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Abstract  
A study on the effect of a structured problem-solving strategy on problem-solving 

skills and conceptual understanding of physics was undertaken with 189 students in 

16 disadvantaged South African schools. This paper focuses on the development of 

conceptual understanding. New instruments, namely a solutions map and a conceptual 

index, are introduced to assess conceptual understanding demonstrated in students' 

written solutions to examination problems. The process of the development of 

conceptual understanding is then explored within the framework of Greeno's model of 

scientific problem-solving and reasoning. It was found that students who had been 

exposed to the structured problem-solving strategy demonstrated better conceptual 

understanding of physics and tended to adopt a conceptual approach to problem-

solving.  

 

Introduction  
Physics instructors generally believe that problem-solving leads to the understanding 

of physics and that it is a reliable way to demonstrate that understanding for purposes 

of evaluation (Hobden, 1999; Maloney, 1994). However, students are often unable to 

interpret or explain the meaning of their own algebraic solutions of problems 

(McDermott, 1991; McMillan & Swadener, 1991). The concern with poor conceptual 

openUP (August 2007) 



understanding of physics among students has been voiced by many academics (e.g., 

Hewitt, 1983; Redish, 1994; Van Heuvelen, 1991). 

Difficulties with physics problem-solving and conceptual understanding are 

aggravated in South Africa, where the majority of schools are at a disadvantage due to 

persisting effects of the apartheid school system (Hartshorne, 1992; Johnson, Monk, 

& Hodges, 2000). Although many non-governmental organisations have been 

involved for almost 30 years with trying to improve science education in secondary 

schools (Rogan & Gray, 1999), poorly trained teachers, teacher-dominated 

approaches, student passivity, and rote learning are still the norm (Arnott, Kubeka, 

Rice, & Hall, 1997). Ambitious curriculum reforms have been implemented following 

the transition to democracy in 1994, but these have done little to improve the situation 

in poorly resourced classrooms (Jansen, 1999). Understanding is complicated by 

instruction in a second language (Howie, 2003; Prophet, 1990). In such conditions, 

physics problem-solving is likely to be reduced to algebraic solutions, with little, if 

any, emphasis on conceptual understanding. 

This paper reports on part of a project (Gaigher, 2004) that extended first-world 

research on physics problem-solving strategies to disadvantaged South African 

classrooms. The project envisaged to enhance physics problem-solving and 

conceptual understanding. The type of problems referred to in the study were typical 

textbook questions where physics principles are applied to determine a quantitative 

value of some parameter in a concrete situation described by the question. The 

meaning of "strategy" is a recommended series of steps to follow when solving 

problems. 

Sixteen schools, involving 189 students, participated in a quasi-experimental study 

over a period of ten months. The science teachers and students in the experimental 

schools applied a specific seven-step strategy to the solving of the physics problems 

throughout the academic year. The students in the experimental group achieved better 

results in the examinations; the examination statistics together with a theory of the co-

development of problem-solving skill and conceptual understanding have been 

reported elsewhere (Gaigher, 2004; Gaigher, Rogan, & Braun, 2006). 

The purposes of this paper are, firstly, to present evidence of enhanced conceptual 

understanding among the experimental group, and, secondly, to explore how the 

implementation of the problem-solving strategy might have promoted the 

development of conceptual understanding. New instruments, namely a solutions map 
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and a conceptual index, are introduced to assess conceptual understanding 

demonstrated in students' written solutions to examination problems. The process of 

the development of conceptual understanding is then explored within the framework 

of Greeno's model of scientific problem-solving and reasoning (Greeno, 1989). As 

this model is not restricted to physics, we believe that our results can be generalised to 

other areas of science despite the fact that the study was conducted in physics 

classrooms. 

 

Literature Review  
Much research has been conducted on problem-solving in physics since the late 

1970s. This literature review focuses on studies of conceptual understanding related to 

solving quantitative physics problems. 

 

Conceptual Understanding  
McDermott (1991) argued that success in calculating correct numerical answers did 

not necessarily imply that a corresponding level of conceptual understanding was 

reached. In fact, instruction focusing on problem-solving often ignores intellectual 

objectives and could encourage students to concentrate on algorithms instead of on 

physics. Poor conceptual understanding has been demonstrated by various studies 

(Lawson & McDermott, 1987; McMillan & Swadener, 1991; Pride, Vokos, & 

McDermott, 1998; Schaffer & McDermott, 1992). These studies suggested that 

students learn to solve standard problems in physics without applying conceptual and 

interpretative knowledge. 

