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Using first principles methods, we study the mechanical properties of monolayer and bilayer graphene with 50%
and 100% coverage of hydrogen. We employ the vdW-DF, vdW-DF-C09x and vdW-DF2-C09x van der Waals
functionals for the exchange correlation interactions that give significantly improved interlayer spacings and
energies. We also use the PBE form for the generalized gradient corrected exchange correlation functional for
comparison. We present a consistent theoretical framework for the in-plane layer modulus and the out-of-plane
interlayer modulus and we calculate, for the first time, these properties for these systems. This gives a measure
of the change of the strength properties when monolayer and bilayer graphene are hydrogenated. As well as
comparing the relative performance of these functionals in describing hydrogenated bilayered graphenes, we
also benchmark these functionals in how they calculate the properties of graphite.

PACS numbers: 61.48.Gh,62.20.de,64.10.+h

I. INTRODUCTION

Monolayer and bilayer graphene continue to be extensively
studied because of their potential applications in nanoscale de-
vices.1–8 It is well-known that these materials lack an intrinsic
electronic band gap3 which hinders their application for nano-
electronics. As a result, substantial efforts have been made to-
wards opening and controlling the band gap, and several meth-
ods have been developed. Applying an electric field between
the layers in bilayer graphene is one possible option.9 Another
promising technique is the adsorption of foreign atoms.10–25 It
must be noted that not all foreign atoms open up a bandgap,
e.g, the adsorption of lithium atoms makes these structures
metallic.26–31 Recently, the use of hydrogen adatoms has been
studied and theoretical investigations show that these hydro-
genated materials are wide bandgap systems,13,24,32–34 a result
supported by experiment.25

Although the structural and electronic properties of hydro-
genated monolayer and bilayer graphene have been exten-
sively studied, the mechanical response properties of these
materials require further investigation. When hydrogen bonds
with carbon in a graphene sheet, the translation symmetry of
the sp2 C-C bonds breaks, leading to the carbon atom having
sp3 hybridization due to wavefunction overlap. In previous
studies,32? ,33 it was found that hydrogen marginally increases
or decreases the interlayer spacing of bilayer graphene de-
pending on its position on the layers. It is expected that the
adsorption of hydrogen will affect the mechanical properties
such as the material’s resilience to in-plane stretching and out-
of-plane compression.

In order to study the in-plane mechanical properties of 2D
materials, Andrew et al.35 introduced a 2D equation of state
(EOS) that equated the isotropic in-plane 2D pressure (the
force per unit length F ) to the surface area. This also gave
the material’s resilience to in-plane stretching (the layer mod-
ulus γ) as one of its fit parameters. Using this equation, bilayer
graphene was studied for its strength properties as well as the
in-plane 2D pressure response of its layer modulus.

In this work, we present the in-plane mechanical proper-
ties of hydrogenated monolayer and bilayer graphene using

this 2D EOS. We also test and compare a set of recently de-
veloped non-local corrected exchange correlation functionals
since they are known to better describe the interlayer interac-
tion. The resistance to out-of-plane compression is also stud-
ied through a new property, namely the interlayer modulus β.
This modulus can be obtained by fitting out-of-plane surface
pressure data over a set of interlayer distances to an out-of-
plane EOS.

This paper is organized as follows: In Section II we present
the theoretical framework for the non-local corrected func-
tionals, the in-plane and out-of-plane moduli with their re-
spective equation of states, and a brief summary of the com-
putational methodology. In Section III, we apply our methods
to single and bilayer hydrogenated graphene, and we draw our
concluding remarks in Section IV.

II. THEORETICAL FRAMEWORK

A. Non-local corrected functionals

The interaction energy curve as a function of separation dis-
tance for a system that includes non-local van der Waals forces
is characterized by an exponentially rising repulsive wall on
the compressive side of the equilibrium separation with a slow
decaying attractive van der Waals tail on the expansion side.
Many methods have been implemented in order describe this
interaction which is found in molecular, sparse and layered
systems.

The semi-empirical force-field correction of Grimme36 in-
cludes damped atom-pairwise dispersion corrections of the
form C6 R−6. Other “universal” functionals have also been
developed which, qualitatively, have a sum of contributions of
the same form in the asymptotic region of the interaction en-
ergy. Two such universal functionals are vdW-DF developed
by Dion et al.37 and vdW-DF2 developed by Lee et al.38 The
functional of Lee et al. was presented as an improvement over
vdW-DF and has weaker attraction in the asymptotic region
with smaller calculated C6 values. It generally gives better
equilibrium spacings and binding energies.
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Both functionals are constructed in the same manner. The
correlation energy part of these functionals is divided into two
parts viz., local and non-local (nl) correlations. The local en-
ergy correlation employs LDA to account for short-range in-
teractions, whereas the non-local energy correlation is formu-
lated as

