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Abstract —Ab initio methods have been used for many decades to accurately predict properties of solids such as the physical,
electronic, optical, magnetic, and elastic properties. A generation ago, many research groups developed their own in-house
codes to perform ab initio calculations. In doing so, research students were intimately involved in many aspects of the coding,
such as developing the theoretical framework, and algorithmic and programming details. Over time however, collaborations
between various research groups within academia and in industry have resulted in the creation of more than 50 large open-
source and commercial electronic structure packages. These software packages are widely used today for condensed matter
research by students who, unfortunately, often have very little understanding of the fundamental aspects of these codes. To
address this shortcoming, we have embarked on a program at the University of Pretoria to devise a range of simplified, easily
programmable computational problems appropriate for the classroom, which can be used to teach advanced undergraduate
students about particular theoretical and computational aspects of the electronic structure method. In this paper, we focus on the
pseudopotential, which is a centrally important concept in many modern ab initio methods. Whereas the full implementation of the
pseudopotential construct in a real electronic structure code requires complex numerical methods, e.g. accelerated convergence
to self-consistency including the interactions between all the electrons in the system, we show that the essential principles of the

pseudopotential can, nevertheless, be presented in a simpler class of problems, which can readily be coded by students.

Index Terms —pseudopotentials, 1-dimensional, DFT, computational methods

1 INTRODUCTION

The 1964 paper by Hohenberg and Kohn on Density
Functional Theory (DFT)[1] and many of the publi-
cations describing the key approximations related to
the implementation of DFT[2], [3], [4] are among the
most cited physics papers of all time. The number of
citations for these fundamental papers in DFT is set
to grow because of the increasing number of scien-
tists across many different scientific and engineering
disciplines that are using DFT codes in their research
today.

In the 80’s, researchers often developed their own
density functional codes and many graduate stu-
dents were intimately involved in all aspects of code
development. The situation today cannot be more
different. We have access to very slick commercial
codes and even some excellent academic codes that
are highly automated and optimized to run on some
of the fastest and highly parallel computing archi-
tectures. These codes are written by teams of dedi-
cated professionals whose job it is to automate these
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highly versatile codes for the growing community of
practitioners. The practitioner has nothing more to
do than choose from pull-down menus and then to
turn the proverbial computational knobs to launch
computations that were simply not possible barely a
decade ago. Consequently, we are producing students
who are very adept at utilizing computational code
in their applications to real physical systems, but the
vast majority have no inkling about the details of
the algorithms for key components of these codes
and the theoretical framework that underpin these
components.

These students do not develop the necessary com-
putational skills that make them transferable to differ-
ent scientific working environments, and this should
be a worry for any educator. We fear that this problem
is true of other computational communities as well,
e.g. computational astrophysics, computational fluid
dynamics, and so on.

Our aim is to develop computational projects in
electronic structure methods that attempt to address
these shortcomings, albeit at a fairly basic level appro-
priate to advanced undergraduate studies. In Fig. 1
the key steps in the self-consistent solutions of the
Kohn-Sham equations are shown. The challenge for
us is to develop problems that are ”stand-alone”
problems which only focus on the essential physics
and computing aspects of Fig 1.

For example, pseudopotentials are generated in 3
dimensions, in the context of self-consistency involv-
ing many interacting electrons and particular choices
for the exchange-correlation functionals. Pseudopo-
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Fig. 1: Self-consistent solution of the Kohn-Sham equations within the plane-wave pseudopotential method.

tentials were first used in neutron scattering[5] and
atomic physics[6], [8] to simplify complex problems.
The essential idea of the pseudopotential can be
stripped down to a very small subset of constructs
that may be easily implemented in one dimensional
quantum mechanical problems such as the harmonic
oscillator. In this way, we see the problems that we
are developing as mimicking particular key aspects
of real electronic structure codes.

In this paper, we focus on developing simplified
pseudopotential problems for the classroom. Specifi-
cally, we are focusing on the so-called ab initio pseu-
dopotentials as different from the so-called empiri-
cal pseudopotentials[7], [8], [9]. We believe that the

advanced undergraduate student working through a
range of problems of this nature develops a good
pedagogical understanding of this key aspect of the
plane wave pseudopotential method. There are other
basis sets that one can use to represent the electronic
energy states of a solid state system such as localised
atomic orbitals, etc. However, plane waves are sim-
plest, elegant and pedagogical, and appropriate for
developing the concept of the pseudopotential in the
classroom.



