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Abstract. The problem of additional time reversal (TR) degeneracy and the transformation 
properties of “time reversed’ wave functions are investigated. In crystals the one electron 
Hamiltonian is invariant with respect to a space group of a crystal. The Bloch functions are the 
basis for irreducible representations (irrp’s) of the wave vector groups k. When an irrp is 
complex the TR symmetry must be considered. Using Herring’s criterion adopted to space 
groups we have investigated several hexagonal materials for optoelectronic devices such as 
ZnO, GaN, 6H-SiC. We have found many complex irrps. We discuss the effect of the TR on 
vibrational and electronic states together with optical selection rules in ZnO and GaN. In 
addition we list all complex irrps of the 32 crystallographic double point groups. Spin is taken 
into account throughout the whole discussion. 

1.  Introduction 
States of quasiparticles in crystals such as electrons in conduction bands, holes in valence bands, 
excitons, phonons, plasmons, polaritons, etc., in short: ”ons”, are classified according to irrps of factor 
wave vector groups Gk/T. Here the vector k runs over the entire first BZ and denotes three quantum 
numbers kx, ky and kz . For hexagonal BZ the factor groups are determined by high symmetry points Γ 
= GM, A, M, K, L, H, and lines R, Q, S, ∆ = LD, Σ = SM, Λ = LD, T, U, and P. The generators of irrps 
and the characters of the corresponding factor groups GkΓ/T,….., GkU/T, have been tabulated (CDML 
[1]).When an irrp D is complex, an extra TR degeneracy may occur. In such case any state of “ons” 

will be classified according the “joint” reps *DD ⊕ . This will affect many phenomena. For example, 
it will increase the dimension of the dynamical matrices .It will change the selection rules for optical 
transitions. It will also influence the scattering tensors and many other physical processes taking place 
in a crystal. It is therefore of importance to find out which irrps of a crystal are complex before 
analysis of experimental data. 
 In this contribution we use Herring [2,3] criterion for investigation of complex irrps modified by 
inclusion of spin and effect of TR operator on behaviour of wave vectors of a star {*k} of the factor 
space group C6v

4 – P63/mc for ZnO, GaN, 6H-SiC, BeO, CdS, ZnS and many others.  
 The scope of the paper is following: In section 2 we discuss some theoretical aspects of the TR 
operator and Herring’s criterion. In section 3 we analyze the experimental dispersion curves obtained 
by neutron scattering technique [4,5]. In section 3 we give some examples for complex irrps 
calculation. The section 4 is devoted to vibrational modes in wurtzite crystals due to TR symmetry. In 
section 5 we discuss the electronic band structure and optical selection rules in presence of TR. 
Complex irrps of 32 double crystallographic point groups and of C6v

4 space group are listed explicitly. 
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2.  Theoretical background 

2.1.  Time reversal operator for spinless particles. T = K 
Consider a quantum mechanical system described by the time-dependent Schroedinger equation 
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Replacing t by –t and taking the complex conjugate of both sides of the above equation, we have 
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This shows that Ψ*(r, – t) is also a solution of Schroedinger equation if Ψ(r, t) is. 
 Clearly, for spinless particles the K has the effect of reversing the direction of propagation of time 
and it is just the complex conjugation operator apart from a phase factor, usually denoted as 

)}2//(exp{ πhiEt− .The matrices for r and p are real and purely imaginary so that the complex 
conjugation operator K has the following effect on r and p, and the operation of T on a wave function 
gives its complex conjugate: 

rr =+KK  (3a) 

pp −=+KK  (3b) 

)()( * rr Ψ=ΨT  (3c) 
KT =  (3d) 

In the equation (3d) we have chosen the phase factor to be unity. 

2.2.  Time reversal operator for spin –1/2 particles, sy = 1/2(h/2π)σy. T = −iσyK 
In order to define the TR operator for particles with spin we follow the transformation properties of 
dynamical variables r, p, s and j [5] .It is clear that 

rr =+TT  (4a) 

pp −=+TT  (4b) 

)()( prpr ×−=× +TT  (4c) 

ss −=+TT  (4d) 

jj −=+TT  (4e) 

xx sKKs =+  (5a) 

yy sKKs =+  (5b) 

zz sKKs =+  (5c) 
UKT =  (5d) 

12 =K  (5e) 
UTK =  (5f) 

for the particle with spin. The last equation (4) is in the standard (r,sz) representation in which sx and sz 
are real whereas the sy matrix is imaginary. The U is to be determined. The T and K are antiunitary 
operators. Using equations (3a, b; 4a, b, d, e; 5a, b, c) we obtain  

291



)]2//(exp[ ππ hsiU y−=  (6a) 

KhsiT y )]2//(exp[ ππ−=  (6b) 

KiT yσ−=  (6c) 

 The equation (6c) represents the time reversal operator T for a spin –1/2 particle, sy=1/2(h/2π)σy 
which follows from theory of the SO(2) group [6,7]. The equation(6c) can be easily extended to a 
system of n particles having arbitrary spin angular momenta. The extension leads to the Kramers’ 
theorem which will not be discussed here. 