Enl
c =

1
2

"
n(r) n(r′) ϕ(q1, q2, r12) d3r d3r′, (1)

where the kernel ϕ is a function of r12 = |r − r′| and q1 and
q2 are functions of a universal function q0[n(r), |∇n(r)|] eval-
uated at the points r and r′. The full potential approximation
(FPA) is then applied to Enl

c in order to avoid double counting
for short-range interactions. The exchange energy is obtained
from the revised Perdew Burke and Enzerhof39 exchange term
ErevPBE

x in the case of vdW-DF, and the Cooper40 exchange
term EC09

x in the cases of vdW-DF-C09x and vdW-DF2-C09x.
The reason for the use of the Cooper exchange is to reduce
the short-range repulsion due to the revPBE functional which
leads to underbinding with overestimated equilibrium separa-
tions.

In 2006, it was found by Dobson et al.41 that the sum of
C6 R−6 terms used in many van der Waals corrected methods
incorrectly predicts the proper energy power laws for a vari-
ety of systems. Although it was felt that “universal” schemes
would display valid asymptotic results for most systems, they
would fail for anisotropic nanostructures such as the hydro-
genated weakly bound layered systems studied here. For in-
stance, they predicted that for bilayer graphene the asymptotic
attractive energy is of the form −C3 D−3 as opposed to the D−4

behavior predicted by the sum of C6 R−6 terms. Since the ran-
dom phase approximation42 (RPA) does not rely on R−6 con-
tributions, it is commonly used as a benchmark in order to
validate calculated results for van der Waals corrected func-
tionals.41,43,44

For the reasons given above, we have chosen to investi-
gate the vdW-DF, vdW-DF-C09x and vdW-DF2-C09x func-
tionals37,40,45–47 in how they describe hydrogenated graphene
systems as well as bulk graphite. We also use the PBE form
for the generalized gradient corrected exchange correlation
functional45 for comparison.

B. In-plane 2D layer modulus

Given the in-plane 2D pressure (force per unit length) is
defined as

F = −∂E
∂A

(2)

and the resistance to in-plane stretching (the layer modulus) is
defined as

γ = −A
∂F
∂A
, (3)

the 2D EOS35 that relates the isotropic in-plane 2D pressure
to the surface area is given by

F (A) = −2 γ0

[
ϵ + (1 − γ′0) ϵ2 + 2

3

(
(1 − γ′0)(2 − γ′0) + γ0 γ

′′
0

)
ϵ3
]

(4)
where

ϵ =
1
2

(1 − A0/A) (5)

and A0, γ0, γ′0 and γ′′0 are the equilibrium values for the
unit cell area, layer modulus, the force per unit length first
derivative and second derivative of the layer modulus at F = 0
respectively. This EOS can be fitted to isotropic force per
unit length values calculated over a range of area values. It
has an advantage over the energy EOS used by Andrew et
al35. Whereas there was a slight ambiguity in the range of
areas that had to be used for that EOS, the range of areas
to be used for the pressure EOS is fully defined by the full
positive pressure range from the expected zero in-plane 2D
pressure value to the expected maximum intrinsic breaking
stress. Typically, the equilibrium in-plane distances increase
by 20% over this range.

The γ-related fit parameters define the in-plane 2D pres-
sure response of the layer modulus near the equilibrium point
where

γ = γ0 + γ
′
0 F +

1
2
γ′′0 F 2. (6)

C. Out-of-plane interlayer modulus

In their study of graphite, Hanfland et al.48 defined the lin-
ear bulk modulus in the c axis as

βc = −c
∂P
∂c

(7)

where c is the lattice constant and P the bulk pressure. In
terms of the elastic constants, this modulus is

βc = C33 +C13. (8)

Similarly, we can define, for finite layered 2D materials, the
interlayer modulus

β ≡ βd = −d
∂p
∂d

(9)

where d is the interlayer distance (defined as the vertical dis-
tance between the lowest atom in an upper layer and the high-
est atom in the lowest layer) and p is the pressure on the ex-
ternal surfaces of the two outermost layers. This modulus rep-
resents the material’s resistance to out-of-plane compression.

The out-of plane EOS that relates the surface pressure to
the interlayer distance is

p(d) = −2 β0

[
ϵ + (1 − β′0) ϵ2 + 2

3

(
(1 − β′0)(2 − β′0) + β0 β

′′
0

)
ϵ3
]

(10)



3

where

ϵ =
1
2

(1 − d0/d) (11)

and d0, β0, β′0 and β′′0 are the equilibrium values for the in-
terlayer distance, interlayer modulus, the surface pressure first
derivative and second derivative of the interlayer modulus at
p= 0, respectively. This EOS can be fitted to surface pressure
values calculated over a range of interlayer distances.