How should classroom practices be adjusted to ensure that students learn to 

understand physics? Hewitt (1983) claimed that problem-solving instruction in high 

school actually obscured the development of conceptual understanding; he argued that 

conceptual reasoning should form part of examinations in order to encourage students 

to conceptualise the physics principles involved. McDermott (1991) advocated that 

students should be intellectually engaged in the learning process in order to bring 

about significant conceptual change. She suggested that a deep mental engagement 

could be developed when students were required to explain their reasoning in their 

own words. According to Van Heuvelen (1991), students of physics often observe 

passively how lecturers demonstrate the algebraic aspects of solving problems. Van 
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Heuvelen suggested that students could learn to think like physicists when given 

opportunities to reason qualitatively and make use of translations from verbal, 

pictorial, and physics representations, before switching to the mathematical form of 

physics problems. Redish (1994) argued that physicists should learn from cognitive 

science, particularly the theories of constructivist learning and conceptual change, to 

improve their teaching. Redish advocated that students should be given opportunities 

to do qualitative reasoning, to construct mental models, and to learn to apply their 

models. Duit, Roth, Komorek, and Wilbers (1998) conducted a study on student talk 

during a classroom experiment, and reported that conceptual change was facilitated by 

discussions among students. 

A series of studies on experts and novices identified qualitative analysis and 

successive representations as a characteristic of expert problem-solving (Larkin, 1979, 

1983; Larkin, McDermott, Simon, & Simon, 1980; Larkin & Reif, 1979). Dhillon 

(1998) observed that novice problem-solvers had difficulty to relate quantities, and 

used symbols to infer connections. On the other hand, experts used the conceptual 

meaning of quantities to relate them. According to Maloney (1994), the most striking 

difference between the approaches of experts and novices was found in the 

application of general principles of physics. While the experts preferred general 

principles, the novices typically used means-end analyses, focusing on the gap 

between the required answer and the information, thus filling in steps to complete an 

algebraic solution. 

 

Instructional Strategies  
Concern with poor problem-solving, as well as with poor conceptual understanding, 

which often accompanies successful algebraic problem-solving, led to the 

development of various instructional strategies for the teaching of physics problem-

solving:  

• Explicitly taught problem-solving strategies, which included qualitative 

analysis and multiple representations, resulted in better problem-solving 

(Heller & Reif, 1984).  

• Cooperative group problem-solving showed that group solutions were often 

better than the best individual efforts (Heller, Keith, & Anderson, 1992).  
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• Qualitative strategy writing, where students had to describe how they would 

solve given problems, was shown to develop problem-solving skills as well as 

conceptual understanding (Leonard, Dufresne, & Mestre, 1996).  

• Modelling instruction requires that students discuss problems and resolve 

conflicting ideas, thereby adjusting and extending their concepts while 

constructing solutions (Hestenes, 1987; Halloun & Hestenes, 1987).  

• Fraser, Linder, and Pang (2004) used the technique of variation in problem-

solving. This technique requires students to solve a given problem in more 

than one way, by applying different physics principles to a given concrete 

problem situation. Students are thus given opportunities to develop 

understanding of the connections between different physics principles.  

• Alant (2004) argued that familiarity with problems creates a basis for 

conceptual understanding. Learning through familiarity requires that students 

be given closely related problems, creating opportunities for students to 

become familiar with an underlying physics principle. 

While these strategies were all employed at universities, Huffman (1997) explored 

structured problem-solving in high school physics. The aim of his study was to 

establish the effect of an explicit problem-solving strategy on problem-solving 

performance as well as on conceptual understanding. The explicit problem-solving 

strategy described by Heller et al. (1992) was compared with a so-called textbook 

strategy. The explicit strategy emphasised both qualitative and quantitative aspects of 

problem-solving, while the textbook strategy emphasised only quantitative aspects. 

The experimental group showed an improvement in the quality and completeness of 

the physics representations used in their problem-solving. The quality of solutions 

was assessed by a scoring rubric using characteristics of expert problem-solving 

(Larkin et al., 1980). This enhanced quality of solutions was regarded as evidence of 

enhanced conceptual understanding developed by the explicit problem-solving 

strategy. 

The instructional strategies described above provided insights that were utilised in the 

design of a structured problem-solving strategy suitable for the disadvantaged setting 

of the current study. The steps of the strategy were designed to encourage the use of 

multiple representations as well as qualitative analysis to guide students towards the 

thought processes of expert problem-solvers. The step labelled "analysis" is not 

limited to individual efforts; it requires students to formulate arguments in classroom 
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discussions and in the writing of their own solutions, thereby creating opportunities 

for individual as well as social knowledge construction. 

 

Theoretical Framework  
Greeno's "extended semantic model" creates a framework for scientific problem-

solving and reasoning with the overall focus on conceptual understanding (Greeno, 

1989). The model is based on four domains of knowledge, namely:  

1. Concrete domain (physical objects and events).  

2. Model domain (models of reality and abstractions).  

3. Abstract domain (concepts, laws and principles).  

4. Symbolic domain (language and algebra). 

The four domains are represented in Figure 1. They can be understood by means of a 

familiar example of a crane lifting a container - a situation used in a number of 

standard physics textbooks. The "concrete domain" includes the physical objects 

involved - the crane and container. In the "model domain", the concrete situation is 

represented by a force diagram. The "abstract domain" contains abstractions that 

could be made of this situation, such as the concept of a force and Newton's second 

law. Finally, the "symbolic domain" consists of symbolic ways of representing the 

situation using either language or algebraic expressions, or both. 
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Figure 1. Greeno's four domains of knowledge for scientific problem-solving, shown 

with connections between and within domains (Greeno, 1989)  

Correspondences, or mappings, exist between the domains. These mappings are 

indicated by the symbol , with subscripts c, m, a, and s, respectively, denoting the 

concrete, model, abstract, and symbolic domains. For example, sc represents the 

mapping between the symbolic and concrete domains. According to Greeno, scientific 

problem-solving and reasoning skills involve the realisation of the correspondences 

between these domains. Chekuri and Markle (2004) argue that although problem-

solving in physics usually involves algebraic operations in the symbolic domain, the 

algebra should always be connected to the concrete, model, and abstract domains. 

