respectively with 

u 0 = 0 . 53 x + 0 . 47 sin (−1 . 5 πx ) − x (32) 

on � = [ −1 , 1] × (0 , T ] in order to mimic the existing behavior of the dynamic equation. We further verify the sensitivity

of the Allen-Cahn equation to initial functions as displayed in Fig. 3 . Numerical results in plots (a-d) correspond to the

computed initial conditions 
7 
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Fig. 2. One-dimensional spatiotemporal evolution of Eq. (29) for different initial conditions. 

 

 

 

 

As an extension to one-dimensional experiments, we consider 2D Allen-Cahn equation on different computational do- 

main � = [ −L, L ] × [ −L, L ] × [0 , T ] subject to various initial conditions to see the effect of computational time and diffusion

coefficient γ . In Fig. 4 , we utilized parameters γ = 0 . 5 , L = 10 , h = 0 . 01 , N = 256 , with initial conditions taken as 

u 0 = 10 exp (−10((x − 5) 2 + (y − 5) 2 )) + 10 exp (−10((x + 5) 2 + (y + 5) 2 )) 

+10 exp (−10((x − 2) 2 + (y + 2) 2 )) + 10 exp (−10((x + 2) 2 + (y − 2) 2 )) , (33) 

and 

u 0 = 10 exp (−10((x + 2) 2 + (y + 4) 2 )) + 10 exp (−10((x − 2) 2 + (y − 2) 2 )) 

+10 exp (−15((x + 2) 2 + (y − 4) 2 )) (34) 

which lead to the generation of three- and four-solitons (pulses), respectively at initial stage and as simulation time pro- 

gresses, the standing solitons merged gradually as one with a large crater at the top. Solitons or pulse formation process

has a lot of applications in optic fiber (due delicate balance between nonlinear and linear effects in the medium), and laser

(where pulses of well-defined shape and width are generated). Pulse splitting process is also an important phenomena for 

pattern formation in applied chemistry, physics and biology. More periodic pulse formation is possible depending on how 

the initial condition is formulated. 

In Fig. 5 we employ the initial condition computed as 

to obtain the evolution of cyclic patterns with rho = 7 . The upper and lower rows correspond to γ = 0 . 01 , 0 . 50 , respectively.

Since Allen-Cahn equation has been used to model spatial distribution of biological populations, to mimic the behavior 

in ecological perspective, we allow the initial condition to evolve naturally by utilizing the computer randomly perturbed 

condition 

u 0 (x, y, 0) = randn (N, N) ∗ 0 . 5 
8 
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Fig. 3. One-dimensional evolution of model (29) showing the sensitivity to various initial conditions. 

Fig. 4. Two-dimensional distribution of Allen-Cahn equation for different computational time and initial conditions. The upper and lower rows correspond 

to the emergence of the three and four solitons, respectively. 
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Fig. 5. Two-dimensional evolution of Eq. (29) showing cyclic patterns for different parameter γ . 

 

 

 

 

 

 

 

 

where N = 200 . The reason for this choice of initial condition arises due to a subtle fact that a random initial data often

results to a solution with different wave frequencies, so that more interesting and detailed scenarios associated with various 

wave frequencies are explored in the dynamical process, while a numerical experiment with a smooth initial data may 

leads to solution with trivial structure in a short time. The upper, middle and lower rows in Fig. 6 correspond to γ =
0 . 10 , 0 . 50 , 0 . 01 , respectively. In this result, we observed the evolution of Turing spirals, mitotic spots and stripe-like patterns

which have application in applied and computational ecology. 

In a similar fashion, we consider (29) on � = [0 , L ] 3 × (0 , T ] . The above initial function is extended to 3D to obtain

numerical results in Fig. 7 for different γ as 

with parameters N = 200 , L = 100 , h = 0 . 2 . Simulation runs for t = 20 . 

Coupled nonlinear reaction-diffusion equations 

For two component reaction-diffusion example, we consider a coupled nonlinear system of equations 

u t = D u u xx = f (u, v ) = u (1 − u ) − u v 
u + β

, 

v t = D v v xx = g(u, v ) = 

αu v 
u + β

− σv (35) 

where u (x, t) and v (x, t) are species of prey and predator, respectively, in position x and time t , and D u > 0 , D v > 0 are the

diffusion coefficients of species u and v . The functions f (u, v ) and g(u, v ) account for all the local biological processes in a

particular habitat. In attempt to give a good guidelines on the right choice of parameters for numerical simulation of the full

reaction–diffusion system (35) , it is highly mandatory to consider the local dynamics of the system [15,49] . By considering
10 
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Fig. 6. The 2D chaotic evolution of (29) showing spiral patterns. 