These fit parameters define the surface pressure response of
the interlayer modulus near the equilibrium point where

β = β0 + β
′
0 p +

1
2
β′′0 p2. (12)

D. Computational details

All calculations were done within the framework of den-
sity functional theory49 (DFT) using the projector augmented-
wave50 (PAW) formalism as implemented in the Quantum
ESPRESSO package.51 We used the GGA-PBE45, vdW-DF,
vdW-DF-C09x and vdW-DF2-C09x functionals. For the
monolayer and bilayer structures, a Monkhorst-Pack52 grid of
10×10×1 was chosen since testing showed it gave an error in
the total energy less than 1 meV. A grid size of 9×9×5 was
chosen for graphite for the same reason.

The total energy calculations were converged to within
10−8 Ryd and a Methfessel-Paxton distribution function53

with a smearing parameter of 0.05 Ry was used to integrate
the bands at the Fermi level. In all cases, a kinetic energy cut-
off of 40 Ryd was used. The vdW stress components were cal-
culated using the method of Sabatini et al.54 as implemented
in PWscf. All atomic forces during relaxation were converged
to within 0.0001 a.u

For all structures, a 1×1 in-plane unit cell was used. The
cell height was chosen to create an adequate vacuum layer to
isolate the structure. For all monolayer structures and pristine
bilayer graphene, the cell height was set to c= 15 Å in order to
prevent spurious interactions between cells repeating perpen-
dicular to the layer plane. A larger height of 30 Å was used
for the hydrogenated bilayer materials. To determine the in-
terlayer modulus for pristine bilayer graphene, the cell height
was also set to 30 Å.

For the calculation of the in-plane properties, the atoms
were fully relaxed at each chosen area value. For the calcu-
lation of the out-of-plane properties of the bilayer materials,
the in-plane 2D cell was fully relaxed along with the atomic
positions while keeping the vacuum height and the vertical
positions of the atoms defining the chosen interlayer distance
fixed. For the calculation of the out-of-plane properties of
graphite, the in-plane lattice constant was relaxed at each fixed
c value.

III. RESULTS AND DISCUSSION

A. Structures

We investigate the mechanical properties of hydrogenated
monolayer and bilayer graphene with both 50% and 100%
coverages. These structures are shown in Fig. 1.

The top-view of monolayer graphene with 50% coverage
[see Fig. 1a] shows that the hydrogen adatoms are attached to
every other carbon atom. The bottom of the monolayer sheet
is the same as for graphene indicating that only one side of
this structure is hydrogenated. This structure is referred to
in the tables as graphene + H(50%). In contrast, monolayer
graphene with 100% coverage (namely, graphane) has a top
surface with hydrogenation on every other atom [see Fig. 1b]
with a bottom surface the same as that shown in Fig. 1a. This
indicates hydrogen adatoms are attached to both sides of the
sheet in an alternating pattern.

The hydrogenated bilayer graphene has the Bernal AB
stacking (as shown in Fig. 1c and Fig. 1d) as this is more ener-
getically stable than simple AA stacking.34 In bilayer graphene
with 50% coverage, each layer has only 50% coverage with
no hydrogen atoms between the layers. This is referred to in
the tables as bilayer graphene + H(50%). Bilayer graphene
with 100% coverage (namely, bilayer graphane) consists of
two graphene sheets with hydrogen adsorption on both sides
of each layer.

Table. I shows the equilibrium structural parameters ob-
tained from the in-plane EOS fits. It can be seen from the val-
ues for the lattice constant a0 that all four functionals describe
similar in-plane covalent bonding. The non-local functionals
containing the C09x exchange term give results for graphene
and bilayer graphene that are very close to the experimental
value of 2.463 Å obtained by Bosak et al.55 for graphite. The
other two functionals, with their greater repulsive exchange
terms, give slightly higher values that are greater than the ex-
perimental value.

For the hydrogenated structures, all four functionals give
similar buckling parameters where the buckling parameter
is defined as the vertical distance between the highest and
the lowest carbons in a given layer. The values for bilayer
graphene with 50% coverage are slightly higher due to the
tetrahedral nature of the diamond-like interlayer bonding as
seen in Fig. 1c.

B. In-plane mechanical properties

For all structures, Eqn. 4 was used to fit calculated in-
plane 2D pressure values for a range of areas using the four
exchange-correlation functionals to obtain the fit parameters
given in Table. I (all fits give the same a0 parameter as the
values obtained from geometric relaxation).

To obtain these fits, the isotropic in-plane 2D pressure is
calculated from the stresses σxx, σyy and the cell height c as

F = c
2

(σxx + σyy). (13)
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This converts the bulk stresses acting on the sides of the cell
into an in-plane 2D pressure that is independent of the cell
height (provided there is a sufficient amount of vacuum).

