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irreducible representations according to those the phonons are classified we determine which modes are
Time Reversal affected. Comparison with experimental data obtained by neutron scattering is made. The
effect of Time Reversal Symmetry on electrons in the conduction band and holes in the valence band as well
as on excitons is briefly discussed.
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the Time Reversal Symmetry of vibrational modes in Si, Ge and diamond are
ymmetry we have derived the Lattice Mode Representation. Reducing it onto
the symmetry allowed phonons and their degeneracies. Using reality test for
1. Introduction

The lattice dynamics ofmaterials having the diamond structure have
been subject of much experimental and theoretical investigation. The
phonon spectra of diamond, silicon, and germanium have all been
investigated by inelastic neutron, X-ray, and Raman (RS) scattering and
also by infrared absorption (IR). Theory of IR and RS processes and group
theoretical selection rules in diamond has been studied by Birman [1].
Selection rules for intervalley scattering for Ge and Si have been
investigatedby Lax andHopfield [2].Multiphononprocesses in diamond
structurewere also investigated by several authors [3–7] and references
therein. In here we use the standard method of placing displacement
vectors upon each ion in the unit cell at k=0, to obtain the 6×6 Lattice
Mode Representation (LMR). The LMR contains two allowed symmetry
modes: Γ15and Γ25for diamond, Si and Ge. The detailed derivation of
LMR will be given elsewhere. Using compatibility relations over the
entire Brillouin Zone (BZ) we obtain the symmetry allowed modes
originating from high symmetry point and lines in these compounds.
Our results are in agreement with theoretical and experimental data
published in many papers and books. The assignment of phonons
classified by real representations (RRs) follows from the LMR. However,
some irrps of diamond (O7

h) are complex. Consequently, we must
consider the effect of Time Reversal Symmetry. Birman [8] and Bradley–
Cracknell [9] hereafter as BC considered the effect of Time Reversal
Symmetry (TRS) on X and L vibrational modes in diamond. In here we
analyze the TRS impact on phonons states and on other quasi-particles
like electrons, holes, excitons, plasmons, etc. The analysis involves group
theoreticalmethod. In the next sectionwe recall the necessary theory of
achatine).
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theTRS and apply to vibrationalmodes in Si, Ge, anddiamond. In Section
2 we discuss the effect of TRS on phonon dispersion curves obtained
experimentally. In Appendix, we provide some examples of detailed
calculations on reality of irreducible representations (irrps). InAppendix
are briefly reported the effect of TRS on electrons, holes, and excitons.

2. Degeneracy of spin-less vibrational states in crystals due to the
Time Reversal Symmetry

When a specimen is neither subject to external magnetic field nor
will exhibit spontaneous magnetic ordering, the Hamiltonian is
invariant under the operation of the TR. The operator of TR, K takes
eigenfunction Ψ of the Hamiltonian into a new complex function Ψ⁎,
KΨ=Ψ⁎ which satisfies the same equation as Ψ. In other words the
inclusion of TRS may lead to an extra degeneracy of eigenfunctions
(states) in addition to degeneracy resulting from dimensions of irrps
of Dk of a space group of a crystal Space Symmetry Gk where k runs
over the entire Brillouin Zone (BZ), for diamond see figure 3.14 in [9].
The Bloch functions Ψk(r)=uk(r) exp(ik ·r) subject to TR operator
becomesΨ⁎k(r)=u⁎k exp(i(−k ·r)). Clearly, we deal now with two sets of
functions (Ψ, Ψ⁎) those are eigenfunctions of a given Hamiltonian.
Consequently, the space group Gk has been enlarged twice in the
number of symmetry elements by the time-inversion symmetry
operator K. It means that all the symmetry operators {g|t} must be
multiplied by K. The new group becomes antiunitary and the irrps of
the group are Dk⊕ (Dk)⁎ whenΨ and Ψ⁎ are linearly independent.
Clearly, the degeneracy of these states is increased and they are now
classified according to joint irrps Dk⊕ (Dk)⁎. This affects many
phenomena. It will increase the dimension of dynamical matrices
for phonon dispersion curves calculations, it will change the optical
selection rules, scattering tensors, etc. In turn it means when an irrp of
a space group is complex the TRS must be considered. It is therefore of
oi:10.1016/j.tsf.2008.08.035
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Table 2
Table of correspondence of labeling of irreducible representation at point Γ (k=0), for
space group Oh