Each domain consists of two layers, referred to as an a-layer and a b-layer. The a-

layers contain independent items, while b-layers contain structures consisting of 

meaningful combinations of items from the associated a-layers. The crane example 

can illustrate the distinction between layers: In the concrete domain, layer 1a contains 

objects such as the crane, cable, and container, while the process of the crane lifting 

the container is a structure in layer 1b. In the model domain, arrows and dots are 

independent items in layer 2a, while these items can be meaningfully combined to 

become a force diagram in layer 2b. In the abstract domain, the concepts of force, 

mass, and acceleration are independent items in layer 3a, while the relationship 

between these concepts (namely, Newton's second law) is a structure in layer 3b. In 

the symbolic domain, symbols like F, m, g, and a are items in the 4a layer, while the 

mathematical relationship F = ma is a structure in the 4b layer. The symbolic domain 

also includes language, thus the written question is another structure in layer 4b, while 

independent words are items in layer 4a. 

Figure 1 shows connections within each domain, indicated by the symbols and , 

with subscripts c, m, a, and s to indicate the relevant domains. Connections marked 

represent relationships between independent items in a-layers to form meaningful 

structures in the corresponding b-layers. For example, a connection m in the model 

domain can represent the rules on how to draw a circuit diagram from components, or 

the parallelogram rule to add vectors. Connections marked represent alternative 

ways to represent a particular structure in a particular layer, governed by sets of rules 

for the particular domain. For example, the association of a constant velocity with a 

zero resultant force is an operation a in the domain of abstract structures, while an 

algebraic manipulation is classified as an operation s in the symbolic domain. 
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In contrast to idealised problem-solving that incorporates all four domains of 

knowledge, a popular formula based approach flourishes among students. Students 

tend to start with a data list, matching information to symbols. Then a suitable 

formula is selected to link the unknown symbol to the known symbols in the list. All 

that remains is to substitute and to solve algebraically; interpretations are rare. Van 

Heuvelen (1991) called this method a formula-based approach, while Greeno referred 

to this procedure as the "insulation" of the symbolic world from the "situated nature" 

of problems: In the classroom, students manipulate symbols to solve problems while 

concrete problem situations are seldom present. This classroom reality can, therefore, 

lead to the belief that problems are about the symbols, rather than about the concrete 

situation represented by those symbols. The symbols are real marks on paper, taking 

the place of the real objects described by the problem statement. A mathematical 

operation s in the symbolic domain acquires the status of a mapping between 

symbols and the concrete marks on the paper. Algebraic solutions can therefore 

amount to operations on knowledge located only in the domain of symbolic 

knowledge, without translation to the concrete, model, or abstract domains. Such an 

approach can sometimes lead to correct equations and correct numerical answers, but 

it does not demonstrate or develop understanding of the meaning of algebraic 

solutions. 

Greeno's model provides a suitable framework to analyse the results of the current 

study as well as those discussed in the literature review. The mismatch between 

conceptual understanding and successful algebraic solutions resonates with insulation 

of the symbolic domain. On the other hand, the successive representations, qualitative 

analysis, and use of general physics principles demonstrated by experts indicate 

translations between all four knowledge domains. 

 

The Structured Problem-solving Strategy  
The problem-solving strategy employed in this study was designed to improve 

problem-solving performance as well as to develop conceptual understanding. 

Qualitative aspects of problems were emphasised while the algebra was part of a 

solution, but not the entire solution. The seven steps of the strategy can be 

summarised as follows:  

1. Draw a simple diagram to represent the system.  
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2. Indicate the data on the diagram.  

3. Identify the unknown variable.  

4. Analyse the problem in terms of physics principles.  

5. Write down the relevant equation(s).  

6. Substitute and solve.  

7. Interpret the numerical answer. 

The strategy already described combined and simplified successful approaches 

reported in the literature. It does not require separate "real world" diagrams and 

"physics" diagrams as used by the Heller group (Heller et al., 1992). It was argued 

that separate diagrams could distract attention from the effort to learn to relate physics 

to reality. In fact, experienced problem-solvers sometimes draw forces on top of 

objects in real world diagrams, thus making abstract physics concepts visible in their 

real world representation (Larkin & Simon, 1987). In our strategy, the diagram 

becomes the focus of attention. While drawing the diagram, the student constructs a 

two-dimensional model of the concrete situation described in the problem statement. 

Information and unknown quantities are grouped by location when these are 

superimposed on the diagram. Such groupings guide the search for principles of 

physics applicable to different parts of the concrete situation when analysing the 

problem, while links between different parts of the problem become visible as shared 

features between groupings on the diagram. 