A plot of the EOS fits for pristine bilayer graphene and
and bilayer graphane are given in Fig. 2a. This shows that
isotropic in-plane 2D pressure grows more negative as the
structures are stretched. At a certain point, the trend reverses
indicating the expected intrinsic breaking point for the struc-
ture at the resulting minimum. The plot shows that pristine
bilayer graphene has the higher breaking stress (where σint =

−Fint) of 64.3 Nm−1 (compared to 41.7 Nm−1 for bilayer
graphane) and that it yields at a smaller area of 27.5 bohr2

(compared to 29.4 bohr2 for bilayer graphane). The relative
breaking area (defined as Aint/A0) is basically the same for
both structures having a value of 1.46 ∼ 1.47.

From these fits, various trends in the behavior of each func-
tional can be seen. It is evident that for all four functionals, the
bilayer structures have greater resilience to in-plane stretch-
ing than the monolayer structures as indicated by their rela-
tively higher values for γ0. The hydrogenated structures are
also less resilient than their pristine counterparts. For each
structure, the γ0 and σint values show slight variation with the
choice of functional with an increasing trend going from vdW-
DF→GGA-PBE→vdW-DF2-C09x →vdW-DF-C09x.

Looking at the results for the linear and parabolic force
per unit length derivative terms γ′0 and γ′′0 it is clear that,
in general, vdW-DF gives the highest absolute values when
compared to the other three functionals (except in the case of
monolayer graphene with 50% coverage where PBE gives the
greatest negative value for γ′′0 ). For the unhydrogenated sys-
tems, the two C09x functionals give almost the same values
for γ′0 and γ′′0 as compared with the PBE functional. Mono-
layer graphene with 50% coverage has γ′0 < 4.20 for all four
functionals whereas γ′0 > 4.20 for all the other systems. The
values for the relative intrinsic breaking area Aint/A0 show that
for each structure, the functionals all give more or less the
same value.

In Table. II, we compare the parameters for a given struc-
ture with those for a corresponding reference structure. The
LDA results of Andrew et al.35 demonstrated that the effect of
layering in the case of graphene was an increase in γ0 and σint
with a doubling of these values for bilayer graphene. The in-
plane 2D pressure response of the layer modulus (see Eqn. 6)
also became more linear with γ′′0 having half the value of pris-
tine graphene. All other parameters remained the same. This
can be seen in Table. II in the case of bilayer graphene com-
pared with graphene. For all four functionals, the ratios for
a0, γ′0 and Aint are basically unity whereas those for γ0 and
σint are doubled while γ′′0 is halved. This is indicative of weak
interlayer interaction, and in the case of PBE it is revealed that
there is practically no interlayer interaction.

The results of the hydrogenated monolayer graphene (com-
pared with graphene) show that the adsorption of hydrogen
increases the lattice constant by a factor of about 1.02∼1.03.
The value for γ0 decreases by 0.64∼0.68 with that forσint gen-
erally following the same trend. The values for γ′′0 show that
γ(F ) for both these structures is more parabolic compared to
monolayer graphene. This feature of buckled monolayer ma-

terials has been observed theoretically in honeycomb Ge and
Si where Ge had the greatest non-linear response due to its
larger buckling parameter.35 Monolayer graphene with 50%
coverage shows the greatest deviation from linear response
having the highest increase in γ′′0 and a relative decrease in
the linear term γ′0. This result is interesting since graphane
has the larger buckling parameter and it is expected that this
structure should have the greatest non-linear response. It is
thought that this discrepancy is due to the fact that whereas
graphane has symmetrical puckering due to adatoms being on
either side of the monolayer, this is not the case for graphene
with 50% coverage where all the hydrogen atoms are on one
side. The ratios for Aint are slightly greater than unity.

The results for the hydrogenated bilayer graphenes (com-
pared with their monolayer counterparts) show that the effect
of layering is largely dependent on the amount of interlayer
bonding. Weak bonding gives results similar to the trends
seen for bilayer graphene, and this is indeed the case for bi-
layer graphane. The covalent bonding in bilayer graphene
with 50% coverage yields results that deviate from this ex-
pected trend. For instance γ0 is increased by ∼ 1.9 for all four
functionals and σint by ∼ 1.8. The linear term γ′0 is increased
by 1.12∼1.23 instead of remaining the same and the parabolic
term γ′′0 for the vdW functionals is decreased by 0.41∼0.48.
The covalent interlayer bonding weakens the in-plane cova-
lent bonding suppressing the doubling effect for γ0. It also
suppresses the increased linearity usually seen with increas-
ing layers though it does increase the linear term which may
compensate for this. As with the hydrogenated single layer
graphene, the ratios for Aint are slightly greater than unity.

C. Out-of-plane mechanical properties

1. Graphite

Since graphite has been extensively studied both experi-
mentally55,56 and theoretically,43,44 we have included calcula-
tions of its out-of-plane properties using the EOS of Hanfland
et al.48 The binding energy was also calculated by taking the
difference between the asymptotic interaction energy at large
separation and that at the equilibrium distance. The results are
shown in Table. III.