7diamond, Si and Ge

CDML1 Miller, Love2 Zak, Casher2 Kovalev2 BC2 Elliot2 BSW2

Γ1+ GM1+ 1 T2005τ1 A1g Γ+ Γ1
Γ2+ GM2+ 2 T2005τ2 A2g Γ2+ Γ2
Γ3+ GM3+ 3 T2005τ3 Eg Γ12+ Γ12
Γ4+ GM4+ 5 T2005τ5 T1g Γ15+ Γ15′
Γ5+ GM5+ 4 T2005τ4 T2g Γ25+ Γ25′
Γ1− GM1− 6 T2005τ6 A1u Γ1− Γ1′
Γ2− GM2− 7 T2005τ7 A2u Γ2− Γ2′
Γ3− GM3− 8 T2005τ8 Eu Γ12− Γ12′
Γ4− GM4− 10 T2005τ10 T1u Γ15− Γ15
Γ5− GM5− 9 T2005τ9 T2u Γ25− Γ25
Γ6+ GM6+ 1̄ P205π2

Ē1g Γ6+
Γ7+ GM7+ 2̄ P205π1

Ē2g Γ7+
Γ8+ GM8+ 3̄ P205π3

F̄g Γ8+
Γ6− GM6− 4̄ P205π4

Ē1u Γ6−
Γ7− GM7− 5̄ P205π5

Ē2u Γ7−
Γ8− GM8− 6̄ P205π6

F̄u Γ8−

References for Table 2 [1] A.P. Cracknell, B.L. Davis, S.C. Miller and W. F. Love, Kronecker
Product Tables, Vol. 1–4, IFI/Plenum Press, New York, Washinton, London, 1979.[2] N.
Houng, P. Tien, H. Kunert and Suffczynski, Journal de Physique, Tome 38, Janvier 1977,
Page 51.
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importance to find out which irrps of a crystal are complex. Fröbenius
and Schur [10] derived a criterion on reality of irrps. The tables of
characters of irrps of 230 space groups are available [11,12]; thereafter
referred as ML and CDML, respectively. The reality test has also been
analyzed by Bradley and Cracknell [9]. They used their own derived
irrps of space groups. In terms of BC and CDML notation we write the
reality test as

f
h
∑
Rα

χk
j Rαjvαf g2
� �

¼ þ1 að Þ; 0 bð Þ; −1 cð Þ ð1Þ

where χ j
k is the character of the small irrp of Gk/Τ, and the sum is

restricted to those coset representative of {Rα|υα} of Gkwith respect to
Τ ( group of pure translations ) whose rotational parts send k into a
vector equivalent to −k. And f/h is the number of elements of Gk

group.

Rαk ¼ −k þ n1b1þn2b2 þ n3b3 ð2Þ

The usefulness of the reality test of a representation lies in
determining whether or not extra degeneracy occur if the crystal
described by the space group also possesses time-inversion symmetry.
The relation between the reality of a rep and these extra degeneracies
followed from testing Eq. (1), is:
Single valued representations
Table 1
Space group number: 227

Points and
lines

Coordinates SV representati

Γ (0,0,0) Γ1±,2±,3±,4±,5±
X 1

2 ;0;
1
2

� �
X1,2,3,4(2) R-Rep

L 1
2 ;

1
2 ;

1
2

� �
L1±,2±(1), L3±(2)

W 1
2 ;

1
4 ;

3
4

� �
W1,2(2) C-Reps

Δ (α,0,α) Δ1,2,3,4(1), Δ5(2
Λ (α,α,α) Λ1,2(1), Λ3(2) R-
Σ (α,α,2α) Σ1,2,3,4(1) C-Rep
Q 1

2 ;
1
4 þ α; 34 þ α

� �
Q1,2(1) R-Reps

S 1
2 þ α;2α; 12 þ α
� �

S1,2,3,4(1) R-Rep
A (α,−α+β,β) A1,2(1) C-Reps
Z=V 1

2 ;α;
1
2 þ α

� �
Z1=V1(2) R-Rep

Fd3m, Oh
7for diamond C, Ge and Si.