Qualitative analysis has been associated with successful problem-solving (Heller & 

Reif, 1984) and identified as one of 14 fundamental activities in problem-solving 

(Dhillon, 1998). The current strategy explicitly prescribes qualitative analysis in the 

step "analysis" where students have to identify physics principles suitable to solve the 

particular problem, and explain why these principles are suitable. In the classroom 

situation, the analysis should include classroom discussions. The analysis step 

therefore combines aspects of modelling (Halloun & Hestenes, 1987) and strategy 

writing (Leonard et al., 1996). 

Regarding algebra, the strategy used in this study was simplified. Students were 

encouraged to substitute numerical values before starting algebraic manipulation, the 

reason being that poor mathematical abilities could prevent many students from 

arriving at correct symbolic solutions. Here the current approach differed from that of 

others (Huffman, 1997; Reif, Larkin, & Brackett, 1976; Wright & Williams, 1986) 

who preferred symbolic solutions before substitution. We argued that emphasis on 
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symbolic solutions could be counterproductive for disadvantaged students with poor 

mathematical skills. Incorrect symbolic solutions would not develop insight into the 

relevant physics relationships, and numeric substitutions into wrong symbolic 

solutions would be meaningless, adding to confusion. 

 

Methodology  
Sixteen schools, involving 189 students, completed the project. A quasi-experimental 

design with a pre-test and various post-tests was implemented. The experimental and 

control groups each consisted of all the Grade 12 science students in eight 

volunteering schools, with one participating teacher per school. The two groups were 

situated in two geographically separate education districts at opposite ends of town, 

separated by about 40 km. The decision to avoid random assigning of schools to the 

two groups was taken in a deliberate attempt to exclude diffusion, contamination, and 

rivalry. We regard this design as an improvement over studies where teachers had 

classes in both groups, or where two groups were in close physical proximity (e.g., 

Huffmann, 1997). The lack of randomness in assigning schools to groups could pose a 

threat to validity. However, a pre-test showed that the two groups performed similarly 

on problems on vectors and kinematics, based on the previous year's syllabus 

(Gaigher, 2004). 

The strategy was implemented by means of a cascading model: the researcher trained 

teachers, while the teachers taught their students. During the teacher training 

workshops, solutions were not provided by the researcher. Instead, the teachers were 

given the opportunity to interact while applying the strategy, thus participating in 

knowledge construction in a social context. Similarly, the students were expected to 

be active participants in problem-solving in the classroom. 

The study was designed to be non-disruptive: the only change from an ordinary school 

routine was the way in which the experimental group solved problems. The strategy 

was applied and practised while solving classroom and homework problems, which 

would form part of the ordinary routine of learning physics by doing problems. No 

extra classes were given to the experimental group students. The Department of 

Education's Grade 12 syllabus and the schools' textbooks were used. Identical 

homework sets were given to both groups, and solutions were not provided. Tests 

were structured as ordinary 30-min classroom tests consisting of typical examination 
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problems. The control group teachers and students were informed that the project 

explored students' problem-solving skills, but no mention was made of an 

experimental group using a particular problem-solving strategy. 

Data were collected over a period of ten months, starting at the beginning of the 

academic year in January. The test and examination scripts were used as main sources 

of data. Other data sources were questionnaires and videotapes showing how a few 

volunteers attempted to solve problems. This paper focuses on the nature of the 

solutions presented in the mid-year examination. 

 

Results  
Statistical analysis indicated improved test and examination scores among the 

experimental group. These results have been discussed elsewhere (Gaigher, 2004; 

Gaigher et al., 2006). This paper probes possible reasons for these improved results by 

analysing the nature of solutions presented in the mid-year examination. Firstly, a 

case study is presented, showing how a student implicitly made translations between 

Greeno's knowledge domains when he applied the steps of the problem-solving 

strategy. Secondly, a solutions map is presented to summarise the variety of attempted 

solutions created by the entire sample of students for a particular problem. Thirdly, a 

conceptual index is introduced to assess whether successful problem-solving could be 

linked to a conceptual approach to problem-solving. 

 

Case Study: A student's written solution  
A solution presented by one of the treatment group students in the mid-year 

examination was analysed to establish which translations were made in terms of 

Greeno's model. This particular question and solution, shown in Figure 2, was chosen 

as an example of a case in which a student explicitly wrote down all the headings to 

indicate the seven steps of the strategy. The diagram was not given or required - it was 

constructed by the student as part of the solution. 
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Figure 2. A student's solution to a momentum conservation problem  

The translations identified in this example are presented in Table 1. Even though the 

problem was a simple one, the solution suggests a variety of translations made 

between the four knowledge domains as the student worked through the seven steps of 

the strategy. On the other hand, an algebraic solution starting with the formula m1u1 + 

m2u2 = m1v1 + m2v2 would present little, if any, evidence of translations between the 

four domains. In fact, an algebraic solution, based on matching symbols, would not 

require any translations since all actions would be restricted to the symbolic domain. 