2.3.  Criteria for real and complex irreducible representations. Point groups 
Frobenius and Shur [8] showed that it is sufficient knowing only the characters of an irrp to determine 
whether the rep is real or complex. If the sum of characters of squares of the group elements is equal 
to the order of the group |g|, then the reps is real: if the sum is −|g|, the rep is equivalent to its 
conjugate: and if the sum vanishes the reps D and D* are complex and inequivalent. For single and 
double valued (spin included) irrps of 32 crystallographic point groups we write 

 1, case (a) D is real  (7a) 

( )∑ ∈Gg
gg 2|)|/1( χ  = 0, case (b) D and D* are complex and inequivalent  (7b) 

 -1, case (c) D and D* are complex and equivalent (7c) 

 In terms of basis functions Ψ of D and Ψ* of D* for case (a) the functions Ψ and Ψ* are linearly 
dependent and no extra degeneracy occurs, for cases (b) and (c) Ψ and Ψ* are linearly independent and 
an extra degeneracy occurs. Using the criteria we have tested all single and double valued (spin 
included – spinor) irrps of the 32 point group. The results are listed in table 1. 

2.4.  Criteria for real and complex irreducible representations. Space groups 
The basis of irrps of space groups are Bloch functions )exp()()( ktrrk iu=Ψ , where the k runs over 
the entire first BZ and t are translations. As stated in Chapter 2, when spin excluded, the TR operator is 

just complex conjugation action on function. That means: )(rkΨT  { } ])(exp[)()exp()( * tkrktr −== iuiuT . 

Clearly, the TR operator transforms vector k into − k. That is an important effect which leads us to an 
essential reformulation of the equation 7. We deal now with characters of squares of space group 
elements χ[{g|τg + t}2]. The τg is a non-primitive translation associated with operator g which 
essentially belongs to the point group G0(k), t is primitive translation, and summation is over these g’s 
which transform k into − k. The k is the first wave vector of the star {*k}.The total space group G 
contains all groups of all members of the star and it can be decomposed in terms of G(k): 

)(}|{)(}|{)(}|{)( 2222 kkkk GGGGG σσϕϕϕ τττ ++++= …  (8) 

 We reserve the subscript σ for the coset representatives {ϕσ|τσ}. And the members of a star is 
obtained by symmetry operators ϕ of the point group G0(k). 

kkkkkk ss ϕϕ ==== …221
* }{  (9) 

The k is the first wave vector of the star in the fundamental domain of the BZ. 
The characters of 230 space groups of these first wave vectors are tabulated [1]. 
Evaluating the character of the squared operators we obtain: 
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Table1. Real and complex irreducible representations of 32 crystallographic double point groups. 
Kronecker Product Tables. CDML [1] 

 case (a) case (b) case (c) 
Group 
Representation Γj 

j j j 

Oh 1+,2+,3+,4+,5+ 
1-, 2-, 3-, 4-, 5- 

6+,7+,8+,7-,8-,9-  

O 1,2,3,4,5  6,7,8 
Td 1,2,3,4,5  6,7,8 
Th 1+,4+,1-,4- 2+,3+,2-,3- 5+ ,6+,7+5-,4-,5- 
T 1,4 2,3 5,6,7 
D4h 1 2+,3+,4+,5+,2-,3-,4-,5- 6+,7+,6-,7- 
C4h 1+,2+,1-,2- 3+,4+,3-,4- 5+,6+,7+,8+,5-,6,-7-,8- 
C4v 1,2,3,4  6,7 
D4 1,2,3,4,5  6,7 
C4 1,2 3,4,5,6,7,8  
S4 1,2 3,4,5,6,7,8  
D2d 1,2,3,4,5  6,7 
D2h 1+,2+,3+,4+,1-,2-,3-,4-,  5+,5- 
C2h 1+,2+,3+,4+,1-,2-,3-,4-  5+,5- 
C2v 1,2,3,4  5- 
D2 1,2,3,4  5 
C2 1,2 3,4  
D6h 1+,2+,3+,4+,5+,6+, 

1-,2-, 3-, 4-, 5-, 6- 
 7+,8+,9+,7-,8-,9- 

C6h 1+,2+,3+,4+,5+,6+, 
1-, 2-, 3-, 4-, 5-, 6-, 

7+,8+,9+,10+,11+,12 
7-, 8-, 9-, 10-, 11-, 12- 

 

C6v 1,2,3,4,5,6  7,8,9 
D6 1,2,3,4,5,6  7,8,9 
D3h 1,2,3,4,5,6  7,8,9 
D3d 1+,2+,3+,1-,2-,3- 4+,5+,4-,5-, 6+,6- 
C6 1,2 3,4,5,6,7,8,9,10,11,12  
C3h 1,2 3,4,5,6,7,8,9,10,11,12  
C3v 1,2,3 4,5 6 
D3 1,2,3 4,5 6 
Ci 1+.2+,1-,2-   
C3 1,5 2,3,4,6  
C2 1,2 3,4  
Cs 1,2 3,4  
C1 1   

 

[ ] }|{}|{}|{ 222
ggggggg ggggg τττττττ ′−++′=+= χχχ  

 }|{)exp(}|{}|{ 2
0

2
0 gg gig ττ ′=′∈= χχχ ktt , (10a) 

ggg g τττ ′−+≡0t , (10b) 

where τg
’ is known non-primitive translation associated with the operator g , ∈ is the identity operator 

and t0 is to be calculated from equation (10b). The criterion for real and complex irrps of space groups 
becomes: 