Time Reversal Symmetry type of irreducible repres

Please cite this article as: H.W. Kunert,
Double valued representations
Reality
 Degeneracy
 Reality
ons BC
[9]

Birm
[8]

a –

s c a
R-Reps c –

b a
) C-Reps b b
Reps a –

s c –

c –

s c –

– –

s a –

entation.

et al., Thin Solid F
Degeneracy
1
 a (∑→+1)
 1
 b (∑→−1)

2
 b (∑→−1)
 2
 a (∑→+1)

3
 c (∑→0)
 3
 c (∑→0)
(a) There is no change in the degeneracy of E(k)
(b) The degeneracy of E(k) doubles, that is two different energy

levels, both described by the same rep become degenerate
(c) The degeneracy of E(k) becomes doubled, but unlike (b), two

different (in-equivalent ) reps become degenerate
(d) When +k and −k are not in the same star, the spectrum of the

eigenvalues at −k becomes identical with the spectrum of the
eigenvalues at +k.

In other words, where there is no symmetry element in the space
group that transforms +k into −k the addition of the time-inversion
symmetry produces a type (x)→ (d) degeneracy. In this case the
symbol (x) is used in place of the reality 1, 2, or 3. Using the CDML
Tables and Eqs. (1), (2) we have investigated all high symmetry points
and lines in diamond. We did not find the x type degeneracy in
compounds of diamond structure, (see Table 1). In Appendix we give
an This
paper

a
a
a
a
a
a
a
a
c
c
a

ilms (2008), d
some instances of detailed calculations. Since in the early literature
the irrps of Oh

7space group were labelled according to Bouckaert
SmoluchowskiWigner (BSW) [13] in the determination of diamond, Si
and Ge phonon dispersion curve we give the correspondence of irrps
labels in Table 2.

3. Degeneracy of quasi-particles with spin due to time-inversion
symmetry

The states of spin-less quasi-particles like vibrational modes are
classified according to the single valued representation (SVRs). How-
ever, the TRS may also affect the states of quasi-particles that carry
spin, like electrons, holes, ions, and others. Therefore, it is often nec-
essary to take into account the existence of the spin of an electron and
hole due to the introduction of relativistic effects into electron and
hole band structure determination or inclusion spin–orbit and spin–
spin interaction in the crystal field theory. Inclusion of spin results into
a double space group described now by SVRs and double valued reps
(DVRs). At k=0 the diamond double group has got Γ1±,2±,3±,4±,5± SVRs
and Γ6±,7±,8± DVRs CDML [12] notation (see Table 2). At other high
symmetry point and lines the DVRs are: X5, L4±,5±,6±, W3,4,5,6,7, Δ6,7,
Λ4,5,6, Σ5, S5, and Z=V2,3,4,5. The reality test for DVRs yields: Γ6±,7±,8±(c),
X5(a), L4±,5±(b), L6±(c), Δ6,7, (b). The letters in brackets indicate the type
of degeneracy. The electronic band structure of Si, Ge and diamond
must be described by DVRs. The minimum of the conduction band is
at Γ7−and the maximum of the valence band at (see figure 6.13 P. Yu
and M. Cardona, p. 268 [14]). The states of electrons and holes are
classified now according to joint DVRs:

