
The challenges of developing computational physics:

the case of South Africa

T Salagaram1 and N Chetty1,2

1 Department of Physics, University of Pretoria, Pretoria, 0001, South Africa
2 National Institute for Theoretical Physics, Gauteng, 2000, South Africa

E-mail: trisha.salagaram@up.ac.za

Abstract. Most modern scientific research problems are complex and interdisciplinary in
nature. It is impossible to study such problems in detail without the use of computation
in addition to theory and experiment. Although it is widely agreed that students should be
introduced to computational methods at the undergraduate level, it remains a challenge to do
this in a full traditional undergraduate curriculum. In this paper, we report on a survey that
we conducted of undergraduate physics curricula in South Africa to determine the content and
the approach taken in the teaching of computational physics. We also considered the pedagogy
of computational physics at the postgraduate and research levels at various South African
universities, research facilities and institutions. We conclude that the state of computational
physics training in South Africa, especially at the undergraduate teaching level, is generally weak
and needs to be given more attention at all universities. Failure to do so will impact negatively
on the countrys capacity to grow its endeavours generally in the field of computational sciences,
with negative impacts on research, and in commerce and industry.

1. Introduction
Computational physics has been an important research tool in physics for over 40 years. It
has enabled physicists to understand complex problems more completely compared to using
theoretical and experimental methods alone. A generation ago, many postgraduate students
working in computational physics research groups around the world would have been required
to develop computational codes as part of their thesis work. This was during the infancy of
computational physics, and this endeavour was confined only to a small number of specialised
research groups around the world. Computational physics then was largely a research endeavour
with very little formal training at the undergraduate level. Research students were simply
expected to acquire the necessary computational skills as they proceeded with their research
work. This resulted in highly skilled computational physics graduates, but these individuals
were very few and far between.

This trend has changed significantly over recent times where more and more now do
computational physics research groups rely on more sophisticated commercial software, or
freeware computer programmes produced by more specialised groups for their research work.
The advantage is that more researchers now have access to more efficient codes that incorporate
more complex modelling of physical systems of interest. An ever-increasing body of researchers
is now able to use such codes in their research endeavours, including experimental scientists.
The downfall is that we are now producing students who are mostly schooled in utilising

24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012075 doi:10.1088/1742-6596/454/1/012075

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



large computational codes by applying these to physical systems of interest with very little
fundamental knowledge and understanding of the intricate details of the underlying theoretical,
algorithmic and programming aspects. The research focus now has shifted away from
computational methods toward applications. It is reasonable to ask whether these graduates
should be referred to as computational physicists or computational technicians.

It is our view that computational physics students should be involved in all aspects of
the computational project: theoretical modelling, algorithmic design, numerical methods,
programming development, applications to physical problems of interest, analysis of results,
and the graphical presentation of the results which could involve animation and visualisation
(see Table 1). In so doing, computational physics students learn useful marketable skills that are
transferable to other disciplines involving the modelling of problems in engineering, chemistry,
biology, ecology, finance, economics, and so on. These skills are absolutely vital in a developing
country such as South Africa. This is important to enable commerce and industry to move
significantly ahead in terms of developing in-house computational applications, for example in
the South African mining industry, rather than to rely on commercial codes developed abroad
which sometimes are of questionable relevance for local conditions.

Aside from preparing students for the workplace and being an important research tool,
computational physics is also of great pedagogical value. Evidence suggests that allowing
students to study complex problems using computation improves their analytical skills and
enhances their understanding of the underlying physics[1]-[4]. Getting students to design
physical models to explain and predict phenomena can also correct weaknesses in traditional
approaches to teaching physics, which often involves using analytical techniques to solve simple
problems.

The 2012 IUPAP Conference on Computational Physics held at Kobe, Japan, held a panel
discussion on the importance of computational physics, and the question was asked whether
computational physics should be viewed separately from theoretical and experimental physics.
We believe that the methods of computational physics are best learnt by considering applications
to real physical systems and therefore the endeavour of computational physics should not be
viewed in isolation of theoretical and experimental physics.

Despite the benefits, it remains a challenge to include computational physics in the
undergraduate physics curriculum. Although some physics departments at South African
universities teach computational physics at the undergraduate level this trend is yet to fully
develop.

There is enormous potential for computational physics to develop rapidly on the African
continent. With the advent of cheaper computers, faster networking, access to foreign
supercomputing centres and the availability of freeware software, computational physics will be
able to thrive in Africa if a greater effort is made at developing this subject more fundamentally
at the pedagogical level. This can be a strong basis for developing physics more generally in
Africa where investing in expensive experimental infrastructure is always going to be a challenge
for many years into the future.