2
0( )

(| | / | ( ) |) exp( ) { | τ } , 1 or  0 1gg G
G G i g gχ δ⊂ ′ − = −∑ kkk kt k , (11) 
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where the summation is performed over )(2 kGg ⊂ such that gk = −k and the |G|/|G(k) is the number 
of symmetry elements in the small wave vector group G(k).The formula differs from Bir and Picus [9 
page 166 equation (18.32)]. We have utilized the CDML tables where the characters χ{g|τg} of the 
irrps of 230 space groups are explicitly listed and therefore the characters of {g2|τg

’} are chiefly 
available. 
 Using equation (11) and CDML tables we have tested all reps of the high symmetry points and 
lines of the ZnO space group C6v

4. The results are: 

(a) Γ1,2,3,4,5,6, M1,2,3,4, K1,2,3, Σ1,2, T1,2, H3. Real reps. No extra degeneracy 
(b) A1,2,3,4,5,6, ∆1,2,3,4,5,6, H1,2 L1,2,3,4, U1,2,3,4, P1,2,3, S1,2. Complex reps. 
(c) R1,2. Complex reps. 

In cases (b) and (c) the extra TR degeneracy arises and the “ons” are classified according to the “joint” 

or “stick” reps: *DD ⊕ . 

 Table 2.  Vector representation  of hexagonal crystallographic point groups. 

1 E h1 x,  y,  z  1   0   0 
 0   1   0  
 0   0   1 

13 I h13 -x,-y, -z -1   0   0 
 0  -1   0 
 0   0  -1 

2 C6
+ h2 x-y, x, y  1  -1   0 

 1   0   0 
 0   0   1 

14 S3
- h14 -x+y,-x,-z -1   1   0 

-1   0   0 
 0   0  -1 

3 C3
+ h3 -y, x-y,z  0  -1   0 

 1  -1   0 
 0   0   1 

15 S5
- h15 y,-x+y,-z  0   1   0 

-1   1   0 
 0   0  -1 

4 C2 h4 -x, -y, z -1   0   0  
  0  -1  0 
  0   0   1 

16 σh  x, y, -z  1   0   0 
 0   1   0 
 0   0  -1 

5 C3
- h5 -x+y,-x,z -1   1   0  

-1   0   0 
 0   0   1 

17 S6
+  x-y,x,-z  1  -1   0 

 1   0   0  
 0   0  -1 

6 C6
- h6 y,-x+y,z  0   1   0  

-1   1   0 
 0   0   1 

18 S3
+  -y,x-y,-z  0  -1   0 

 1  -1   0 
 0    0  -1 

7 C21
’’ h9 x-y,-y,-z  1  -1   0 

 0  -1   0 
 0   0  -1 

19 σv1  -x+y,y,z -1   1   0 
 0   1   0 
 0   0   1 

8 C22
’ h10 x, x-y,-z  1   0   0  

 1  -1   0 
 0   0  -1 

20 σd2   -1   0   0  
-1   1   0 
 0   0   1 

9 C23
’’ h11 y, x, -z  0   1   0  

 1   0   0  
 0   0  -1 

21 σv3    0  -1   0 
-1   0   0 
 0   0   1 

10 C21
’ h12 -x+y,y,-z -1   1   0  

 0   1   0  
 0   0  -1 

22 σd1    1  -1   0 
 0  -1   0 
 0   0   1 

11 C22
’’ h7 -x,-x+y,-z -1   0    0 

-1   1    0 
 0   0  -1 

23 σv2    1   0   0 
 1  -1   0 
 0   0   1 

12 C23
’ h8 -y, -x, -z  0  -1   0  

-1   0   0  
 0   0  -1 

24 σd3    0   1   0 
 1   0   0 
 0   0   1 

 
 Up to now we have considered only single valued reps of space groups (spin excluded). The 
inclusion of spin leads to the double valued reps. The criterion (equation 11) is also valid for spinors. 
In general, in order to perform calculation using equation (11) we must consider systems with (i) 
integral and (ii) half-odd-integral spin. Combination of the three cases (a), (b), and (c) with (i) and (ii) 
result in additional six possibilities those can expressed as follows: 

• No extra degeneracy in case a(i) and c(ii), 
• Doublet degeneracy in cases b(i), b(ii), a(ii) and c(i), 
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• In table 3, we discuss points A, ∆, M, L, H, K, and lines Λ, Σ. 
In here we have considered spinor reps, case (ii)-1/2 spin, of points Γ, A, H, K, M, L, and ∆ line. The 
characters of spinor reps of the double groups have been taken from CDML tables. Using the equation 
(11) we have obtained following results: 

• Case a(ii) no TR degeneracy: Γ6,7,8 
• Case b(ii) doublet degeneracy: ∆7,8,9, H4,5, K4,5. Classification of states: 

*
44

*
44

*
99

*
88

*
77 ,,,, KKHH ⊕⊕∆⊕∆∆⊕∆∆⊕∆  

• Case c(ii) no TR degeneracy: A7,8,9, H6, K6. 