This example demonstrates that the steps prescribed by the problem-solving strategy 

lead to a wealth of translations between the knowledge domains. We believe that such 

a network of translations supports the development of associations to synthesise 

reality, models, concepts, and symbols - thus enhancing the conceptualisation of 

physics. 
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Table 1.    Student's presumed actions while applying the problem-solving 

strategy interpreted as translations between Greeno's four knowledge domains 

Step Student's actions Translation

Diagram and 

information 

Reads the question and visualises the concrete 

situation sc 

 
Draws a diagram showing two snapshots to model 

the collision cm 

 
Chooses a positive direction and indicates it on 

the diagram am 

 Identifies abstract concepts relevant to data 
sa 

 Identifies standard symbols for the data 
as 

 
Indicates data on the diagram in the appropriate 

locations, representing time and space sm 

Unknown Identifies unknown concept 
ca 

 
Identifies the standard symbol for unknown 

concept as 

 Indicates the unknown on the diagram 
sm 

Analysis 
Identifies the law of momentum conservation as 

relevant to the concrete situation ca 

 
Formulates the principle that can be applied to 

solve the problem as 

Relationship 
Writes the law of momentum conservation as an 

algebraic equation as 

Substitute and solve 
Collects information from the diagram, substitutes 

into the equation(s) and solves ms 

Interpretation 
Interprets the meaning of the symbolic answer in 

terms of the concrete situation sc 

 Formulates the interpretation 
cs 
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Solutions Maps  
An energy conservation problem from the mid-year examination is presented in 

Figure 3 to demonstrate how solutions maps were constructed and interpreted. This 

specific problem was chosen because questions on energy produced the most 

prominent difference between the scores of the two groups in the classroom tests as 

well as in the examination (Gaigher, 2004; Gaigher et al., 2006). It was argued that 

the reasons for the improved overall scores would be similarly prominent in this 

particular question. 

   

 

Figure 3. The energy conservation problem  

This problem is slightly more difficult than the simplest energy conservation problems 

that typically deal with objects starting from rest, moving down ramps, or swinging 

from strings without friction. Students usually have to calculate the speed at the 

lowest point, or the maximum height reached. In such simple cases, the energy 

conservation law boils down to a simple relation between maximum speed and 

maximum height: 1/2mv2 = mgh. Students, and perhaps teachers, may use this 

equation without emphasising or realising that v and h actually refer to the extremes 

of the path. Even when a student uses this equation correctly, it is no guarantee that he 

or she understands that the conservation principle refers to the sum of the kinetic and 
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potential energy at any position along the path. In order to assess deeper 

understanding, problems can be formulated to include positions between those of 

maximum speed and maximum height. In such problems, the conservation of 

mechanical energy can be written to refer to any two points along the path: 1/2mv2
1 + 

mgh1 = 1/2mv2
2 + mgh2. 

In the mid-year examination, an initial speed at a given height was included to rule 

out the use of the simple formula. The students had to determine the initial speed of a 

car moving downhill without friction, to reach a specified speed at the lowest point of 

the path. In this case, energy conservation can be expressed as: 1/2mu2 + mgh = 

1/2mv2. Here u and v, respectively, represent the initial and final speed while h 

represents the initial height. 

Each student's solution was analysed and classified according to his or her approach. 

The approaches, labelled Routes i-vii, are represented on a solutions map (Figure 4). 

Percentages refer to the number of students from the experimental group who 

followed particular routes, with the percentage of control group students in brackets. 

Route i represents solutions where students correctly applied the energy conservation 

principle to the given situation; all other routes are wrong in some way or the other. 

   

openUP (August 2007) 



Figure 4. Solutions map for the energy conservation problem, summarising students' 

solutions as different routes - with Route i representing correct solutions. Percentages 

refer to the number of students from the experimental group following particular 

routes, and the percentages in brackets refer to the control group  

Solutions were broadly classified into two main groups, depending on whether or not 

the student made some use of energy concepts. Among the treatment group, 72.5% of 

the students compared with 50.3% of the control group approached the problem using 

energy concepts. In terms of Greeno's model, the increased use of energy concepts 

indicates that the treatment group made more translations to the abstract domain. Of 

course, translating to the abstract domain does not necessarily mean that the students 

would apply the concepts correctly. Incorrect application of concepts would suggest 

incomplete or incorrect structures in the b-level of the abstract domain. However, the 

experimental group was also more successful than the control group, having 23.8% of 

solutions correct compared with only 9.2% for the control group. 

Among the solutions referring to energy, Routes i, ii, and iii explicitly mentioned that 

the sum of kinetic and potential energy remained constant. Grouped together, these 

solutions added up to 41.3% of the experimental group and only 11.1% of the control 

group, which indicates enhanced understanding of the energy conservation principle. 

Route i represents the correct substitutions, leading to the correct answer of 9 m.s-1. 

Despite a low success rate of 23.8% for the treatment group, it was more than double 

that of the control group, indicating that the problem-solving strategy can indeed be a 

useful approach in physics teaching. The overall low success rate for such a standard 

energy problem is a stark reminder of the urgent need for development of teaching 

practises in the disadvantaged South African schools. 