The results show that of the four functionals considered,
vdW-DF2-C09x gives a value for the interlayer distance that is
closer to the experimental value of 3.356 Å.55 The functional
vdW-DF-C09x gives a very similar value which is due to the
fact that is has the same exchange term which is known to
correct for over-estimation.40 PBE is well above this value due
to its greater repulsive nature. This is also true for vdW-DF
which contains the revPBE exchange term. As a benchmark,
vdW-DF-C09x and vdW-DF2-C09x compare very well with
the RPA value calculated by Lebègue et al.43

The calculated binding energies per atom show that vdW-
DF and vdW-DF2-C09x, with basically the same value
of 55 meV/atom, are closer to the experimental value of
52 meV/atom measured by Zacharia et al.56 and the bench-
mark RPA value of 48 meV/atom calculated by Lebègue et
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al.43. The functional vdW-DF-C09x overestimates the binding
energy which is interesting since it only differs from vdW-DF
in that it has a different exchange term. This shows that the
exchange term which sets the position of the repulsive wall in
the interaction energy curve, also affects the position of the
energy minimum relative to the van der Waals tail.

The linear bulk modulus was also calculated for each func-
tional over a range of pressures from approximately 0 to 9 GPa
in the c direction. The relationship between this modulus
and the elastic constants for a material are given by Eqn. 8.
For graphite, this value is C33 since C13 is quite close to
zero.55 The values show an increasing trend from PBE→vdW-
DF→vdW-DF2-C09x →vdW-DF-C09x. The experimental
measurements of Bosak et al. give a value of 38.7 GPa which
is close to the value of 38.3 GPa given by vdW-DF2-C09x.
Lebègue et al. calculated a RPA value of 36 GPa and although
the in-plane lattice constant was not optimized at each c value
as was done in this study, we believe that it is still a good
benchmark value.

These results show that for layered graphite, vdW-DF2-
C09x give the most accurate values of the three van der Waals
corrected functionals considered.

2. Bilayered structures

In order to use Eqn. 10 for the bilayered structures, the sur-
face pressure p acting on the outermost layers has to be de-
fined in terms of the calculated out-of-plane stress σzz and the
periodic cell dimensions. One such definition is

p = c
(u + v

A

)
σzz. (14)

where c is the cell height, u and v are the lengths of the in-
plane spanning vectors and A is the in-plane cell area. We
have checked that this definition gives essentially constant p
values for a given layered structure independent of the cell
height (provided there is a sufficient amount of vacuum).

Using this definition, Eqn. 10 was used to fit calculated sur-
face pressure values at various interlayer distances for the bi-
layer structures using the four exchange-correlation function-
als to obtain the fit parameters given in Table. III. Fits were
done for d values ranging from 80% of the expected equilib-
rium interlayer distance value to about 105% as these gave
good pressure ranges for the fits. Plots of the EOS fits are
given in Figures 2b, 2c and 2d. A comparison of the shapes
of these plots for a given structure gives an indication of how
each functional describes the interlayer interaction differently.
For example, in plots 2b and 2d there is no discernible mini-
mum for the PBE functional which points to the minimal in-
terlayer interaction within this scheme.

The results in Table. III show the equilibrium interlayer
distances obtained from the EOS fits. The fitted values for
bilayer graphene using the three non-local functionals are in
very good agreement with those of Hamada and Otani who
calculated the following distances by minimizing the inter-
layer binding energy as a function of d:57 3.581 Å (vdW-
DF), 3.226 Å (vdW-DF-C09x) and 3.277 Å (vdW-DF2-C09x).

We see that these values are the same as those calculated for
graphite (with the exception of that for PBE). The reasons for
the relative behavior of the four functionals are the same as
those given for graphite.

The values for d0 for bilayer graphene with 50% coverage
are almost identical to each other and close in value to the sin-
gle C-C bond found in cubic diamond indicating that the in-
terlayer bonding between opposing carbon atoms is diamond-
like covalent. This short-range interaction is similarly de-
scribed by the differing functionals as was seen in the case
for the in-plane covalent bonding in graphene and bilayer
graphene.

The values for d0 for bilayer graphane are the largest of the
bilayer structures due to the fact that the interlayer hydrogen
atoms tend to force the layers apart.