We conducted an in-depth survey of the teaching programmes in all physics departments
to draw our conclusions about the development of computational physics in South Africa. We
were especially interested to learn whether there was any computational physics being taught
at each of the South African universities and, if so, what is the mode, approach and content of
the teaching of this subject at these institutions. We also used the survey to determine whether
the undergraduate courses are equipping students with the widest range of computational skills,
and to determine the local challenges of including computational physics in the undergraduate
physics curriculum.

We also considered the pedagogy of computational physics at the postgraduate and research
levels at various South African universities, and research facilities and institutions. Here,

24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012075 doi:10.1088/1742-6596/454/1/012075

2



Table 1. Different approaches to the teaching and practice of computational physics
Fundamental computa-
tional physics

Algorithmic physics Applied computational
physics or Modelling

The practitioner develops
large production codes or
short computational exercises
ab initio

The practitioner uses high-
level languages, e.g. MathLab,
Mathematica, Easy Java Sim-
ulations, etc, to develop short
computational exercises

The practitioner operates
large production codes in
black box-mode

The practitioner engages in
all aspects of the computa-
tional project: theoretical and
mathematical modelling, al-
gorithmic development, pro-
gramming, graphical visualisa-
tion of the data, analysis of the
results

The practitioner develops
good algorithmic understand-
ing of the problem, but the
detailed numerical methods
are glossed over

The practitioner only has su-
perficial understanding of the
algorithmic and programming
details since the focus is on the
application and on the analy-
sis of the results

⇒ Computational physicist ⇒ Algorithmic physicist ⇒ Computational technician
or Modeller

we were especially keen to scrutinise those research programmes that were considered to be
computationally intensive. How do these programmes ensure that the postgraduate training
goes well beyond simply teaching students to utilise computational codes in producing the
ubiquitous computational technician, to imparting the full range of skills that are absolutely
essential for the complete development of the computational physicist?

The data for this survey was obtained from course information on physics department
websites, telephone interviews of staff members at various physics departments, personal visits
to physics departments and feedback from a questionnaire which was sent to university physics
departments. The questionnaire was based on the details given in reference[5]. We also surveyed
most of the major research institutions in South Africa to determine their approach to the
training in computational physics at the postgraduate and research levels.

2. Undergraduate training in computational physics
There are 17 traditional and comprehensive universities in total in South Africa. Information
on computational physics could not be obtained for one traditional and four comprehensive
universities. We excluded universities of technology from our investigation since these
universities primarily offer physics only as a service course to other diploma or degree courses.
Our results show that computational physics is taught in some way or form at 8 universities at
the undergraduate level.

The most comprehensive degree programme in computational physics is offered at the
University of KwaZulu-Natal (UKZN). Students who enrol for a degree in computational physics
take physics as a full major, computational physics as a half major and one other half major
subject drawn from mathematics or computer science. At second year level students are given
an introductory computational physics course with a focus on basic numerical methods using
the Fortran programming language where they display their results using Gnuplot in an open
source environment. The applications are mostly in classical mechanics where the problems
quickly become fairly complex, for example chaotic systems. At the third year level there is a
close mirroring of modules taught in the mainstream physics programme and the computational
physics programme. In this way students cover the relevant theory in the mainstream physics

24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012075 doi:10.1088/1742-6596/454/1/012075

3



modules, and they are able to focus on algorithmic development and programming of problems
in a wide range of topics including problems in quantum mechanics, statistical physics and solid
state physics. By the end of the third year, the students acquire very advanced computational
skills that enable them to embark on very complex projects at the postgraduate level, for example
in astronomy. These skills have made these graduates highly employable in a wide range of
industries, such as at the CSIR, Element Six, ISSI, etc., and many graduates have gone on to
successfully pursue postgraduate studies at other universities and at other research institutions.

The University of Stellenbosh offers separate computational physics modules within its
mainstream physics programme. Two computational physics modules are taught at second
year level and one at third year level. The second year modules are designed to teach
students the basics of computational methods in the context of solving classical mechanics and
electrodynamics problems. Students use either Matlab or the Python programming language,
and students may choose to work either in a Windows or a Linux environment. The third year
module places a strong emphasis on the statistical skills necessary to do experimental analysis in
the laboratory. Students write code either in C or Java within the Ubuntu Linux environment.
A major computational project involves the students studying the Ising model.

