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ct of Time Reversal Symmetry (TRS) on vibrational modes and on the electronic
band structure of Si and Ge. Most of the primary non-interacting modes are not affected by TRS. Only
phonons originating from high symmetry lines S and A of the Brillouin Zone (BZ) indicate extra degeneracy.
Selection rules for some two and three phonons originating from high symmetry lines are determined. The
states of electrons and holes described by electronic band structure due to spin-inclusion are assigned by
spinor representations of the double space group. Inclusion of the TRS into the band structure results in extra
degeneracy of electrons and holes, and therefore optical selection rules suppose to be modified.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Much attention has been devoted to infrared absorption (IR),
Raman Scattering (RS) and multiphonon scattering processes in
Diamond, Si and Ge over the last fifty years. The theory of IR and RS
in Diamond structure has been developed by Birman [1]. Particularly,
detailed analysis of IR and RS experimental data by means of group
theoretical selection rules can be found in a comprehensive review
book by Birman [2] where references to many experimental and
theoretical data can be found. Also multiphonon processes in crystals
with Diamond structure, as well as modern quantum theories of
lattice Raman Scattering and infrared absorption have been studied
(Chapters L and N) in [2]. However, not much attention has been
directed to the effect of TRS on vibrational modes and electronic states
determined by band structure in Si and Ge. It is the aim of this
contribution to investigate the selection rules (SRs) for phonon
processes originating from high symmetry lines in the Brillouin
Zone (BZ) and electronic, optical transitions in the presence of TRS. In
Sections 2.1, 2.2, 2.3, and 2.4 we recall the necessary theory of TRS
regarded to the degeneracy of spinless particles and particles with
spin 1/2, electrons and holes. In each subsection we apply theory to
vibrational modes and electronic states in Si and Ge.
achatine).
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2. Space and Time Reversal Symmetry

2.1. Space symmetry. Spin excluded. Single value representations

Space symmetry of a crystal requires invariance of a Hamiltonian
with respect to symmetry operator g belonging to a space group Gk.
Therefore, the eigenfunctions Ψ and gΨ correspond to the same
energy. Consequently, the states are classified according to Single
Valued Irreducible Representations D (SVIrrps) of a space group;

gaG; g−1Hg ¼ H; gΨi ¼ ∑
j
Dji gð ÞΨj: ð1Þ

The dimension of the representation (dim D) indicates the
degeneracy degree of states. Spin less quasi-particles such as phonons
are well described by SVIrrp. The vibrational modes of Si and Ge are
classified according to the following SVIrrps of OH

7(Fd3m) space group:
Γ25′ (Γ5+), Γ15 (Γ4−), Δ1, Δ2, Δ5, Λ1, Λ2, Λ3, Σ1, Σ2, Σ3, W1, W2, L1, L2, L3, X1,
X2, X3, X4 those follow from the lattice Mode Representation and
compatibilities along the high symmetry point and lines. The two and
three phonon processes originating from the high symmetry points in
Diamond structure (Si, Ge), have already been studied [2]. However, it
is known that the phonon of high symmetry lines also contribute
essentially to the phonon density of states (DOS) as do high symmetry
point modes. Therefore, it is necessary to study the SRs for these
phonons. Using standard group theoretical techniquewe have derived
several selection rules for these phonons listed in Table 1. The labeling
of irrps is in terms of Bouckaert et al. [3] and in brackets in terms of
oi:10.1016/j.tsf.2008.08.033
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Table 1
Selection rules for phonons of high symmetry lines: Δ, Λ, Σ in Si and Gea