The plots for bilayer graphene in Fig. 2b show that GGA-
PBE predicts the lowest surface pressures for each compres-
sion followed in increasing order by vdW-DF→vdW-DF2-
C09x→vdW-DF-C09x. This is reflected in Table. III where
the value of the interlayer modulus follows the same trend.
This is the same trend observed in the calculation of the linear
bulk modulus (C33) for graphite. The interlayer modulus for
GGA-PBE is well below those for the three non-local func-
tionals due to its extreme underbinding of the layers caused
by its relatively flat interaction potential. The values for the
other three functionals give a quantitative comparison of the
non-local corrected functionals used. Although vdW-DF and
vdW-DF-C09x both contain the non-local correlation term of
Dion et al.,37 they do not have comparable interlayer modu-
lus values. The values show that the C09x exchange term in
vdW-DF-C09x enhances the repulsive interlayer interaction as
the layers are compressed to a greater extent than the revPBE
term in vdW-DF. The non-local corrected functional vdW-
DF2-C09x has the non-local term of Lee et al.38 and shows
a similarly shaped plot to vdW-DF-C09x as indicated by the
similar values for β′0 and β′′0 in Table III. It has a lower in-
terlayer modulus than vdW-DF-C09x indicating that its non-
local term describes a slightly lower repulsive interlayer inter-
action during compression.

Also shown in Fig. 2b are minima for the three non-local
functions indicating, as in the case for the 2D in-plane fits,
the intrinsic breaking strengths at a given negative value for p
(an expansion). These values are also given in Table III and
show that the structure described by vdW-DF-C09x requires
the highest negative surface pressure to separate the layers.
The other two values are comparable in strength. These val-
ues indicate that the layers can be more easily separated. As
expected, GGA-PBE has no minima due to the lack of ade-
quate interlayer interaction.

The plots for 50% hydrogenated bilayer graphene in Fig. 2c
show that all four functionals give very similar out-of-plane
behavior which is reflected in the values in Table III. It is
clear that the values for the interlayer modulus are ∼ 10 times
higher in magnitude than those for pristine bilayer graphene
(∼ 50 in the case of GGA-PBE). The reason for these high in-
terlayer modulus values is due to the fact that these function-
als have very similar short-range interaction potentials. They
give a quantitative measure of just how weak the interlayer
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interactions described by the non-local corrected functionals
in bilayer graphene are as compared to the covalent interlayer
interaction described in bilayer graphene with 50% coverage.
This is due to the fact that for this structure, the reduced in-
terlayer distance causes the non-local term in vdW corrected
functionals to effectively vanish leaving only the effects of the
LDA correlation term and the exchange terms. These terms
yield very similar values for the interlayer modulus for the
diamond-like structure of bilayer graphene + H(50%) with a
slight increasing trend of vdW-DF→GGA-PBE→vdW-DF2-
C09x →vdW-DF-C09x. As is expected, the values for the two
functionals containing the C09x exchange term yield almost
the same fit parameters.

Fig. 2c also shows minima in all four cases indicative of
layer breaking at negative p. These values follow the same
trend as the interlayer modulus and reveal that the layers for
bilayer graphene + H(50%) are not easily separated.

The plots for bilayer graphane in Fig. 2d are similar to
those for pristine bilayer graphene. Although the surface pres-
sure range is lower for the hydrogenated structure, they share
the same general shape with GGA-PBE predicting the lowest
pressures for each compression with the same asymptotic be-
havior. The other three functionals show an increasing trend
in the calculated compression pressures from vdW-DF→vdW-
DF2-C09x →vdW-DF-C09x. The values for the interlayer
modulus, shown in Table III follow the same trend. These
values are of the same order of magnitude to those of bilayer
graphene indicating similar repulsive interlayer interaction al-
though this interaction is due to the fact that when the hy-
drogenated structure is compressed vertically, the hydrogen
atoms within the interlayer spacing repel each other.

The plots in Fig. 2d for the three non-local corrected func-
tionals show perceptible minima indicative of layer breaking.
GGA-PBE has a barely perceptible minima at dint/d0 = 1.169
as shown in Table III and as such, is not considered signifi-
cant. The values for pint are of the same order of magnitude as
bilayer graphene and show that the layers are easily separated.

The binding energy per chemical unit was also calculated
for each bilayered structure as follows

Eb =
Ebilayer − 2 Elayer

n
(15)

where n is the number of chemical units. The results for the
three van der Waals corrected functionals show that for each
structure, the trend in the calculated values mirrors the trend
for the interlayer modulus values. This shows that how differ-
ing functionals describe the out-of-plane mechanical proper-
ties, also gives a prediction in how they will relatively predict
the binding energies. As with graphite, vdW-DF and vdW-

DF2-C09x give very similar values for bilayer graphene.

IV. CONCLUSIONS

We present a consistent theoretical framework for the in-
plane layer modulus and the out-of-plane interlayer modu-
lus and we calculate, for the first time, these properties for
graphene and hydrogenated graphene monolayer and bilayer
systems. This gives a measure of the change of the strength
properties when pristine graphene is hydrogenated. We test
and compare the set of recently developed non-local corrected
exchange correlation functionals since they are known to bet-
ter describe the interlayer interaction.

We find that for all four functionals, the bilayer structures
have greater resilience to in-plane stretching than the mono-
layer structures as indicated by their relatively higher values
for γ0. The hydrogenated structures are also less resilient than
their pristine counterparts.