Γ6+⊕Γ⁎6+, Γ6−⊕Γ⁎6−, Γ7+⊕Γ⁎7+Γ7−⊕Γ⁎7−, Δ7⊕Δ⁎7. When spin excluded
the bands edge transitions in diamond are Γ25′→Δ1, Γ25′→Γ15′,
X4→X1, L3′→L1′[15]. Inclusion of spin leads to the following band
edge assignments: the maximum of the valence band (VB) is at Γ8+⊕
(Γ8+)⁎, and the minimum of the conduction (CB) band at Γ7−⊕Γ⁎7−, etc.
It means, that the edge bands at k=0 are TRS subject. The selection
rules for direct and indirect radiative transitions will be now essential-
ly affected by TRS. For example the edge transition (Γ8+⊕ (Γ8+)⁎)VB→
(Γ7−⊕Γ7−)⁎)CBwill beallowed if Kronecker Product (KP) (Γ8+⊕ (Γ8+)⁎)VB⊗
(Γ7−⊕Γ7−)⁎)CB contains the symmetryof theperturbationunder TRS [16].
In otherwords extra KPs, like Γ⁎8+⊗Τ7−have to be evaluated. On theother
hand, the symmetry of direct excitons in Ge is the product of CB and VB
symmetries; due to the exchange interaction the exciton of symmetry
(Γ8+⊕ (Γ8+)⁎)VB⊗ (Γ7−⊕Γ7−)⁎)CB splits onto: 4Γ3−⊕4Γ4−⊕4Γ5−. The
oi:10.1016/j.tsf.2008.08.035
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Fig. 1. The dispersion relation for the normal modes of vibration of diamond in the principal symmetry directions at 296°K. The full curves represent a shell-model fit to the data
points. Branches and end points are labeled by the irreducible representations according to which the associated polarization vectors transform.
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symmetry of perturbation (light) Γ4−is contained in the KP decomposi-
tion. Therefore the radiative transition is allowed. The inclusion of TRS in
the band structure is in terms of DV irrps and does not change the
selection rules in the absence of TRS. It increases the number of allowed
states. Consequently, the existence of TRS leads to the necessary
modification of optical selection rules in crystals. In herewe only briefly
indicate the consequences of the TRS presence in crystals. The detailed
discussion on optical selection rules due to TRS will be given elsewhere.

4. Discussion

From Table 1 follows that in diamond, Si and Ge all vibrational
modes originating from high symmetry points, Γ, X, L and W are
classified according to the real reps, case (a). Clearly, these phonons are
not subject toTRS and there is no extra degeneracy. These features have
already been long time agoapprovedbyexperimental data obtainedby
neutron scattering, infrared absorption, and X-ray spectroscopy [3].
We have calculated the compatibility relations starting from phonons
at k=0 obtained by LMR. Our results are in perfect agreement with the
experimental data. For example, going from through Γ, Δ, Λ and Σ
symmetry lines towards the X, L and K, respectively, we obtain high
Please cite this article as: H.W. Kunert, et al., Thin Solid Films (2008), d
symmetry lines presented on Fig. 1 [3]. The most striking feature
obtained by BC of X, L, and W phonons is their TRS extra degeneracies
cases (b) and (c), see Table 1. Their results are in extreme contrast to
experimental results. They used different coordinate systems, and
therefore different non-primitive translations associated with the
rotational symmetry operators. Birman [8] discussed the effect of TRS
on X and W phonons. Regarding point X we are in a good agreement
with Birman. The irrps of Gkw, W1,2are essentially complex. However,
he proved that in spite of the appearance of complex number in the
characters of W1, W2both reps are real. We have performed exact
calculations based on Eqs. (1), (2) obtaining the same results. Con-
cerning the high symmetry lines we have found that lines A and S
phonons TRS influenced (case (c)).