Species Type of resulting phonon symmetries

A. Two phonon processes. Overtones
[Δ1 (A)]2 Г4− (Г15 (A)), Δ1 (A), Σ1 (A)
[Δ2 (O)]2 Г5+ (Г25′ (O)), Δ2 (O), Σ1 (O)
[Δ5 (A)]2 Г4− (Г15 (A)), Δ1 (A), Σ1 (A), Σ3 (A), Σ4 (A)
[Δ5 (O)]2 Г5+ (Г25′ (O)), Δ2 (O), 2Σ1 (O), Σ3 (O)
[Λ1 (A)]2 Г4− (Г15 (A)), Δ1(A), Σ1(A)
[Λ1 (O)]2 Г5+ (Г25′ (O)), Σ1(O))
[Λ3 (A)]2 Г5+ (Г25′ (A)), Δ1(A) Δ5 (A)
[Λ3 (O)]2 Г5+ (Г25′ (O)), Δ2(O), Δ5 (O)
[Σ1,2,3 (A)]2 Г4− (Г15 (A)), Δ1(A), Σ1 (A)
[Σ1,2,3 (O)]2 Г5+ (Г25′ (O)), Δ2 (O), Δ5 (O), Σ1(O)

B. Two phonon processes. Combination
Δ1⊗Δ2 Δ2 (O)
Δ1⊗Δ5 Δ5 (A, O)
Δ2⊗Δ5 Δ5 (A, O)
Δ1⊗Δ3 Δ3 (A, O)
Σ1⊗Σ2=Σ3⊗Σ4 Σ2 (O)
Σ1⊗Σ3=Σ2⊗Σ4 Σ3 (A, O)
Σ1⊗Σ4=Σ2⊗Σ3 Σ4 (A, O)

C. Three phonon processes. Overtones
[Δ1 (A)]3 Δ2 (A), Δ2 (O), Δ1 (A), 2Δ3 (A, O)
[Δ2 (O)]3 2Δ2 (O), Δ1 (A), 2Δ3 (A, O)
[Δ5 (A)]3 Δ1 (A), Δ2 (O), Δ5 (A), Δ5 (O)
[Δ5 (O)]3 Δ1 (A), Δ2 (O), Δ5 (A), Δ5 (O)
[Λ1]3 2Λ1, 2Λ3

[Λ3]3 several modes of Λ1, 2Λ3 symmetries
[Σ1–4]3 Г5+(Г25′(O)), 2Г4+(Г15 (A)), Δ1(A), Δ5(A, O), 2Δ3(A, O)

Λ1(A, O), 2Λ3 (A, O), 2Σ1(A, O)

D. Three phonon processes. Some combinations
Δ1⊗Δ1⊗Γ25′(O) = Δ1⊗Δ5⇒Δ5(A, O)
Δ2⊗Δ2⊗Γ15(A) = Δ2⊗ (Δ2⊕Δ5)= [Δ2]2⊕Δ5 (A, O)
Δ5⊗Δ5⊗Γ25′(O) = Δ2⊗ (Δ2⊕Δ5)=2Δ5 (A, O), [Δ5]2, Δ5⊗Δ5

Δ1⊗Δ1⊗Γ25′(O) = ......
Di⊗Dj⊗Dk = ......

i,j,k, Δ1,2,5, Λ1,3, Σ1,2,3,4, Г15, Г25′b

a In brackets are irrps labeled according to BSW [3], whereas Г4−,5+ are in CDML [4]
notation.

b There are many three phonon combinations to be worked out. Our Table 1,
regarding to high symmetry lines, is just an extension of Tables II and III for
multiphonon processes in Si and Ge of Birman's work [2]. The selection rules in our
Table 1, are governed bywavevector selection rules and KP of irrps species. For example,
the KP Λ1⊗Λ3=Λ3 (A, O) means

ℏgikΛ þ ℏgjkΛ ¼ ℏkΛ ð6Þ

where ℏgikΛ and ℏgikΛ are arms of kΛ k in the star {⁎kΛ} and kΛ are the first wavevector
of the star according to which the irrps of Gk

Λ are tabulated [4]. Eq. (5) represents the
momentum conservation principle, which corresponds to the KPs of Λ's irrps. From the
interaction of Λ1 and Λ3 phonons described by KP; Λ1⊗Λ3, the resulting phonon is Λ3(A,
O), A acoustic or/and O optical.
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Cracknell Davis Miller Love (CDML) [4]. For Ge phonons see Fig. 2 Lax
and Hopfield [5].