The University of Pretoria teaches computational physics within the mainstream physics
laboratory programme at second and third year levels. The course instructors have chosen
to use symbolic programming in the teaching of this subject. In second year, students are
introduced to symbolic programming using the Maple software package. They can work either
in the Windows or Linux environments. In second and third year, students use the default
solvers within the Maple environment to study various computational problems from classical
and quantum mechanics, statistical physics and non-linear physics.

The University of Witwatersrand includes elements of computational physics in the laboratory
courses from first to third year levels. Students are introduced to the use of computers in physics
from data capture, processing and the presentation of results to the solution of mathematical
models to fit data. At third year level, students have the option of choosing a computationally
intensive project using Mathematica, Sigma Plot or Excel. Students are free to program in
Python, C++ or Fortran, and may use either the Windows or Linux operating systems.

The University of the Western Cape includes computational physics within the second year
laboratory course. The basics of computational physics are taught in the context of solving
problems in classical mechanics. The computational problems are similar to the experiments
which students conduct so that they can compare experimental data with numerical data.
Students program in Python within the Windows environment. At third year level students are
given a substantial computational physics project in each semester. They are taught to write
scripts to solve problems using Octave, which is freeware, and they work within the Windows
environment. The problems for these projects are taken from the mainstream theory courses
taught in each semester thereby allowing students to focus on learning computational methods
in the laboratory course.

The University of Cape Town includes elements of computational physics in the first year
mainstream course, the second year laboratory course, and offers computational physics projects
over the vacation period. In first year, students are shown how mathematical equations can be
translated into computer code. This is based on the Matter and Interactions curriculum by
Chabay and Sherwood[6, 7]. Using vPython simulations, students are able to visualize their
dynamical results in real time. In second year, students learn to formulate algorithms and
numerical methods by solving classical mechanics problems on the computer. Students have the
option to use Matlab or they may program in Python or Java. There is no formal computational
physics module taught at third-year level, however students are required to use computers to
analyse their experimental results using techniques such as Fourier transforms where the students
are required to write a short piece of code which reads in their experimental data and performs a

24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012075 doi:10.1088/1742-6596/454/1/012075

4



Fourier analysis. Undergraduate students may take an optional vacation computational project
which is usually based on some aspect of research conducted within the department.

The North West University offers computational physics at both its Potchefstroom
and Mafikeng campuses. The physics department at the Potchefstroom campus includes
computational physics in the third year laboratory course. Two laboratory sessions have been
allocated to teaching computational physics. In the first laboratory session students are taught
the syntax of Fortran and the Interactive Data Language (or IDL, which is used for data analysis
especially in astronomy). They can work either in the Windows or Linux environments. In the
second laboratory session they write a program to solve a partial differential equation using the
explicit and implicit numerical methods for numerical solutions of partial differential equations,
and study the effects of various boundary conditions.

At the Mafikeng campus, computational physics is taught in the laboratory course at second
and third year levels. In the second year laboratory course, there are several laboratory
sessions allocated to the numerical and experimental study of a ball moving through a viscous
medium. Students develop algorithms for the numerical solution of this problem and program
in Fortran. The numerical results are compared to actual experimental results to test the
accuracy and stability of the numerical methods used. At third year level, students are given
mini computational projects on non-linear physics, stellar structure and the one dimensional
Schrdinger equation. Students write their own codes in Fortran to solve these problems
numerically.

At the University of Johannesburg the approach to teaching computational physics is to give
students homework problems based on material covered in the theory courses which have to be
solved numerically. These homework problems are designed to teach algorithmic development
and programming in a systematic way, and students may use Matlab or Fortran for programming.
They are required to work in the Linux environment.

Some of the challenges in not being able to properly teach computational physics at the
undergraduate level include: it is difficult to include computational physics in the already full
physics curriculum; finding the right balance between taking a fundamental approach to the
teaching of computational physics which is time-consuming, and using ready-to-go packages
in black box-mode is difficult; there is a lack of qualified lecturers and support staff with
expertise in computational physics; there is not sufficient support from physics colleagues,
i.e. the teaching of computational physics is still not recognised as being important by
some senior colleagues and heads of departments; faculties do not appreciate the distinction
between computer science and computational physics; there is not a proper understanding
of what the teaching of computational physics entails; there are not a sufficient number of
good computational physics text books appropriate at the undergraduate level; there are no
dedicated computational facilities, or there is limited laboratory space for a computational
physics local area network (LAN); there is a lack of staff to assist with LAN administration;
South African physics students lack basic mathematical and programming skills that makes
teaching undergraduate computational physics very challenging; many colleagues believe that
Fortran is out of date and not worth using in the classroom.