The incorrect answer obtained by most students from both groups was 7.9 m.s-1. This 

answer resulted when calculating the final speed of a car starting from rest at the 

given height, instead of calculating the initial speed of a car that reaches the specified 

final speed. The solutions represented by Routes iv-vi all used variations of kinetic 

energy = potential energy, which was equivalent to the simple relationship between 

maximum height and maximum speed. Students following these routes ignored the 

given final speed and calculated a final speed for a car starting from rest. The fact that 

energy concepts appeared in the solutions does suggest some translation to the 

abstract domain. However, the inability to accommodate kinetic energy at two 
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different heights suggests limited understanding of the energy conservation principle 

in its general form, signifying an incomplete structure in Greeno's 3-b level. 

Route iii represents a correct start by making provision for an initial speed, but then a 

value of 0 is substituted in the equation, thereby joining Routes iv, v, and vi. This 

approach was followed by 11.3% of the experimental group but none of the control 

group students. It seems that these students from the experimental group learnt to start 

with a "better formula", possibly resulting from the learning the strategy. However, 

the lack of conceptual understanding, or incomplete structure in the 3b layer became 

visible in the inappropriate substitutions, or incorrect translations. 

Route vii represents solutions starting with the standard equation for constant 

acceleration: v2 = u2 + 2as. This equation yields a numerically correct answer, 

provided the standard meanings of the symbols are discarded and, instead, s is 

regarded as the vertical height and a as the gravitational acceleration. It can be argued 

that some of the students knew that the energy conservation law yields the same 

equation as a vertical free fall, regardless of the actual path travelled. However, when 

using a standard equation (given on the standard information sheet), the symbols 

should have the standard meanings; if not, the student should have explained the 

situation to avoid ambiguity. However, none of the solutions classified as Route vii 

indeed made any mention of the concepts of energy or energy conservation, or any 

argument stating why the free fall equation would be suitable. This total absence of 

attaching meaning to the equation in these solutions was the criterion for classifying 

solutions into Route vii. We refer to this route as "formula based", because the lack of 

interpretation suggests that the equation was chosen simply by matching symbols - a 

procedure restricted to operations in Greeno's symbolic domain. Among the control 

group, 21.1% of students used this approach, compared with only 13.8% of the 

experimental group, indicating that the strategy did reduce the exclusive use of 

algebra among the experimental group. 

Students following Route ii interchanged the specified final speed of 12 m.s-1 with the 

required initial speed, reflecting a tendency to regard a beginning as "known" and an 

end as "unknown". This occurred more among the experimental group (6.8%) than 

among the control group (1.8%). However, these students showed conceptual 

understanding of the energy conservation principle in its general form. The mistake 

appears to be an incorrect translation between the concrete and symbolic domain, but 

not an incomplete structure in the 3b domain. 
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To summarise, the solutions map for the energy conservation problem demonstrated 

enhanced conceptual understanding among the experimental group in three ways, 

namely:  

• The ability to construct the correct solution to this particular energy problem is 

regarded as evidence of conceptual understanding, since this problem did not 

allow application of the simple formula. The mere fact that the entire sample 

of students generated so many incorrect routes suggests that those who 

constructed the correct solution indeed understood the principle of energy 

conservation in the context of the problem. In terms of Greeno's model, the 

construction of the correct solution represents an appropriate translation from 

the concrete to the abstract domain. We therefore conclude that the 

experimental group demonstrated better conceptual understanding since 

almost 25% of the experimental group, compared with less than 10% of the 

control group, constructed the correct route.  

• The use of general physics principles (in this case, conservation of the sum of 

kinetic and potential energy) was employed in Routes i-iii, representing more 

than 40% of the experimental group compared with only 11% of the control 

group. In terms of the expert-novice literature (Maloney, 1994), a closer 

resemblance to expert problem-solving was thus demonstrated by the 

treatment group.  

• The tendency to resort to a formula-based approach (Route vii) was reduced 

among the experimental group, signifying some application of knowledge 

beyond the symbolic domain. It is inferred that more students in the 

experimental group developed an understanding that solutions are governed by 

physics concepts rather than mathematical operations. 

Is it possible to interpret the experimental group's increased use of energy concepts 

differently? Could it be that they were trained for the duration of the study to use an 

"energy approach"? We believe it is not the case. The two groups had to prepare for 

the same final national examination and they had to cover the same syllabus in the 

same amount of time. Paying particular attention to one topic would impact negatively 

on the group's performance on other topics, which was not the case. In addition, as 

already mentioned, the experimental group did not have additional classes. Also, the 

data on test and examination performance indicated overall improvement, not just for 

the energy problems. Furthermore, solutions maps were also constructed for problems 
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on other topics, all showing that the experimental group made more use of general 

physics principles and less use of formula-based approaches (Gaigher, 2004). We thus 

believe that conclusions drawn from the solutions map on energy can be generalised 

to other topics in physics. 