GGA-PBE predicts the lowest surface pressures for each
compression followed in increasing order by vdW-DF→vdW-
DF2-C09x→vdW-DF-C09x. Consequently, the value of the
interlayer modulus follows the same trend. This trend is also
observed for graphite. The interlayer modulus for GGA-PBE
is well below those for the three non-local functionals due to
its extreme underbinding of the layers caused by its relatively
flat interaction potential.

The intrinsic breaking strengths show that the structure de-
scribed by vdW-DF-C09x requires the highest negative sur-
face pressure to separate the layers. Our results indicate that
the layers are predicted to be more easily separated using the
other two non-local functionals.

For the bilayered materials, it was found that the binding
energies follow the same trend as the interlayer modulus val-
ues showing a correlation between the two properties.

The calculations for graphite show that of the three van
der Waals corrected functionals considered, vdW-DF2-C09x
gives consistent accurate results for the interlayer spacing, the
binding energy and the elastic constant C33. This suggests
that it may be the best candidate to use for layered graphene
systems.
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(a) (b)

(c) (d)

FIG. 1. 3×3 cells of the four hydrogenated structures: (a) top-view of
monolayer graphene with 50% hydrogen coverage, (b) bottom-view
of graphane with 100% hydrogen coverage, (c) side-view of bilayer
graphene with 50% hydrogen coverage, and (d) side-view of bilayer
graphane with 100% hydrogen coverage. (hydrogen atoms � carbon
atoms �)
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FIG. 2. EOS fit plots showing (a) the in-plane 2D pressure F (A)
equation of state fits for bilayer graphene (◦) and bilayer graphane
(^) using the GGA-PBE functional with the plot showing minima
for the expected intrinsic breaking points, (b) the out-of-plane equa-
tion of state fits for bilayer graphene for all four functionals (◦ PBE,
^ vdW-DF, ▽ vdW-DF-C09x and △ vdW-DF2-C09x) showing min-
ima for the three non-local corrected functionals, (c) the out-of-plane
equation of state fits for bilayer graphene with 50% hydrogen cov-
erage for all four functionals (◦ PBE, ^ vdW-DF, ▽ vdW-DF-C09x

and △ vdW-DF2-C09x) showing minima in all four cases and (d) the
out-of-plane equation of state fits for bilayer graphane for all four
functionals (◦ PBE, ^ vdW-DF, ▽ vdW-DF-C09x and △ vdW-DF2-
C09x) showing perceptible minima for the last three functionals.
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TABLE I. In-plane structural and mechanical properties for pristine and hydrogenated single and bi-layered graphene (lattice constant a0 and
buckling parameter ∆ in Å, layer modulus γ0 in N m−1, γ′0 (dimensionless), γ′′0 in m N−1, relative area at failure Aint/A0 (dimensionless), and
stress at failure σint in N m−1).

a0 ∆ γ0 γ′0 γ′′0 Aint/A0 σint

graphene GGA-PBE 2.47 208.2 4.38 −0.0320 1.46 32.2
vdW-DF 2.48 202.1 4.49 −0.0342 1.45 30.5
vdW-DF-C09X 2.46 210.3 4.38 −0.0314 1.46 32.5
vdW-DF2-C09X 2.46 209.2 4.40 −0.0318 1.46 32.3

bilayer graphene GGA-PBE 2.47 417.2 4.40 −0.0159 1.46 64.3
vdW-DF 2.48 403.8 4.49 −0.0172 1.45 61.0
vdW-DF-C09X 2.46 420.6 4.39 −0.0157 1.46 65.0
vdW-DF2-C09X 2.46 418.7 4.40 −0.0159 1.46 64.6

graphene + H(50%) GGA-PBE 2.53 0.26 139.5 3.68 −0.0619 1.43 22.4
vdW-DF 2.54 0.28 135.7 4.15 −0.0583 1.43 20.8
vdW-DF-C09X 2.52 0.26 142.7 3.74 −0.0569 1.44 23.1
vdW-DF2-C09X 2.52 0.26 141.6 3.77 −0.0576 1.44 22.8

graphane GGA-PBE 2.54 0.46 135.2 4.48 −0.0468 1.47 20.9
vdW-DF 2.56 0.46 129.7 4.58 −0.0513 1.46 19.6
vdW-DF-C09X 2.53 0.46 139.6 4.47 −0.0449 1.48 21.6
vdW-DF2-C09X 2.53 0.46 138.2 4.50 −0.0458 1.47 21.3

bilayer graphene + H(50%) GGA-PBE 2.53 0.49 264.0 4.52 −0.0252 1.46 40.1
vdW-DF 2.55 0.49 253.2 4.64 −0.0277 1.45 37.5
vdW-DF-C09X 2.52 0.49 271.6 4.51 −0.0241 1.47 41.5
vdW-DF2-C09X 2.52 0.49 269.0 4.50 −0.0245 1.46 41.0

bilayer graphane GGA-PBE 2.54 0.46 270.5 4.51 −0.0233 1.47 41.7
vdW-DF 2.56 0.47 258.9 4.61 −0.0258 1.46 38.9
vdW-DF-C09X 2.53 0.46 279.0 4.52 −0.0227 1.47 42.9
vdW-DF2-C09X 2.53 0.46 276.1 4.51 −0.0230 1.47 42.4
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TABLE II. Ratios of material in-plane EOS fit parameters to compare the effects of hydrogenation and layering with the corresponding
reference structure.