SVIrrps are also used in the classification of electron and holes in
band structure, provided negligible spin–orbit interaction. Never-
theless, frequently in many semiconductors spin–orbit interaction is
quite appreciable. Moreover, when high crystalline specimen are
illuminated, the creation of excitons takes place. Therefore, spin of
electron and hole must be taken into account.

2.2. Space symmetry. Spin included. Double valued representations

Inclusion of electron spin in a crystal lattice results in double
space group and its Double Valued Irreducible Representation
(DVIrrps) [6]. In this case the states of electrons in the conduction
band (CB) and holes in the valence band (VB) are classified
according to the DVIrrps (Spinors). For the band structure in
terms of DVIrrps of Ge and Si see Figures 2.13, 6.13 in [7,8]. The
DVIrrps of Si and Ge in terms of CDML labeling are: Γ6±, 7±, 8±, X5,
Please cite this article as: H.W. Kunert et al., Thin Solid Films (2008), d
L4±, 5±, 6±, W3,4,5,6, Δ6,7, Λ4,5,6, Σ5, S5, and Z=V2,3,4,5. In Ge the
minimum in the conduction band occurs at point L (L1+ SVIrrp [5]
and L6+, DVIrrp [4,8]), whereas the maximum in VB occurs at Γ
(Γ25′ SVIrrp) [3], Γ8+ (DVirrp) [4]. The appropriate selection rules
for direct radiative transitions are: Γ8+(VB)⊗Γ7 − (CB)⊗Γ4 − (light
symmetry) = (Γ3 −⊕Γ4 −⊕Γ5 − )⊗Γ4 − . Because Γ4−⊗Γ4− contains Γ1
(identity rep) the transition is allowed. However, the transition
does not connect the desired states. The indirect phonon assisted
transition L6+⊗Γ8+⊗Γ4− = (L1+⊕ L2+3L3+)⊗Γ4− is allowed, because
the Kronecker Product contains the symmetry allowed phonons
L1+, L2+, L3+, those follow from compatibility relations Γ→L and
wavevector selection rules (momentum conservation principle)
ℏk
→
Γ + ℏk

→
L = ℏkL.

2.3. Time Reversal Symmetry for spinless particles

So far we have discussed rather well known space group
theoretical SRs in the absence of TRS. However, many physical systems
contain an invariance under the inversion of the direction of wave
propagation or magnetic moment of a crystal. This is also true on
quantum mechanical systems. In here we discuss the effect of TR
operator for spinless quasi-particles, like phonons in Ge and Si. We
consider only non-interacting modes discussed in the Section 2.1. For
vibrational modes the energy operator H is real (no spin, no spin–orbit
interaction, no magnetic field). The time dependent Schrödinger
equation is invariant under time inversion. Taking the complex
conjugation of time dependent Schrödinger equation we obtain:

Hψ ¼ iℏ
∂ψ
∂t

; tY−t; …ð Þ�;HΨ� ¼ −iℏ
∂ψ�
∂ −tð Þ ¼ iℏ

∂ψ�
∂t

¼ HΨ�: ð2Þ

Associating replacement t by −t to a TR operator K, we have
KΨ=Ψ⁎, the operator K transforms Ψ into Ψ⁎. From Eq. (1) follows
that Ψ⁎ is also an eigenfunction of H. The Ψ and Ψ⁎ belong to the
same energy (eigenvalue). Since (Ψ,Ψ⁎) transform according to
complex conjugate reps D and D⁎ of the anti-unitary group G ̄k it
follows that