Fig. 7. Three-dimensional solution of Allen-Cahn equation for different values γ . 
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Fig. 8. Time evolution of predator-prey system (36) . 

Fig. 9. One-dimensional solution of predator-prey system (35) for different initial states. 

 

 

model (35) without diffusion terms, one observes by linear stability analysis that the system of equations 

u t = f (u, v ) = u (1 − u ) − u v 
u + β

, 

v t = g(u, v ) = 

αu v 
u + β

− σv (36) 

have E 0 = (0 , 0) (washout state), E 1 = (1 , 0) which corresponds to the existence of only prey species, and the nontrivial

state E ∗ = (u ∗, v ∗) as the biologically meaningful state which corresponds to the existence of both prey and predator, where

u 

∗ = 

βσ

α − σ
, v ∗ = (1 − u 

∗)(u 

∗ + β) 

with α > σ and β < 

α−σ
σ . The community matrix of system (36) at point E ∗ is given by 

J E ∗ = 

( 

1 − 2 u − βv ∗
(u ∗+ β) 2 

− u ∗
u ∗+ β

αβv ∗
(u ∗+ β) 2 

αu ∗
(u ∗+ β) 

− σ

) 

(37) 

which by using the values of u ∗ and v ∗ above leads to 

J E ∗ = 

(
[(1 − β) α − (1 + β − β2 ) σ ] / (α − σ ) −σ/α

(1 − β) α − σ 0 

)
. (38) 
12 
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Fig. 10. Two-dimensional solution of system (35) showing spiral patterns for different values of σ . The first, second and third columns correspond to 

σ = (0 . 2 , 0 . 21 , 0 . 24) , respectively. 

 

 

The corresponding Turing bifurcation conditions are 

(β + 1) σ < α < 

1 + β − β2 

1 − β
σ, 

α(α − αβ − (1 + β − β2 ) σ ) 2 > 4 σ (α − αβ − σ )(α − σ ) 2 . 

For numerical experiments, we utilize zero-flux boundary condition and parameter values β = 0 . 2 , α = 1 . 0 and σ = 0 . 5 . The

time evolution and corresponding species attractor for system (36) is given in Fig. 8 . 

For one-dimensional experiment, we apply x ∈ [0 , L ] , L = 5 and set the initial condition as 

u (x, 0) = 1 / 5 + 10 e − 08 (x − 1200) . ∗ (x − 2800) , 

v (x, 0) = 4 / 5 + 10 e − 08 ∗ (x − 1200) . ∗ (x − 2800) , (39) 

to obtain numerical result in Fig. 9 .The upper and lower rows correspond to random initial condition and (39) It was ob-

served that both prey and predator species oscillate in phase regardless of the variation in parameters or initial function. 
13 
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Fig. 11. Two-dimensional evolution of predator-prey system (35) showing the effects of simulation time t . 

 

 

 

 

For 2D experiments, the predator-prey system is considered in � = [ −L, L ] for L = 10 , and apply the following initial

condition [37] 

u (x, y, 0) = 1 − exp (−20((x − 1 / 2) 2 + (y − 1 / 2) 2 )) , 

v (x, y, 0) = exp (−20((x − 1 / 2) 2 + (y − 1 / 2) 2 )) (40) 

to have the chaotic spiral patterns as displayed in Figs. 10 and 11 . In Fig. 10 , we allow σ to vary as shown in the cap-

tion, while the effects of increasing simulation time is displayed in Fig. 11 . It should be mentioned that it is possible to

obtain other Turing patterns such as spots and pure stripes, depending on the choice of initial conditions. The chaotic result

obtained here has a lot of application in finance, biology and engineering. 
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Conclusion 

The nature of reaction-diffusion equations allow the use of different methods of approximation in space and time. In this 

paper, a combination of the exponential time-differencing Runge Kutta method with both Spectral interpolation collocation 

scheme and Barycentric interpolation collocation method is considered to solve a range of system of PDEs, namely the Allen- 

Cahn equation and coupled nonlinear system of predation in one and high dimensions. It was observed in the simulation 

experiment that the spectral based scheme adapts better in conjunction with the exponential time-differencing method. 

A number of nonlinear phenomena such as spatiotemporal oscillation, chaotic and irregular spirals, and other Turing-like 

structures arising from one, two and three dimensional models are obtained. The numerical techniques reported in this 

work can be extended to solve multicomponents reaction-diffusion problems arising in engineering and applied sciences. 
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