Table 3. Characters of the irreducible A, ∆, M, L, H, K, Σ and Λ representations. 

Space Group C6v
4(P63/mc). CDML symmetry elements labelling: {g|τg} of  TG A /k   

{g|τg} 1 2.1 3 4.1 5 6.1 19 20.1 21 22.1 23 24.1 
A1 1 i 1 i 1 i 1 i 1 i 1 i 
A2 1 i 1 i 1 i –1 –i –1 –i –1 –i 
A3 1 –i 1 –i 1 –i –1 i –1 i –1 i 
A4 1 –i 1 –i 1 –i 1 –i 1 –i 1 –i 
A5 1  0 

0  1 
iw* 0 
0  iw 

w  0 
0  w* 

i  0 
0  i 

w* 0 
0  w 

iw  0 
0 iw* 

0  –i 
i    0 

0  –w* 
w   0 

0  –iw 
iw*  0 

0  –i 
i    0 

0  –iw 
iw   0 

0  –w 
w*   0 

A6 = A5
*, A4 = A1

*, A2 = A3
*         

{g|τg}
2 1 3t0 5 1t0 3 5t0 1 1t0 1 1t0 1 1t 

Characters of {g|τg}
2,  t0 ={E|001},      exp(ikAt0) = exp[i(0,0,1/2)(0,0,1)] 2π = eiπ = –1 

A1,2,3,4 1 1(–1) 1 1(–1) 1 1(–1) 1 1(–1) 1 1(–1) 1 1(–1) 
A5 2 (w+w*)(-1) (w*+w) 2(–1) (w+w*) (w*+w)(–1) 2 2(–1) 2 2(–1) 2 2(–1) 
A6 2 (w*+w)(-1) (w+w*) 2(–1) (w*+w) (w+w*)(-1) 2 2(–1) 2 2(–1) 2 2(–1) 

A1,2,3,4,5,6 case (b)           
 

TG /∆k              
{g|τg} 1 2.1 3 4.1 5 6.1 19 20.1 21 22.1 23 24.1 

∆1 1 1.T 1 1.T 1 1.T 1 1.T 1 1.T 1 1.T 
∆2 1 1.T 1 1.T 1 1.T –1 –1.T –1 –1.T –1 –1.T 
∆3 1 –1.T 1 –1.T 1 –1.T –1 1.T –1 1.T –1 1.T 
∆4 1 –1.T 1 –1.T 1 –1.T 1 –1.T 1 –1.T 1 –1.T 
∆5 1  0 

0  1 
Tw* 0 
0  Tw 

w  0 
0  w* 

T  0 
0  T 

w* 0 
0  w 

Tw  0 
0 Tw* 

0  T2
 

T2  0 
0  Tw* 
Tw  0 

0  –w T2 
w* T2  0 

0  T 
T  0 

0  –w*T2 
wT2  0 

0  wT 
w*T   0 

∆ 6 = ∆ 5
*, ∆ 4 = ∆ 1

*, ∆ 2 = ∆ 3
* w = exp (2πi/3),  T = exp(iπα) 

For ∆ there is no point group operation vCg 6⊂  which transforms k∆ into –k∆. ∆1,2,3,4,5,6 case (b) 

 
 TG M /k        TG L /k       

 {g|τg} 1 4.1 20.1 23   {g|τg} 1 4.1 20.1 23  
 M1 1 1 1 1   L1 1 i i 1  
 M2 1 1 –1 –1   L2 1 i – i –1  
 M3 1 –1 1 –1   L3 1 – i i –1  
 M4 1 –1 –1 1   L4 1 – i – i 1  
 {g|τg}

2 1 {1|0,0,1} {1|0,0,1} 1   {g|τg}
2 1 {1|0,0,1} {1|0,0,1} 1  

  exp(ikMt) = exp[i(1/2,0,0)(0,0,1)]2π = 1   exp[i(kLt)] = exp[i(1/2,0,1/2)(0,0,1)] = –1 
  Characters of {g|τg}

2  
 M1,2,3,4 1 1 1 1   L1,2,3,4 1 1(–1) 1(–1) 1  
 case (a)  case (b) 
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TG H /k        TG K /k       

{g|τg} 1 3 5 20.1 22.1 24.1  {g|τg} 1 3 5 20.1 22.1 24.1 
H1 1 1 1 i i i  K1 1 1 1 1 1 1 
H2 1 1 1 – i – i – i  K2 1 1 1 –1 –1 –1 
H3 2 –1 –1 0 0 0  K3 2 –1 –1 0 0 0 
{g|τg}

2 1 5 3 {1|0,0,1} {1|0,0,1} {1|0,0,1}  {g|τg}
2 1 5 3 {1|0,0,1} {1|0,0,1} {1|0,0,1} 

exp(ikH t) = exp[i(1/3,1/3,1/2)(001)]2π = –1  exp(ikK t) = exp[i(1/3,1/3,0)(001)]2π = 1 
Characters of {g|τg}

2    
H1,2 1 1 1 1(–1) 1(–1) 1(–1)  K1,2 1 1 1 1 1 1 
H3 2 –1 –1 2(–1) 2(–1) 2(–1)  K3 2 –1 –1 2 2 2 
H1,2 case (b), H3 case (c)  K1,2,3 case (a) 