2.1. Discussion
South African universities need to take a greater interest in developing computational physics
at the undergraduate level. Computational physics combines the mathematical, theoretical,
numerical and physical modelling of real systems in a unique manner that makes computational
physics distinctly different from computer science. The wide range of problem solving skills that
are developed with a training in computational physics make these graduates highly marketable
and productive in endeavours that go well beyond physics, including in mainstream commerce
and industry.

24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012075 doi:10.1088/1742-6596/454/1/012075

5



While Fortran has been traditionally used in the teaching of computational physics, we
observe that Python is gaining in popularity in South Africa, with some departments using
C, C++ and Java as their preferred programming languages. It should be noted, however, that
many of the large production codes in physics totalling hundreds of thousands of lines of code
are written in Fortran.

Time is needed to develop computational physics more completely at the undergraduate
level. However, the undergraduate curriculum at many universities is generally very crowded
with traditional topics in physics. It is very difficult to properly integrate computational physics
into the current degree structure. There is much resistance to doing away with standard physics
topics in lieu of introducing computational physics.

The most effective option is to introduce additional modules at the second and third year
levels to teach computational physics fundamentally. This requires careful negotiation within
the faculty, as this will impact on the number of credits that a student will be able to take in
the co-major, and may impact also on the number of prerequisites and co-requisites. Not many
South African university physics departments have been able to adopt this approach to date.

A lesser option is to integrate computational physics into physics laboratory programmes[8].
This requires that some experimental laboratory exercises be done away with, which requires
careful negotiation amongst colleagues. Some physics departments have a dearth of good quality
experimental equipment, and so introducing computational exercises as a substitute could be
seen as a valuable improvement to the training of undergraduate students. With less time
available for the development of computational physics, it is pertinent to ask what is realistically
achievable?

The greatest flaw in the undergraduate teaching of computational physics at South African
universities is to simply use ready-to-go packages in black box-mode (see Table 1). Here,
students adopt a dropdown-drag-click approach and the entire exercise is often reduced to
changing parameters and producing pictures. This may be instructive insofar as the application
is concerned, for example in the understanding of a physical problem such as the changes of the
magnetic field lines when a charge is accelerated in vacuum, but there is little gained in terms of
developing real computational skills. This is the primary mode in which postgraduate training
is taking place in South Africa in producing what we refer to as the computational technician,
and this should be avoided as much as possible.

It is realistic within the South African university undergraduate system to introduce
computational physics using higher level languages such as Easy Java Simulations or symbolic
manipulation programmes such as Maple and Mathematica or interpreted languages such as
Octave or Perl. This way, the students can solve complex computational problems applied to
real physical systems without necessarily having to pay a lot of attention to detailed numerical
matters such as determining the most stable algorithm for the solution of a set of coupled partial
differential equations. We refer to this as algorithmic physics rather than computational physics
(see Table 1). Maple, for example, has features that enable one to solve such numerical problems
with ease. Still, the students have useful experiences in computation, especially in algorithmic
development even if they are not called upon to develop large and complex programs. This mode
of training is intermediate to taking a fundamental approach to computing which we have seen
is not always possible given severe time constraints and teaching computational physics in black
box-mode, which we believe should be avoided as much as possible.

3. Postgraduate training and research in computational physics
Eleven out of twelve universities train postgraduate students through computational physics
research projects in various branches of physics. Very often students use large commercial or
opensource production codes to conduct their research. At nine universities some postgraduate
students write short pieces of code or some sections of their own codes or make some

24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012075 doi:10.1088/1742-6596/454/1/012075

6



modifications of production codes to carry out their research, by incrementally improving on
mathematical models, algorithms, computational speed and data storage. However, there is
little evidence that postgraduate students are routinely required to develop substantial sections
of codes or to make substantial changes to existing production codes in their research. This
is especially evident in the field of parallel computing. Many large production codes have
been parallelised to run on massively parallel computers, and this aspect appears to be least
understood or dissected in the training of postgraduate students in South Africa. Several physics
departments have access to local computational clusters for high performance computing and
many others make use of the supercomputers at the Centre for High Performance Computing
(CHPC) to run large, complex, parallelisable calculations, for example in computational solid
state physics, astrophysics, cosmology and particle physics. Postgraduate students working
at two universities are taught the theory of parallel computing and are required to write
message passing interface (MPI) codes to improve and manage their calculations on the cluster.
CHPC runs specialised workshops annually for postgraduate students on the theory of parallel
computing and how to parallelise and optimise codes using the CHPC platforms. But this
endeavour is very far from developed in South Africa.