K gψið Þ ¼ K ∑
j
Djiψj

 !
¼ ∑D�

ji Kψið Þ ¼ ∑D�
jiψ

�
i );Kg ¼ gK: ð3Þ

The wave functions (Ψ, Ψ⁎) are the basis of D and D⁎ reps,
respectively. If Ψ and Ψ⁎ are linearly dependent, KΨi=Ψi⁎=ΣjTji, Ψj

via unitary matrix T, then D and D⁎ are equivalent, D≈D⁎, χ(g)=χ⁎(g).
In this case (a) TRS does not introduce an extra degeneracy. If Ψ and
Ψ⁎ are linearly independent then they transform according to
inequivalent reps D and D⁎ (D≉D⁎, χ(g)≠χ⁎(g)). In this case (b) the
states (Ψ,Ψ⁎) transform according to the joint reps D⊕D⁎.Clearly, an
extra TRS degeneracy occurs. The linearly independent states can still
transform according to equivalent reps D and D⁎. In this case (c) the
states ϕand ϕ⁎ also transform according to the joint rep D⊕D⁎,
D≈D⁎, χ(g)=χ⁎(g). Again the TRS occurs. It is just a matter to find out
whether or not the inclusion of TRS leads to an extra degeneracy.
Fröbenius–Schur derived reality test for irrps [9]. Adjusted for space
groups it is of the form

R ¼ f
hV

∑
gaGk

χk g2
� �

δk;−gk ¼ þ1 að Þ; −1 cð Þ; 0 bð Þ ð4Þ

g
→
k ¼ −

→
k ð5Þ

where all the quantities have their usual meaning [10,11]. And
summation is performed over the fundamental elements g2∈Gk

such that gk=−k. The eigenfunctions of vibrational modes are just
harmonic displacement of atoms from their in equilibrium positions.
They contain the time dependent factor and wave vector k which due
oi:10.1016/j.tsf.2008.08.033
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to complex conjugation becomes −k. In other words, the direction of
mode propagation changes from +k into −k. And the star {⁎k} of a
space group changes into −{⁎k}. Using Eqs. (4), (5) we have tested all
SVIrrpps of Si and Ge discussed in Section 2.1. We have found all irrps
at high symmetry points Г, L, X, W and lines Σ, Λ, Δ and Q real. Only S
and A phonons are TRS degenerate. Generally, most of the pronounced
vibrational modes in Si and Ge do not experience extra degeneracy by
TRS inclusion. However, the TRS inclusion into the states of electrons
and holes assignment in terms of band structure E(k) leads to an
essential degeneracy.

2.4. Time Reversal Symmetry for particles with 1/2 spin

As discussed in Section 2.2 the states of electrons and holes due to
spin are classified according to the DVirrps. It can be shown that the TR
operator for quantum mechanical system with spin 1/2 (Sy ¼ 1

2ℏσy)
for electrons, holes, etc. is of the form T=− iσyK, K is a complex
conjugation operator. For electron Bloch wave functions with spin up
and down, we have: Hψ k

→↑=E(k
→

↑)ψk→↑, ψk↑=uk(r)exp(ik
→

· r
→

)×(spin-
up function). In the presence of TRS, the Hamiltonian transforms as
T −1HT=H for H real. If we operate by T on ψ k

→↑ the Pauli spin
operator will operate only on the spin function and will turn the
spin-up function into a spin-down function; ψk→↑= iσyKψk→↑= iexp(−ik

→
·r
→
)

u
k
→⁎ (r→)×(spin-down function). It follows that functions ψk→↑ (up) and

ψ
k
→↓ (down) must be degenerate owing to TRS. Consequently, an

important result of TRS on electronic band structure is E(k
→
↑)=E(−k

→
↓). If,

in addition, the crystal has an inversion symmetry, then E(kt↑)=E(−kt↑)
because the space inversion operator takes k into −k but does not
operate on the spin. If TR and space inversion symmetries are
simultaneously present in a crystal we have E(k

→
)=E(−k→) for any spin.

In the next section we discuss the consequences of TRS on states of
particles with 1/2 spin.