 
TG /Λk      TG /Σk     

{g|τg} 1 24.1   {g|τg} 1 23  
Λ1 1 1   Σ1 1 1  
Λ2 1 –1   Σ2 1 –1  
{g|τg}

2
 1 {1|0,0,1}   {g|τg}

2 1 1  
exp(ikΛt) = exp[i(α,α,0)(0,0,1)]2π = 1  exp(ikΣt) = exp[i(α,0,0)(0,0,1)]2π = 1 
Characters of {g|τg}

2      
Λ1,2 1 1   Σ1,2 1 1  
case (a)     case (a)    

1 = E, 2.1 = {C6
+|0,0,1/2}, 3 = {C3

+}, 4.1 = {C2|0,0,1/2}, 5 = {C3
–}, 6.1 = {C6

–|0,0,1/2} 
19 = {σv1}, 20.1 = {σd2|0,0,1/2}, 21 = {σv3}, 22.1 = {σd1|0,0,1/2}, 23 = {σv2}, 24.1 = {σd3|0,0,1/2} 

3.  Examples. Points M and L 
In here we test the irrps of ZnO of the high symmetry points L, G(kL) and M, G(kM). 
Coordinates are; )0,0,2/1(≈Mk  and )0,0,2/1(≈Lk . The symmetry operators of the G(kM)/T and 

G(kL)/T are 1= E, 4.1 = {C2|001/2}, 20.1 = {σd2|001/2}, 23 = {σv2} 
 Let’s calculate the square of symmetry element 4.1 using the equations (10a,b) 

{4.1}2 = {C2
2| 001/2+ C2(001/2)}, C2(001/2) = 

100

001

011 −
 (001/2) = (0,0,1/2). 

Therefore: {C2
2| 001/2 + 001/2} = {E|001}, and similarly for {20.1}2 and {23}2. Thus the characters of 

the squared operators for point M and L are  

χ{E2} = χ{E}, χ{(4.1)2} = χ{E|001}, χ{(20.1)2} = χ{E|001}, χ{(23)2} = χ{E} 

For matrices of the vector representation for hexagonal groups see table 2. Since the kM and kL have 
different coordinates the factor exp(ikt) will differ. For point M, we have  

exp(ikMt): for χ{(4.1)2} and χ{(20.1)2} is: exp[i(1/2,0,0)(0,0,1)2π] = exp(0) = 1. 

Therefore, the characters of the squared operators of point M are: 

χ{E2} = χ{E}, χ{(4.1)2} = χ{E}, χ{(20.1)2} = χ{E}, χ{(23)2} = χ{E}. 

For point L, we have 

exp(ikLt): for χ{(4.1)2} and χ{(20.1)2} is: exp[i(1/2,01/2)(0,0,1)2π] = exp(iπ) = –1. 

Therefore, the characters of the squared operators of point L are: 

χ{E2}= χ{E}, χ{(4.1)2} = –1χ{E}, χ{(20.1)2} = –1χ{E}, χ{(23)2} = χ{E}. 
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See table 2 for G(kM)/T and G(kL)/T. 
 From equation (8) we obtain the star for kM and kL 

G = {1}G(kM) + {2.1}G(kM) + {3}G(kM), 

where {1} = {E}, {2.1} = {C6
+|0,0,1/2}, {3} = {C3

+} are the coset representatives by means of those 
the stars {*kM} and {*kL} are obtained: EkM = 1kM (1/2,0,0), (C6

+)kM = 2kM (1/2,1/2,0), C3
+kM =3kM 

(0,1/2,0) and for {*kL} we have EkL = 1kL (1/2,0,1/2), C6
+kL = 2kL (1/2,1/2,1/2), C3

+kL = 3kL 
(0,1/2,1/2). The coset representatives are useful in the determination of the full induced irrps of G{*k} 
[10] and in the performing the summation in equation (11). Using the calculated coset representatives 
we have proceeded (for M and L points) both ways and our results are in agreement with those 
obtained in here using characters of the small irrps tabulated. 

4.  The effect of time reversal symmetry on vibrational states in wurtzite structure crystals with 
C6v4 space group 
Before going into discussion of experimental results we recall general utilization of group theory 
related to phonons in any crystal with well establish space group [11]. The Lattice Mode 
Representation (LMR) [12] of a crystal provides an exact number of primary (first order – non-
interacting phonons) originating from high symmetry point and lines of a BZ and also their 
symmetries (irrps, degeneracies). For example, for ZnO we have following symmetry allowed 
vibrational modes: (2Γ1, 2Γ4, 2Γ5, 2Γ6), (2A1, 2A4, 2A5, 2A6), (2∆1, 2∆4, 2∆5, 2∆6), (2H1, 2H2, 2H3), 
(2P1, 2P2, 2P3), (2K1, 2K2, 2K3), (4L1, 2L2, 2L3, 4L4), (4M1, 2M2, 2M3, 4M4), (4U1, 2U2, 2U3, 4U4), 
(8R1, 4R2), (8Σ1, 4Σ2), (6Q1, 6Q2), (6S1, 6S2), (6Λ1, 6Λ2), and (6T1, 6T2) [11]. Knowing these 
symmetries and using compatibility relations along high symmetry lines and points the group 
theoretical assignment of phonons follows. Phonons assignment in ZnO, GaN, and related compounds 
with the C6v

4 space group is presented on figure 1 in [11]. 