The African Institute for Mathematical Sciences (AIMS) has a strong focus on computational
physics training. The students, who are drawn from various African countries, may be considered
to be intermediate to the Honours and Masters levels. They have access to a state-of-the-art
computational LAN working in an opensource environment and use the Python programming
language. Depending on the lecturers who are selected each year, the students work on a
variety of problems in applied mathematics, theoretical physics, computational biology and
computational finance. The students are expected to develop their own computer codes during
structured computational classes.

The Centre for Research in Computational and Applied Mathematics (CERECAM), at the
University of Cape Town, provides a multidisciplinary research environment for postgraduates
comprising theoretical mechanics, computational mechanics and high performance computing.
Research programmes include projects of a fundamental nature such as numerical analysis
and partial differential equations, and projects which are relevant to industry and other
applications such as computational solid-, structural- and particulate-mechanics, computational
electromagnetics, computational fluid dynamics and biomechanics. Computational work within
research projects consists of the development and implementation of finite element (FE)
approximations. Researchers use commercial software packages such as Abaqus FEA and
ANSYS FLUENT CFD to implement FE solutions, and develop their own FE codes ab initio
using Matlab, C++ or a C++ program library called deal.II.

The National Astronomy and Space Science Programme (NASSP) is hosted at the University
of Cape Town and offers degree programmes in astrophysics and space science at the honours,
masters and PhD levels. The program places strong emphasis on training in computational
astronomy and astrophysics at the honours and masters levels. Students are taught to program
in Fortran and Python. They also use commercial software such as Maple and Mathematica as
well as open source astronomy and astrophysics software packages. Students typically write their
own codes or extend existing in-house codes to perform parameter fitting, standard statistical
and Bayesian statistical analysis of data and N-body simulations.

Astronomers are substantial users of computer resources, for reducing observational data, for
robotically operating telescopes, for interfacing with hardware, and also for theoretical modelling
and simulating astrophysical processes, especially in cosmology. Scientists at SALT have
developed PySALT[9], which is written in Python, for reducing the SALT data. The software
is opensource and therefore easily available for the entire international SALT community. The
pathfinder KAT7 helped win South Africas bid to host the major share of the Square Kilometre
Array (SKA) primarily because all aspects of the technical design, development and manufacture

24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012075 doi:10.1088/1742-6596/454/1/012075

7



of KAT7 were conducted very successfully and on schedule. In here, computation played a
significant role in the design, and in the reduction and analysis of the astrophysical data. KAT7
science commissioners are routinely writing their own codes in Python, C and C++ to turn
the raw radio data into meaningful quantitative astrophysical images of the sky. The SKA
will require thousands of times more processing power than is currently available in the fastest
supercomputers. The boundaries of data compression and on-site processing will be pushed by
the SKA to limits that require a completely new approach to computing. This has spurred
the interest by major hardware and software companies such as IBM; this has the potential to
significantly improve South Africas capability in the field of computing.

The Nuclear Corporation of South Africa (NECSA) has developed its own software package
to study the interaction between neutrons and matter within their research nuclear reactors.
Their software package solves a partial differential equation, known as the neutron transport
equation, using deterministic and stochastic techniques. This package is also being used by a
research facility in the Netherlands with a similar nuclear reactor. Commercial codes are used
to study other neutron transport problems involving criticality and shielding.

The medical physics research department of iThemba Labs studies the use of neutrons in the
treatment of various diseases. Scientists there develop their own codes in Fortran to solve the
neutron transport equation and they also use commercial software packages to calculate neutron
dosages for treatment.

Mintek and the Advanced Mathematical Modelling and Simulation Group at the CSIR use
commercial and opensource software packages for computational solid state research to predict
the properties of new materials. Mintek also writes code using Java, C++ or C to study diffusion
in alloys and to determine stable geometries of nanoparticles.