2.5. Classification of particles states with spin in the presence of Time
Reversal Symmetry

The basis function of DVirrps are Bloch functions with spin, ψk
→

(r→)×(spin function), where ψk
→ (r→)=exp(ik

→
·r→)uk→ (r→). In the presence

of TRS there are two set of Bloch functions; ψk
→↑ and Tψk→↑= iψ k

→⁎ × (spin-
down function). In other words, the electron states owing to TRS are
classified now by joint reps Dk⊕ (Dk)⁎. As in Section 2.3 these two
wavefunctions can be linearly dependent. Then (iσyK)ψk→

j =ΣjTji ψk→
j . In

this case (a) there is no extra degeneracy and Dk→≈(Dk→)⁎,χk(g)=(χk(g))⁎.
If they are linearly independent, we deal with then cases (b, c) they
transform according to joint degenerate reps Dk

→
⊕ (Dk

→
)⁎. We have

tested the DVirrps of Si and Ge bymeans of Eqs. (4), (5). Most of the reps
are of the form b and c cases. In here, we consider DVirrps regarded to
edge band optical radiative transitions involving following reps: Γ6±,7±,8±
(b) and L4±, 5±, 6±, (c). According the TRS theory these states suppose to
transform according to joint irrps. These states with Γ8+ (maximum of
theVB) and L6+ (minimumofCB) symmetries transformnowaccording to
Γ8+
VB⊕(Γ8+VB)⁎, L6+CB⊕(L6+CB)⁎ and Γ7−

CB⊕(Γ7CB)⁎ respectively. That is an essential
Please cite this article as: H.W. Kunert et al., Thin Solid Films (2008), d
modification of assignment, which results in extra degeneracy. This effect
is rather seldom discussed in the literature. In Section 2.2 we discuss the
optical selection rules for Ge and Si in the absence of TRS. In the
presence of TRS these selection rules become: (TRS-KP)=[Γ8+VB⊕(Γ8+VB)⁎]⊗
[Γ7−CB⊕ (Γ7−CB)⁎] =Γ8+VB⊗Γ7−

CB ⊕Γ8+
VB⊗ (Γ7−CB)⁎⊕ (Γ8+VB)⁎⊗Γ7−

CB⊕Γ8+
VB⁎⊗ (Γ7−CB)⁎.

But Γ8+
VB⊗Γ7−

CB=Γ3−⊕Γ4−⊕Γ5− . Clearly, in this complex KP (TRS-KP) the
symmetry of the perturbation Γ4− (incident light) is contained. Therefore
the triple KP: [Γ8+VB⊕(Γ8+VB)⁎]⊗Γ4−⊗[Γ7−CB⊕(Γ7−CB)⁎] contains identity rep Г1.
Consequently, the direct radiative transition is allowed. Further evalua-
tion of the TRS-KP yields: 4Γ3−⊕4Γ4−⊕4Γ5− . In here it has to be stressed
out that TRS does not change the SRs in the absence of TRS. It only
introduces more states of the same symmetry (Γ3− , Γ4− , Γ5− ) . Similarly,
for indirect transitions the selection rules are [Γ8+VB⊕ (Γ8+VB)⁎]⊗ [L6+CB⊕
(L6+CB)⁎]=4Γ1+⊕4Γ2+⊕4(3Γ3+) [5]. In this KP the allowed symmetries
of the phonons (L1+,2+,3+) are contained. Therefore, the indirect
transitions are allowed. And due to the TRS the number of different
states of the same symmetry increases. Each basis will be a linear
combination of the complex KP basis. These linear combinations
can be obtained by Clebsch Gordon Coefficients method.

3. Conclusion

The inclusion of TRS does not affect the vibrational states in Si and
Ge. The most pronounced phonons are not TRS degenerate.

Table 1 list somemultiphonon selection rules regarded to phonons
originating from high symmetry lines. They have appreciable impact
on phonon density of states.

The optical selection rules in the presence of TRS are the same as in
the absence of TRS. The only effect of the inclusion of TRS is an
increase in the number of state with the same symmetries.

Experimentally, the observation (or not) of “extra” splitting of
spectral degenerate terms will verify the existence of more electronic
states.
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