4.1.  Experimental phonon dispersion curves in ZnO. Assignment 
Thoma and Hewat [4,5] considered lattice dynamics of ZnO by means of inelastic neutron scattering. 
Figure 1 in [4,5] shows the calculated and measured phonon dispersion curves for ZnO. Our phonon 
assignment for GaN (presented on figure 1 in [4,5]) is valid also for phonons in ZnO. According to our 
calculations, the ∆ and A phonons are influenced by the TR symmetry. However, on both figures 1 in 
[4,5] there is no group theoretical assignment of vabrational modes. We have shown that at point A 
and axis ∆ the representations spanned by the modes are 6541 2222 AAAA ⊕⊕⊕  and 

6541 2222 ∆⊕∆⊕∆⊕∆  , respectively. In other words, there are eight A’s and eight ∆’s modes. We 

also know that at point Γ there are also eight modes of 2Γ1, 2Γ4, 2Γ5, 2Γ6 symmetries. The presence of 

TR symmetry (at A and ∆) requires classification of modes according to *AA ⊕ , *∆⊕∆  reps. Using 
the compatibility relations the resulting mode’s assignment is:  

(i) Point Γ, from the bottom to the top: 51 Γ⊕Γ , Γ6, Γ4, Γ5, Γ6, Γ4, and Γ1.  

(ii) Point A, from the bottom to the top: *
55 AA ⊕ , *

11 AA ⊕ , *
55 AA ⊕ , *

11 AA ⊕ .  

(iii) Line ∆: the dispersion curves connect the points Γ and A when going from the bottom to 
the top on A axis side: ∆5, ∆5

∗, ∆1, ∆1
∗, ∆5 , ∆5

∗, ∆1
∗, and ∆1.  

From reps provided in here follows that A1
∗ = A4, and A5

∗ = A6, and ∆1
∗ = ∆4, ∆5

∗ = ∆6, which is 
consistence with the number of modes at Γ, A, and ∆ and with their symmetries obtained 
independently from Lattice Mode Representation. Figure 1 displays the schematic dispersion curves of 
Γ−∆−A region of the BZ subjected to TR symmetry for ZnO in terms of “joint’ reps. For simplicity, we 
used straight lines for connectivity. Generally, the frequencies of the modes at Γ, ∆ and A point may 
shift while going from compound to compound (for instance from ZnS to BeO, all with the wurtzite 
structutre, C6v

4/T group), but the connecting dispersion curves between Γ and A point will be kept by 
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∆’s experimental phonon data. The shifting may cause more accidental degeneracy. The existence of 
experimentally measured modes, those “generate” dispersion curves ∆5, ∆6, ∆1, ∆4 and four phonons 
on A axis )(2 65 AA ⊕ , )(2 41 AA ⊕  evidently proves the presence of the Time Reversal symmetry in 

wurtzite crystals. Figure 1 displays the schematic dispersion curves Γ − ∆ −Α region of BZ subjected 
to TR symmetry in wurtzite crystal in term of “joint” reps.  

∆1(1) 

Γ4 

Γ6(2) 

Γ1 

Γ5(2) 

Γ4 

Γ6(2) 

(Γ1⊕Γ5)(3) 

∆4 

∆1 

⎯ ∆ ⎯ Γ A 

∆5 

∆4(1) 

∆6(2) 

∆5(2) 

(A1⊕A*
1) (2) 

(A5⊕A*
5) (4) 

(A1⊕A*
1) (2) 

(A5⊕A*
5) (4) 

∆6 

    

Figure 1. Assignment of phonons in ZnO, 
GaN, CdS, BeO, ZnS, CdSe influenced by 
time reversal symmetry. Numbers in 
brackets indicate the degree of degeneracy.  

5.  Effect of time reversal symmetry on electronic band structure and optical transitions in 
wurtzite crystals with C6v4 space group. Selection rules GaN band structure 
Since the states of electrons in conduction and holes in valence bands are classified according to the 
irrps of the factor group of the wave vectors in the fundamental BZ domain (first vectors of a stars) the 
effect of TR must be taken into account. The wurtzite BZ and the calculated LDA energy bands of 
GaN are given, (see figure 2 and figure 4 pages 308 and 310 in [13]). On the figure 4 the classification 
of states is only in terms of single valued reps of the space group C6v

4. It means that spin of electron 
and holes has been excluded. However, in GaN there is an appreciable spin orbit interaction [13.p.307] 
that splits the top of the valence Γ1,6 2/161 )( D⊗Γ⊕Γ  band onto 79 Γ+Γ  and 7Γ⊕  the later being 
split by crystalline field. Therefore, the energy band structure presented on figure 4 [13] may not 
correspond to the true one. Nevertheless, TR symmetry has been taken into account. For example, the 

top of the valence band at point A (figure 4) is described by (5, 6) numbers, which means *
55 AA ⊕  

state TR degenerate. One of the lower valence band state at K point is classified by single valued irrp 
K3 (two-dimensional). Inclusion of spin results in Kronecker Product (KP) 2/13 DK ⊗  sixfold 
degenerate spinor state, which must be decomposed onto double valued (K4,5,6) irrps of K. The D1/2 is 
the 2x2 spin matrix. Generally, all states of holes and electrons will be classified according to their 
spinor reps when spin included. To our best knowledge the electronic band structure of GaN and many 
other novel compounds do not include spin. Using compatibility relations and spin matrix we have 
described the GaN energy band (Fg.4) in terms of spinor states those are frequently subjected to TR 
effect, as showed in section 2d. Our results will be discussed elsewhere. 