2 CREATING NORM CONSERVING PSEU-
DOPOTENTIALS FOR 1-D SYSTEMS

In real atomic systems, the interaction between va-
lence electrons and the stationary ions cause the
high level valence electron wavefunctions to oscillate
rapidly in the core region. This makes a numerical
study of a solid state system difficult as it requires a
great many plane waves to accurately represent this
rapid oscillatory behavior. One way in which this may
be overcome is by replacing the actual Coulombic
potential with a suitable pseudopotential which accu-
rately describes the interaction between the ionic core
and valence electrons, and which makes a numerical
solution easier because the pseudo wavefunction is
smoother.

The implementation of the pseudopotential method
in atomic systems is rather intricate. However the
essential principles can be captured in a simpler class
of problems. In this paper, we create norm conserv-
ing pseudopotentials for simple, non-interacting 1-
D systems, such as the infinite square well (ISW),
finite square well (FSW), simple harmonic oscillator
(SHO) and the radial solution of the 3-D hydro-
gen atom (only one electron so the complications
that arise from including many-electron interactions
do not apply)[10], to illustrate the pseudopotential
method.

There  are  several ways of  creating
pseudopotentials[11], [12], [13], [14]. In this paper we
focus on the method used by G.P. Kerker[12]. The first
step in creating a norm conserving pseudopotential
(NCP) is to create a pseudo wavefunction, F(z),
for a chosen quantum state, n, of the system being
studied. The pseudo wavefunction is constructed to
be nodeless for even parity solutions, and to have a
single node for odd parity solutions for ISW, FSW
and SHO. For the radial solution of hydrogen, the
pseudo wavefunction is constructed to be nodeless.
For all the 1-D systems considered, except hydrogen,
this is accomplished by first choosing two cut-off
lengths, —z. and ., that lie between the first and
last maximum of the actual wavefunction ¥(x).
This preserves the symmetry of the system. The
pseudo wavefunction is then created by interpolating
between —xz. and z.. The interpolation may be
numerical, or one may use an analytical function
such as a polynomial, exponential, Gaussian, etc.
For © < —z. and =z > x., the pseudo wavefunction
exactly coincides with the actual wavefunction. We
choose the following interpolating function for the
ISW, FSW and SHO,

F(z) = 2" exp (az® + ba* + ca® + d), (1)

to create norm conserving pseudo wavefunctions for
these 1-D systems.

Since the potentials for these systems are symmetric
even functions of z, the wavefunctions have either

even or odd parity. We tailor a pseudo wavefunction
for an even or odd state such that it resembles the
ground state for the respective even or odd case.
Therefore a pseudo wavefunction for an even state
will be nodeless, whereas that for an odd state will
consist of one node. The exponent 7 in (1) is equal to
0 for the even states and 1 for the odd states of ISW,
FSW and the SHO.

For the hydrogen atom, a nodeless pseudo wave-
function is obtained by interpolating from z =0 to a
single cut-off radius . which lies between the last
node and maximum of the real wavefunction. The
interpolating function used is

F(z) =" exp (ax4 + bx? + ca® + d) , 2)

where 7 is equal to (I + 1) where [ is the angular
momentum quantum number. This is in keeping with
Kerker’s method for atomic systems[12].

The constants a, b, ¢ and d in (1) and (2) are
determined by applying the following constraints:

1) the pseudo wavefunction is equal to the real
wavefunction at x.:

Flae) = W(ze), ®)

2) the first and second derivatives of the pseudo
wavefunction are equal to those of the real wave-
function at z.:

F/($C) = \I//(JSC), 4)

F'(z.) = 9" (x,.), ()

3) the real and pseudo system have the same eigen-
value for the quantum state n being pseudized:

€ps = €n, (6)

4) and the norm of the real and pseudo system
within the pseudized range is conserved:

Tc

[t [

[ r@ra= [T wwta. @
0 0

for hydrogen.

For the ISW, FSW and SHO (3) to (5) at —x. are
satisfied by symmetry. For the hydrogen atom the
cut-off region is 0 < z < z. and the conditions are
satisfied at z..