 

A Conceptual Approach to Problem-solving  
In the mid-year examination, the steps of the problem-solving strategy in written 

solutions were less prominent than expected; just more than 20% of the experimental 

group actually wrote down some of the headings recommended by the strategy. Did 

this mean that the strategy was regarded as of little value, or did it mean that time was 

a factor? In their responses to questionnaires, most students complained about the 

time taken in writing steps, which could have been an obstacle to using the strategy in 

the examination (Gaigher, 2004). However, the strategy was not intended as a quick 

fix to apply in tests, but an ongoing process of learning to conceptualise and 

understand physics while learning to solve problems. Was it possible that the use of 

the strategy during the year had an effect on solutions even though headings were not 

always written down explicitly in the examination? 

The examination scripts were then scrutinised for evidence of some influence of the 

strategy. Footprints of the strategy were found in the form of diagrams and written 

explanations that were not explicitly required by problems. Diagrams were used by 

52.5% of the experimental group in at least one question, and written statements by 

32.5%. Among the control group, only 26.6% of students used diagrams in at least 

one question, and 13.8% used written statements. This seemed to indicate that using 

the strategy during the year did promote the use of diagrams and writing during 

problem-solving among the experimental group. The term "conceptual approach" was 

introduced to indicate the use of diagrams or written explanations that were not 

explicitly required, while the term "algebraic approach" refers to solutions that rely 

only on algebra. 

A chi-square analysis was performed, with each student's problem-solving approach 

classified as either conceptual or algebraic. A student was classified as a conceptual 

problem solver if he/she used either diagrams or written comments at least once where 

it was not explicitly required, while students who did not meet this requirement were 

classified as algebraic problem-solvers. Table 2 shows almost two-thirds of the 
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experimental group to be conceptual problem-solvers, with the situation reversed for 

the control group. The analysis indicated a significant difference between the 

problem-solving approaches of the two groups, with 2 = 18.96, which is significant at 

the 0.001 level. 

 

Table 2.    Contingency table comparing the treatment and control group's 

problem-solving approaches 

Approach Treatment group Control group Total 

Note: The percentages in brackets represent student numbers as percentages of the 

relevant groups. 

Conceptual 52 (65%) 36 (33%) 88 

Algebraic 28 (35%) 73 (67%) 101 

Total 80 109 189 

 

How did the solutions map relate to the notion of conceptual and algebraic 

approaches? The conceptual/algebraic classification of students was now utilised to 

define an index by which the popularity of routes among conceptual problem-solvers 

could be assessed. The conceptual index (C-index) of group for a specific route was 

defined as the number of conceptual problem-solvers who followed that route divided 

by the total number of students in the group who followed that route. For example, 19 

students in the experimental group followed Route i, while 17 of these students were 

classified as conceptual problem solvers; this ratio of 17/19 is referred to as a 

conceptual index of 0.895 for the experimental group in Route i. 

The energy conservation problem is used to demonstrate how the C-indexes differed 

for Routes i and vii. Route i represents correct solutions while Route vii refers to the 

formula-based solution, relying on the constant acceleration formula v2 = u2 + 2as, 

discussed earlier. Table 3 summarises the C-indexes for these routes, separately 

calculated for the two groups. Also shown are the C-indexes of both groups for the 

entire mid-year examination paper, serving as baseline for comparison. 
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Table 3.    Conceptual indexes for the correct and the formula-based routes for 

the energy conservation problem, as well as for the mid-year examination paper

 Treatment group Control group 

Route 
Number of 

students 
C-index

Number of 

students 
C-index

Note: The number of students refers to the actual number of students in the group 

following a particular route. 

(i) Correct 19 0.895 10 0.600 

(vii) Formula-based 11 0.455 23 0.391 

Examination 80 0.65 109 0.33 

 

Route i, representing correct solutions, had large C-indexes for both groups. For the 

experimental group, 89.5% of those who followed a correct route were conceptual 

problem-solvers, well above the groups' baseline of 65% (the baseline refers to the 

fraction of students who were classified as conceptual problem with regard to the mid-

year examination, as shown in Table 2). The corresponding value was 60.0% in the 

control group, well above the 33% baseline. It then follows that conceptual problem-

solvers were more successful than algebraic problem-solvers at constructing the 

correct solution, in both groups. 

With respect to the formula-based solution (Route vii), only 45.5% of the 

experimental group were conceptual problem-solvers, below the 65% baseline, 

indicating that conceptual problem-solvers in the experimental group were less 

inclined to resort to a formula-based approach. In the control group, 39.1% were 

conceptual problem-solvers, slightly above the 33% baseline, which indicated that the 

conceptual approach produced less success in the control group. This is a reminder 

that successful problem-solving does not result from diagrams or written words as 

such, but from the meanings assigned to the diagrams and words. It seems that, for the 

experimental group, these meanings were better constructed while students made 

translations between the knowledge domains, a skill practised by the regular use of 

the problem-solving strategy during the year. 

In summary, the conceptual/algebraic classification indicated that:  
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• Learning the problem strategy fostered the development of a conceptual 

approach to problem-solving in the experimental group.  

• Conceptual problem-solvers were more successful in constructing the correct 

solution in both groups.  

• Conceptual problem-solvers in the experimental group tended not to resort to 

the formula-based route. 