5.1.  Selection rules 
In here we briefly discuss additional conditions that invariance under TR imposes on the matrix 
elements of an operator V. Our discussion will be related to selection rules of some optical transitions 
between TR influenced states in GaN. In general we have: 
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rdVV ifif ∫= ϕϕϕϕ * , (12a) 

*
| ifif KK ϕϕϕϕ = , (12b) 

ififif KKVKKKVKV ϕϕϕϕϕϕ 1*
,, −== , (12c) 

where the ϕi , ϕf V and K are initial and, final states, perturbation and Time Reversal operators, 
respectively. The Kϕi and Kϕf yield complex irrps Di

* and Df
* between those transition takes place. It 

is sufficient to consider only possible KPs: **
fi DD ⊗  and find out whether in their decomposition is a 

rep according to which the perturbation V transforms. The Kronecker Products of all irrps of 230 
space groups are tabulated, CDML [1]. However, the TR symmetry has not been included. Therefore, 
for all irrps satisfying cases (b) and (c) of Herring’s criterion the selection rules must be computed. 
The formal theory involved in such cases will be considered elsewhere. In here we discuss only 
practical transitions involved in UV reflectivity of GaN [14]. There are two cases concerning the effect 
of the TR on selection rules regarding the CDML tables. If a complex irrps satisfying (b) or (c) cases 
are in the set of irrps of a space group tabulated then selection rules can be still extracted from the 

CDML tables. For instance, at point A in ZnO we have states *
11 AA ⊕ , *

22 AA ⊕ , *
33 AA ⊕ , *

44 AA ⊕ , 
*
55 AA ⊕  and *

66 AA ⊕ . However, from inspection of the tables we conclude that: A1
* = A4, A2

* = A3, 

A5
* = A6. For transition between levels A5,6 and A1,3 (5.94eV), [14. Table III p. 13 529]) one reads  

)()()()()()( 361635153165 AAAAAAAAAAAA ⊕⊗⊕⊕⊕⊗⊕=⊕⊗⊕ . 

in Rashba’s labelling [15]. The Rashba’s A2 corresponds to A3 CDML and so A3 − A4, A4 − A2 
correspondingly, (see table 4, this paper). The above KPs are tabulated (vol p). Therefore, in such 
cases no implications are involved. In this spirit, the selection rules for tabulated transitions (see Table 
III in [14]) between A, ∆, L, U, P’ levels can still be found in the CDML tables. Nevertheless, 
considering transitions between TR degenerate K5 and K6 levels (spin included) we have 

*
6

*
56

*
5

*
6565

*
66

*
55 )()( KKKKKKKKKKKK ⊗⊕⊗⊕⊗⊕⊗=⊕⊗⊕ . 

The rep K5 is one-dimensional, while K6 is two-dimensional. Neither K5
* nor K6

* is in the set of K’s 
reps of the G(K) group. Only the product 65 KK ⊗ can be found in the CDML tables. All the other 
KPs have to be calculated. Clearly, TR symmetry results in additional KPs of complex reps those have 
to be determined. 

Table 4 Labels of irreducible group C6v
4 representations of the space group (P63/mc) 

CDML  Rashba  Lyle et al. 
Γ ∆ A L M U K H P Σ Λ Q S T R  Γ ∆ A L M U K H P Σ T S S’ T’ R  Γ ∆ A K 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 1 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  2 2 2 4 4 4 2 2 2 2 2 2 2 2 2  2 2 2 2 
3 3 3 3 3 3 3 3 3        4 4 4 2 2 2 3 3 3        3 3 3 3 
4 4 4 4 4 4           3 3 3 3 3 3           4 4 4 4 
5 5 5              5 5 5              6 6 6 6 
6 6 6              6 6 6              5 5 5 5 
CDML see [1], Rashba see [15], Lyle et al. see [16]. 

6.  Conclusions 
In this paper we discussed the effect of TR symmetry on quasi-particles states. We have shown that a 
presence of TR in crystals results in modified classification of states, phonon dynamical matrices, 
energy bands, optical selection rules, and others. 
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In conclusion: a comprehensive tables of complex irreducible representations of 230 double valued 
space group are needed. In table 5 we list the most common compounds and their symmetries. The 
table can be quite useful in making a choose of further investigations of TR effect in these compounds. 

Table 5. Compounds and their symmetries. 