a0 γ0 γ′0 γ′′0 Aint σint

bilayer graphene GGA-PBE 1.00 2.00 1.00 0.50 1.00 2.00
compared with graphene vdW-DF 1.00 2.00 1.00 0.50 1.00 2.00

vdW-DF-C09X 1.00 2.00 1.00 0.50 1.00 2.00
vdW-DF2-C09X 1.00 2.00 1.00 0.50 1.00 2.00

graphene + H(50%) GGA-PBE 1.03 0.67 0.84 1.93 1.03 0.70
compared with graphene vdW-DF 1.03 0.67 0.92 1.70 1.04 0.68

vdW-DF-C09X 1.02 0.68 0.85 1.81 1.03 0.71
vdW-DF2-C09X 1.02 0.68 0.86 1.81 1.03 0.71

graphane GGA-PBE 1.03 0.65 1.02 1.46 1.07 0.65
compared with graphene vdW-DF 1.03 0.64 1.02 1.50 1.07 0.64

vdW-DF-C09X 1.03 0.66 1.02 1.43 1.06 0.66
vdW-DF2-C09X 1.03 0.66 1.02 1.44 1.06 0.66

bilayer graphene + H(50%) GGA-PBE 1.00 1.89 1.23 0.41 1.02 1.79
compared with graphene + H(50%) vdW-DF 1.00 1.87 1.12 0.48 1.01 1.80

vdW-DF-C09X 1.00 1.90 1.21 0.42 1.02 1.80
vdW-DF2-C09X 1.00 1.90 1.19 0.43 1.02 1.80

bilayer graphane GGA-PBE 1.00 2.00 1.01 0.50 1.00 2.00
compared with graphane vdW-DF 1.00 2.00 1.01 0.50 1.00 1.98

vdW-DF-C09X 1.00 2.00 1.01 0.51 1.00 1.99
vdW-DF2-C09X 1.00 2.00 0.99 0.50 1.00 1.99

TABLE III. Out-of-plane structural and mechanical properties for the bi-layered structures (interlayer distance d0 in Å, interlayer modulus β0

in GPa, β′0 (dimensionless), β′′0 in GPa−1, relative interlayer distance at failure dint/d0 (dimensionless), surface pressure at failure pint in GPa
and binding energy per chemical unit Eb in meV).

d0 β0 β′0 β′′0 dint/d0 pint Eb

graphite GGA-PBE 4.12 5.1a 9.96b < 1
vdW-DF 3.59 27.1a 9.19b 56
vdW-DF-C09X 3.24 45.1a 10.4b 76
vdW-DF2-C09X 3.28 38.3a 10.9b 55
Experimental 3.356 38.7c 52d

bilayer graphene GGA-PBE 3.99 24.8 3.84 5.009 ∼ 1
vdW-DF 3.59 87.8 9.24 −0.410 1.185 −6.2 26
vdW-DF-C09X 3.23 138.5 10.64 −0.493 1.128 −7.6 34
vdW-DF2-C09X 3.28 115.6 11.87 −0.776 1.111 −5.6 25

bilayer graphene + H(50%) GGA-PBE 1.56 1315.3 5.74 −0.0139 1.263 −137.5 1920
vdW-DF 1.57 1225.5 5.75 −0.0147 1.265 −128.5 1940
vdW-DF-C09X 1.55 1363.7 5.62 −0.0125 1.274 −146.8 2120
vdW-DF2-C09X 1.55 1352.1 5.66 −0.0129 1.270 −144.3 2080

bilayer graphane GGA-PBE 4.48 48.6 11.10 −0.986 1.169e −3.0e ∼ 1
vdW-DF 4.29 90.2 8.66 −0.517 1.157 −6.0 20
vdW-DF-C09X 4.02 119.3 9.95 −0.765 1.112 −6.2 26
vdW-DF2-C09X 4.08 100.2 11.61 −1.25 1.094 −4.4 17

a Bc for graphite which is equivalent to C33
b B′c for graphite
c C33 for graphite determined by inelastic x-ray scattering. Bosak et al.55

d for graphite determined from thermal desorption studies. Zacharia et al.56

e not significant