 

Discussion  
The effect of the problem-solving strategy on conceptual understanding was explored 

by solutions maps and conceptual indexes. The solutions map for the energy 

conservation problem indicated enhanced conceptual understanding among the 

experimental group in three ways, namely, an increased use of general physics 

principles, an increased ability to construct the correct solution amidst many incorrect 

possibilities, and a decreased use of formula-based solutions. 

The conceptual index calculations showed that conceptual problem solvers were more 

likely to construct the correct solution to the energy problem, in both groups, while 

formula-based solutions were reduced among the conceptual problem solvers in the 

experimental group. As mentioned earlier, the particular problem could not be solved 

by a simple formula, leading us to interpret the increased ability to construct the 

correct solution amidst many incorrect possibilities as evidence of conceptual 

understanding. The conceptual index calculations therefore indicate that a conceptual 

approach can be related to conceptual understanding, in both groups. Furthermore, 

since there were significantly more conceptual problem-solvers in the experimental 

group, we infer that the experimental group demonstrated enhanced conceptual 

understanding. 

In view of the prominence of the conceptual approach in the experimental group's 

solutions, we propose that the implementation of the structured problem-solving 

strategy not only supported the development of conceptual understanding, but also 

fostered the emergence of a conceptual approach to problem-solving. Eventually, the 

conceptual approach could replace the problem-solving strategy as a way to approach 

problem-solving as well as in supporting the development of conceptual 

understanding. 
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How would the implementation of the problem-solving strategy support the 

development of conceptual understanding? We propose a mechanism in terms of 

Greeno's four knowledge domains: Applying the steps of the strategy prompts actions 

that rely on translations between the domains. In the case study analysed in the 

previous section, it was found that, even for a simple problem, many translations are 

possible between the four knowledge domains when following the steps of the 

strategy. It is not suggested that the students have conscious knowledge of the 

domains, but rather that they experience more ways of understanding physics. Instead 

of focusing on algebra, they use multiple representations to align concrete situations 

with models and abstract concepts, which are then expressed algebraically to become 

part of an effective process. It is proposed that conceptual understanding develops 

from making translations made while traversing the four knowledge domains. 

Translations create links between a particular concrete situation and particular physics 

concepts. For example, the problem of the car going smoothly down a slope was 

linked to the energy conservation principle. However, energy conservation can be 

linked to many other concrete situations, while cars can also be linked to many other 

physics concepts. For a collection of problems on a particular topic, the translations 

thus create links between that particular topic and different concrete situations, while 

a particular concrete system can be linked to many topics encountered during the 

course. Applying the strategy while working through various problems and various 

topics thus results in a multitude of links between the four knowledge domains. New 

associations are made and existing associations are reinforced to develop familiarity 

with how physics concepts are relevant to concrete situations. The resulting network 

of links that develop between concrete situations, physics concepts, models, and 

symbols amounts to a broad conceptual understanding of physics. 

Regarding the development of a conceptual approach, the case study indicated that 

many translations between the concrete, model and abstract domains are required 

before translation to the symbolic domain. In the first four steps of the strategy, 

translations are made between the written problem statement, a visual representation 

of the concrete situation, physics models, and abstract physics concepts. Only in the 

fifth step are the physics concepts translated to mathematics, and mathematical 

operations are limited to the sixth step. In the final step, the mathematical solution is 

translated back to the concrete situation. The reliance on the mathematical aspect of 

the problem-solving process is therefore reduced. At the same time, the strategy 
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promotes the search for physics models and concepts relating to the particular 

concrete problem situation. The shift in focus from mathematics to diagrams and 

written arguments thus creates an understanding of what a solution entails; that it is 

not about algebra, but about modelling a concrete situation in terms of physics 

principles. In due course, students may realise that the steps of the strategy are road-

signs to solutions, not the road itself. Students may deliberately or unconsciously stop 

writing headings while retaining useful habits such as drawing diagrams and writing 

explanations, thereby adopting a conceptual approach. Hence regular use of the 

strategy fostered the development of a conceptual approach; the formal structure of 

the strategy made way for diagrams and written arguments as a normal part of 

solutions. The acts of constructing diagrams and formulating arguments characterising 

a conceptual approach required translations between knowledge domains in the same 

way as when making explicit use of the steps of the problem-solving strategy; 

therefore, a conceptual approach supports the development of conceptual 

understanding in the same way as does the problem-solving strategy. 

In conclusion, the study showed that structured problem-solving enabled 

disadvantaged students to step out of the confines of the symbolic knowledge domain 

and interpret concrete situations in terms of physics concepts and models. In the 

classroom, following the steps of the problem-solving strategy requires new patterns 

of behaviour. Students react to prescribed steps, making decisions of what needs to be 

done in each step while working on a problem. The teacher-dominated approaches can 

make way for students' participating in knowledge construction. Although the effect 

of the problem-solving strategy on teacher development was not investigated in this 

study, it is possible that poorly trained science teachers could benefit in much the 

same way as their students. This intervention can be particularly useful in 

disadvantaged schools as it does not rely on expensive equipment or intensive 

programs, but rather on unlocking human potential in the classroom to contribute to 

the development of physics teaching and learning. 
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