D1
2h (Pmmm) YBa2Cu3O7 High Temperature Superconductor (HTS) 

D5
2h (Pmma) Si2G2 Semiconductor Superlattices (SS) 

D12
h (Pnnm) Marcasite structure. FeS2 and crystals isomorphic to FeS2: FeAs2, FeP2, FeSb2, 

FeSe2, FeTe2, CoTe2, NiAs2, etc. 
D16

2h (Pnma) MnP 
D18

2h (Cmca) Si2Ge4 (SS) 
D28

2h (Imma) La2CuO4 
D5

2d (C42m) (Si)m(Ge)n : (m + n = 4k: m,n odd ), Si1Ge3, (GaAs)1(AlAs)1, (GaAs)1(AlAs)3, 
(GaAs)2(AlAs)2, SS 

D9
2d (F42m) (Si)m(Ge)n: (m + n = 4k + 2; m, n odd), Si3Ge3, (GaAs)1(AlAs)2, (SS) 

D1
4h (P4/mmm) YBa2Cu3O6 host material for the HTS: Yba2Cu3O6+δ Tl Ba2 Can-1CanO2n+3 HTS 

D14
4h (P42/mnm) Rutile type:TiO2, and CoF2, MnO2, PhO2, WO2 

D17
4h (I4/mmm) Bi(Tl)2Sr(Ba)2Can-1Cun,O2n+4 HTS 

D19
4h (I41/amd) TiO2 – anatase. (Si)m(Ge)n: (m + n = 2k + 1), Si1Ge2, (SS) 

T6
h (Pa3) CoS2, MnS2, NiS2 

T7
h (Ia3) Tl2O3 

T2
d (F43m) GaAs, ZnS, AgJ, AlP, CuBr, CuCl, HgS, ZnSe, ZnTe, CdTe 

O1
h (Pm3m) Cesium chloride structure CsCl, CsBr, CsI, RbCl, TlCl, TlBr, Intermetallic binary 

compounds LiAg, AlNd, FeAl, FeTi, Compounds of magnesium MgAg, -Sr,-La, -
Ce,-Pr, -Au, -Hg, -Tl, of beryllium BeCo, -Cu, -Pd, of copper CuZn and CuPd of 
zinc ZnAg, -La, -Ce, -Pr, -Au, of thallium TlCa, -b,-I, -Bi, perovskite structure 
NaNbO3, NaTaO3, NaWO3, CaTiO3, KTaO3, SrTiO3, BaTiO3, CaZrO3, CaSnO3, 
SrZrO3, SrSnO3, SrCeO3, PbTiO3, BaZrO3, PbZrO3, LaAlO3, LaKO3, LaCrO3, 

LaMnO3, LaFeO3, KMnF3, KMgF3, KNiF3, KCdF3, RbCaF3, RbMnF3, CsCaF3, 
CsCdCl3, CsCdBr3, CsHgCl3, CsHgBr3,also Mn3SnN 

O3
h (Pm3n) The A – 15 or β - wolfram structure with the formula A3B. Materials with the 

highest transition temperature to the super. Conducting state, Nb3Ge, Nb3Sn, Nb3Al, 
Vi3Si, V3Ga, etc. 

O4
h (Pn3m) Cuprite Cu2O 

O5
h (Fm3m) NaCl, AgBr, AgCl, BaO, BaS, CaO, CaS, CdO, KBr, KCl, MgO, PbS. Cuprite type 

Cu, Ag, Au, Al, Ce, Ir, La, Ni, Pd, Pb, Sr, Th etc. Fluoride type CaF2, BaF2, UO2, 
ZrO2, SrCl2, K2O, K2S, Li2O, Li2S, Na2O.  

O6
h (Fm3c) The rare compounds of the KTlBr4 x 2H2O type. Alloys: NaZn13, KZn13, KCd13, 

CaZn13, ZrBe13, Ube13. 
O7

h (Fd3m) Si, Ge, diamond, β - form SiO2, spinel Al2MgO4 
O8

h (Fd3c) Voltaits, (NH4)2FeII
5FeIII

4(SO4)12 
.
 18H2O 

 K2(FeIII
, Al)4Zn5(SO4)12 

.
 18H2O 

 Rb2FeII
5FeIII

4(SO4)12 
.
 18H2O, Tl2(FeIII,Al)4Zn5(SO4)12 

.
 18H2O 

O9
h (Im3m) Metallic elements Li, Na, K, Ba, V, Nb, Ta, α - Cr, Mo, α - W, α - Fe, and Eu also 

C2Cl6 
O10

h (Ia3d) Garnets. Calcium aluminium orthosilicate Ca3Al2(SiO4)3, HoGaG, ErGaG, TmGaG, 
YbGaG, YbAlG, LuAlG, DyAlG, DyGaG, R3Al5O12, Tm3Ga2(GaO4)3, TbAlG, YIG, 
TbIG, GdIG, LuGaG, DyIG, ErIG  

D4
3 (P3121) Sulfurdioxide SiO2, α - quartz structure, selenium 

D3
3d (P3m1) CdI2, La2O3 

D6
3d (R3c) CaCO3, CdCO3, FeCO3, MgCO3, MnCO3, NaNO3, ZnCO3. Corundum: α - Al2O3 

(sapphire) 
D4

6h (P63/mmc) β - ice, NiAs – structure, CoS, FeS, CrS, CuSn, NiSb, Mg, Ba, Cd, La, Nd, Y, Zn 
C4

6v (P63mc) ZnS – wurtzite, BeO, CdS, ZnO, GaN, 2H-SiC,4H-SiC, 6H-SiC, 8H-SiC 
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