The cut-off region referred to thus far is the region
where the wavefunction is relegated nodeless subject
to norm conservation, and beyond which there is no
change to the wavefunction. This mimics the situation
in real chemical systems where the tail end of the
wavefunctions participate in chemical bonding, but
the core remains essentially inert.

U(z)*dz,  (7)

with



The pseudopotential, Vs, is determined by invert-
ing the 1-D Schrodinger equation for the pseudo
system, which in terms of Rydberg atomic units where
h/2m =1, is given by

—F"(2) + Vys(2) F(2) = €, F(2). )
This yields:
Vpo(2) = en + Z,((;)). (10)

F(x) is deliberately chosen so that the term F”'/F in
(10) is finite for all x including at z = 0 where F'(0) =
0.

The conditions (7) or (8) ensures that the pseudo
wavefunction is properly normalized. It also ensures
that the norm of the real and pseudo system are the
same between —z. and z. (0 and z. for hydrogen),
and consequently the scattering properties of the core
of the real potential are transferred to that of the pseu-
dopotential. The scattering phase shifts of quantum
systems are related to the first energy derivative of
the logarithmic derivative of the wavefunction[15].
Therefore the transferability of a pseudopotential can
be determined by plotting the logarithmic derivative
of the pseudo wavefunction as a function of energy
and comparing this to that of the real wavefunction.
This is done numerically by integrating the discrete
version of the Schrodinger equation for the pseudo
system

Fig —2F + Fi_

— e +VLF, = EF,

to calculate the wavefunction F;;; over a range of
energies I,

Fiy1 = (V) — E) A2®F, + 2F; — F;_q,

s (11)

where i is the index for the spatial grid and ¢, — § <
E < €, + 0. Thereafter the logarithmic derivative
of the wavefunction at a particular diagnostic length
xp is calculated using the following finite difference
expression:

Tp (FiD+1 - FiD71)

FiD (2 Am‘) ’ (12)

xp % nF|, =
where ip is the spatial index of the diagnostic length
zp. In this study we have chosen zp = .. Similar
equations are used to calculate the logarithmic deriva-
tive of the real wavefunction. The energy range for
which these curves coincide for the real and pseudo
wavefunctions is a direct measure of the range of ener-
gies for which the pseudopotential is transferable[15].
In a solid, the atomic energy levels spread into bands
of energies, and so norm conservation ultimately
guarantees that the single particle states in a solid
are accurately determined within the pseudopotential
framework.

3 RESULTS AND DISCUSSION

3.1 Infinite square well, finite square well and
simple harmonic oscillator

Real wavefunctions for the second and third excited
states for the ISW and the corresponding pseudo
wavefunctions are presented in Fig. 2a and Fig. 2d,
respectively. The pseudo wavefunctions are obtained
by satisfying conditions (3)-(7). The pseudo wavefunc-
tion of the second excited state is nodeless, smooth
and continuous with the real wavefunction in the cut-
off region, as desired. The pseudo wavefunction of the
third excited state has a single node at the origin as
desired, and is also smooth and continuous with the
real wavefunction in the interpolated interval. These
results illustrate that the chosen interpolating function
(1) is a suitable one for the ISW.

The corresponding pseudopotentials are calculated
using (10). These are plotted together with the real
potentials in Fig. 2b for the second excited state and
Fig. 2e for the third excited state of the ISW. The
pseudopotentials are equal to the actual potentials
for # < —z. and * > z.. The transferability of
these pseudopotentials is determined by comparing
the logarithmic derivatives of the real and pseudo
wavefunctions as a function of energy. These results
are presented in Fig. 2c and Fig. 2f for the second and
third excited states of the ISW, respectively.

For the second excited state the transferability of
the pseudopotential appears to be reasonable as the
logarithmic derivatives show observable deviation
around the energy level of interest, as indicated by
the arrow in Fig. 2c. To clarify this result an ancillary
test, which involves comparing the eigen energy of
the fourth excited state of the real ISW potential
with the first excited state of the pseudopotential,
is performed. These energies differ by more than
10% which suggests that more work has to be done
to improve on the interpolation scheme to derive a
more transferable potential. This is also exemplified
in Fig. 2f where in the case of the third excited state,
the logarithmic derivatives show significant deviation
around the energy level of interest. We leave it to the
reader to explore improved interpolation schemes to
increase the transferability of the potential.