5. Conclusion

In diamond structure most pronounced vibrational states do not
experience extra degeneracy when TRS included. Only two modes A
and S are TRS degenerate. Electronic band structure of Si and Ge
experience extra degeneracy. Consequently, optical selection rules are
supposed to be modified by the inclusion of TRS.
Appendix A

The numbers in brackets denote the dimensions of irrps. Points and lines are in g1, g2, g3 coordinates. Single Valued (SV) representations.
(g|τ)
 1
 2.2
 3.3
 4.1
 21
 22.2
 23.3
 24.1
oi:10.10
25
16/j.ts
26.2
f.2008.0
27.3
8.035
28.1
 45
 46.2
 47.3
 48.1

X1
 2
 0
 2
 0
 0
 0
 0
 0
 0
 0
 0
 0
 2
 0
 2
 0

X2
 2
 0
 2
 0
 0
 0
 0
 0
 0
 0
 0
 0
 −2
 0
 −2
 0

X3
 2
 0
 −2
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

X4
 2
 0
 −2
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

g2
 1
 1
 1
 1
 1
 3.3t0
 1
 3.3t0
 1
 1
 1
 1
 1
 3.3t0
 1
 3.3t0

{g|τ}exp(− ik ·t0)
 1
 −1
 1
 −1
 1
 −1
 1
 −1
 1
 −1
 1
 −1
 1
 −1
 1
 −1

X1,2
 2
 −2
 2
 −2
 2
 2×(−1)
 2
 2×(−1)
 2
 −2
 2
 −2
 2
 2×(−1)
 2
 2×(−1)

X3,4
 2
 −2
 2
 −2
 2
 −2×(−1)
 2
 −2×(−1)
 2
 −2
 2
 −2
 2
 −2×(−1)
 2
 −2×(−1)
R ¼ 1
jgj∑g χ g2jgτ þ τ

� �� � ¼ 1
jgj∑g χ g2jτg

� �
exp −ik �t0ð Þ�
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The X1,2are complex third kind, (c) case (R=0) and X3,4are real first kind (a) case (R=1).

L ¼ 1
2 ;

1
2 ;

1
2

� �

{g|000)
Please cite thi
1

s article as
5

: H.W. Kun
9

ert, et al.,
13
Thin Solid F
17
ilms (2008)
21
, doi:10.101
25
6/j.tsf.2008
29
.08.035
33
 37
 41
 45

{g2|000)
 1
 9
 5
 1
 1
 1
 1
 9
 5
 1
 1
 1
R ¼ 1
jgj∑g χ g2j000� �� � ¼ 1

12
8χ 1ð Þ þ 2χ 5ð Þ þ 2χ 9ð Þð Þ
g2
 1
 5
 9
 R

L1+,2+
 1
 1
 1
 1(a)

L3+
 2
 −1
 1
 1(a)

L1−,2−
 1
 1
 −1
 1(a)

L3−
 2
 −1
 −1
 1(a)
All L1±,2±,3±are real and summation is done for all the symmetry elements for kL ¼ 1
2 ;

1
2 ;

1
2

� �
− g1; g2; g3ð Þ ¼ −kL:

W ¼ 1
2 ;

1
4 ;

3
4

� �
Reality test. Matrices and characters of {g|τ} and {g2|gτ+τ}.
{g|τ}
 1
 2.2
 17
 18.2
 27.3
 28.1
 43.1
 44.1

W1
 1
 1
 1
 1
 i
 i
 1
 1
1
 −1
 −1
 −1
 −1
 1
 i
 −i

W2
 1
 1
 1
 1
 i
 i
 −1
 −1
1
 −1
 1
 −1
 −1
 1
 −i
 i
Characters of (g)
 1
 2.2
 17
 18.2
 27.3
 28.1
 43.1
 44.1

W1
 2
 0
 0
 0
 0
 0
 A, V
 A, V⁎
W2
 2
 0
 0
 0
 0
 0
 A, V
 −A, V⁎

g2
 1
 1
 1
 1
 1
 1
 2.2t0
 2.2t0

g2 exp(4πik ·t0)
 1
 1
 1
 1
 −i
 i
 −i
 i

χ({g|τ}2)
 2
 2
 2
 2
 −2i
 +2i
 0×(−i)
 0×(i)
A ¼
ffiffiffi
2

p
,V=exp(i4π), V⁎=exp(−i4π)

The summation over the elements of the space group yields R=1. Therefore the W1and W2 are of the first kind (a) real. The symmetry
operators are labels are according to CDML [12].
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