3.1. Discussion
Some of the large production codes, for example computational fluid dynamical codes or quantum
mechanical electronic structure codes or astrophysical magneto-hydrodynamical codes total in
excess of several hundred thousand lines of code. It is unrealistic and unproductive to expect
any single research student to develop such production codes in its entirety starting from a clean
slate. Today, it is more realistic to expect a postgraduate student to start with a working piece
of code and to make some modifications to integrate new theoretical, mathematical or physical
models and to test these models with new applications. Being able to accomplish this with ease
is very central to the modern computational physics research endeavour. This requires that the
student develops a level of competence in reading computer codes and making algorithmic and
programmatic changes to these codes. These interventions are very much needed if we want
our research students to move the boundaries of their disciplines significantly in new directions
and to other disciplines. Using standard off-the-shelf codes with no recourse to making changes
to the code ties the researcher to a restricted class of problems that would already have been
conceived of by the original programme developers. There is little or no room for innovating in
ones research discipline by only being able to execute code. For example, if a student develops a
new model in the field of ecology, how does the student test this model in a comprehensive way
if the student is unable to do a realistic simulation using the model? Writing the entire code ab
initio is not necessarily a productive way to proceed. On the other hand, being able to modify
an existing piece of similar code is a preferred way to progress if this is at all possible. Some
commercial codes come with exorbitant licensing fees and, as a part of the licensing agreement,
there is no access to the source code. This may be acceptable in an industrial setting, but is not
helpful in an academic environment and this should be avoided whenever possible.

Developing paradigms for more complex scientific codes should be pursued more vigourously
in our teaching of computational physics. This is relevant for (i) the pedagogy of computational
physics at the postgraduate and research levels, and is (ii) an endeavour that is ripe for

24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012075 doi:10.1088/1742-6596/454/1/012075

8



research productivity in the field of computational physics education research, and finally, (iii)
this is also a basis for developing new material for the teaching of computational physics at
the undergraduate level. The idea is very simple: if research students today are not in a
position to develop their production codes in its entirety from a clean slate and if they are
primarily operating these production codes in black box-mode then, for pedagogical reasons,
these students should be tasked with solving a series of self-contained computational exercises,
each mimicking particular critical elements of the production code. There is a fair amount of
creativity that is required to develop such computational exercises, and this in itself has the
potential to become the subject of publishable research in computational physics educational
journals. These exercises may also be utilised in teaching at the undergraduate level. This has
the potential to stimulate a new and exciting research endeavour in computational physics.

4. Conclusions
The training in computational physics at the undergraduate level, and at the postgraduate and
research levels at South African universities, and research facilities and institutions is generally
weak and needs to be taken more seriously. South Africa is more in the mode of producing
computational technicians rather than computational physicists. Failure to improve the culture
of computational physics in South Africa will impact negatively on South Africas capacity to
grow its endeavours generally in the field of computational sciences, with negative impacts on
research, and in commerce and industry.

Acknowledgments
TS thanks the NRF and the department of Physics at the UP for funding. We thank the lecturers
at all the physics departments and scientists at the research institutions who participated in the
survey. TS thanks Norman Chonacky for assistance with the survey questions. NC acknowledges
support from the National Institute for Theoretical Physics.

References
[1] Christian W O and Esquembre F (2007) Modeling physics with easy java simulations The Physics Teacher

45 475
[2] Wieman C E, Perkins K K and Adams W K (2008) Oersted Medal Lecture 2007: Interactive simulations for

teaching physics: what works, what doesn’t and why �Am. J. Phys. 76 (4 and 5) 393
[3] Singh C (2008) Interactive learning tutorials on quantum mechanics Am. J. Phys. 76 (4 and 5) 400
[4] McKagan S B, Perkins K K, Dubson M, Mally C, Reid S, LeMaster R and Weimann C E (2008) Developing

and researching PhET simulations for teaching quantum mechanics Am. J. Phys. 76 (4 and 5) 406
[5] Chonacky N and Winch D (2008) Integrating computation into the undergraduate curriculum Am. J. Phys.

76 (4 and 5) 327
[6] R Chabay and B Sherwood (2007) Matter and Interactions 2nd ed, Wiley, Hoboken, New Jersery. See also

http://www.matterandinteractions.org
[7] Beichner R, Chabay R and Sherwood B (2010) Labs for the Matter and Interactions curriculum Am. J. Phys.

78 (5) 456
[8] Spencer R L (2005) Teaching computational physics as a laboratory sequence Am. J. Phys. 73 (2) 151
[9] Crawford SM, Still M, Schellart P, Balona L, Buckley D A H, Gulbis A A S, Kniazev A, Kotze M, Loaring

N, Nordsieck KH, Pickering TE, Potter S, Romero Colmenero E, Vaisanen P, Wiliams T and Zietsman E
(2010) PySALT: the SALT Science Pipeline, SPIE Astronomical Instrumentation 7737

24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012075 doi:10.1088/1742-6596/454/1/012075

9