Similar results are obtained for the FSW (Fig. 3) and
SHO (Fig. 4), where (1) is used to create a pseudo
wavefunction for the second excited state of both
these systems. The corresponding pseudopotentials
obtained using (10) are not transferable to other ex-
cited eigenstates, as there are significant deviations
between the logarithmic derivatives for the real and
pseudo wavefunctions (in Fig. 3c and Fig. 4c) around
the energy levels of interest.

3.2 Hydrogen

Nodeless pseudo wavefunctions for the 2s, 3p and
4d states of hydrogen are obtained using the inter-
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Fig. 2: Wavefunctions, potentials and logarithmic derivatives for the real (solid line) and pseudo (dashed line)
infinite square well (ISW). The top row consists of results for the second excited state of the ISW which is an
even parity state, and the bottom row consists results for the third excited state of the ISW which is an odd

parity state.

polating function (2) which has to satisfy conditions
(3)-(6) and (8). These are presented in the first row
of Fig. 5. The pseudopotentials are plotted together
with the real potentials in the second row of Fig. 5.
These are finite at the origin, which is a desirable
feature, especially in the computational study of more
complex solid state systems, as it reduces the number
of plane waves required to accurately describe the
system.

The logarithmic derivatives of the real and pseudo
wavefunctions versus energy are presented in the
third row of Fig. 5. The result for the 2s state show
excellent tracking of the curves for the logarithmic
derivatives of the real and pseudo wavefunctions over
a wide energy range. The energies of the first excited
state of the pseudopotential and the n = 3 excited
state differ by less than 1%. This is indicative of a
highly transferable pseudopotential to more complex
chemical environments[13], [15] involving hydrogen.
The pseudopotential has a repulsive core which sim-
ply reflects the repulsion due to the Pauli exclusion
principle (orthonormality of the states in this context
means that the higher level states for a given orbital
momentum quantum number are ‘pushed” out). The
results obtained for the 3p and 4d states of hydrogen
are reasonable, however they suggest that the trans-
ferability of pseudopotential decreases as the energy

of the state increases.

Other interpolating functions may be used to cre-
ate nodeless pseudo wavefunctions to obtain more
transferable pseudopotentials which makes for useful
exercises for students.

4 CONCLUSIONS

We created norm conserving pseudopotentials for
several non-interacting 1-D quantum mechanical sys-
tems. The purpose of this endeavor was to develop
computational exercises to teach undergraduate and
graduate students particular theoretical and numeri-
cal aspects of the pseudopotential method which is an
essential aspect of modern ab initio codes and which
many graduate students do not understand, in spite
of them using these ab initio codes for their research.
The construction of a nodeless pseudo wavefunction
by interpolation, calculation of the pseudopotential by
numerically inverting the Schrodinger equation and
how to determine the transferability of the pseudopo-
tential from the logarithmic derivatives of the real and
pseudo wavefunctions versus energy, were aspects
covered in this paper.

We applied the method described in G. P. Kerker’s
paper[12] to calculate norm conserving pseudopo-
tentials for the ISW, FSW, SHO and the hydrogen
atom. The chosen interpolating functions, namely, (1)
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Fig. 3: Wavefunctions, potentials and logarithmic derivatives for the real (solid line) and pseudo (dashed line)
finite square well (FSW). The second excited state for this system is pseudized.

for ISW, FSW and SHO, and (2) for hydrogen, yield
nodeless wavefunctions for all the systems, as desired.
The logarithmic derivative of the real wavefunction
and the pseudo wavefunction were compared to de-
termine the transferability of the calculated pseudopo-
tentials to higher energy levels (in the case of the
ISW, FSW and SHO) or to more complex chemical
systems (in the case of the hydrogen atom). A highly
transferable pseudopotential was obtained for the 2s
state of the hydrogen atom, reasonably transferable
pseudopotentials were obtained for the third excited
state of the ISW, the 3p and 4d state of the hydro-
gen atom, and untransferable pseudopotentials were
obtained for the other systems studied.

These exercises are simple and require reasonably
uncomplicated algorithms to produce a working nu-
merical solution. However a student will have to
thoroughly understand all aspects (theoretical, numer-
ical and programming) of the problem to produce a
correct numerical solution. Therefore such exercises
can be used to enhance students understanding of the
pseudopotential method.
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