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Abstract
There exists an interesting relationship between entanglement and the time
evolution of composite quantum systems: quantum entanglement enhances
the ‘speed’ of evolution of certain quantum states, as measured by the time
needed to reach an orthogonal state. Previous research done on this subject
has been focused upon comparing extreme cases (highly entangled states
versus separable states) or upon bi-partite systems. In the present contribution
we explore the aforementioned connection (between entanglement and time
evolution) in the cases of two-qubits and N-qubits systems, taking into account
states of intermediate entanglement. In particular, we investigate a family of
energetically symmetric states of low entanglement that saturate the quantum
speed bound. We show that, as the number of qubits increases, very little
entanglement is needed to reach the quantum speed limit.

PACS numbers: 03.65.Ud, 03.67.−a

1. Introduction

Quantum entanglement [1] is widely regarded as one of (if not the) most fundamental feature
of the quantum picture of the physical world [2–4]. It has been the subject of intense research
activity in recent years [5–21]. Quantum entanglement constitutes a physical resource that
lies at the basis of important quantum information processes [4] such as quantum teleportation
[5], superdense coding [6], and quantum computation [7]. The experimental implementation
of these processes may have important practical applications, not only in the communication
and computational technologies, but also in other areas, such as quantum metrology [8].
Besides its technological relevance, current research in quantum entanglement is shedding
new light upon fundamental aspects of quantum physics, such as, for instance, the emergence
of thermodynamic behaviour within composite quantum systems [10]. Another example
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is provided by an interesting relationship between entanglement and the time evolution of
composite quantum systems that has recently been established [11–14]: quantum entanglement
enhances the ‘speed’ of evolution of certain quantum states, as measured by the time needed
to reach an orthogonal state. The problem of the ‘speed’ of quantum evolution has been the
focus of considerable interest recently, because of its relevance in connection with the physical
limits imposed by the basic laws of quantum mechanics on the speed of information processing
and information transmission [31–34]. When processing information it is sensible to expect
the output state of the computer device to be reasonably distinct from the input state [31]. In
quantum mechanics two states are distinguishable if they are orthogonal. Basic computational
steps, thus, involve moving from one quantum state to an orthogonal one. Consequently,
lower bounds on the time needed to reach an orthogonal state also provide estimations on
how fast one can perform elementary computation operations [33]. These, in turn, can be
used to estimate fundamental limits on how fast can a physical computer run [31, 33]. This
approach has even been extrapolated to estimate the total number of basic logical operations
that has been performed by the universe (regarded as a computing device) during its complete
history [34]. The problem of the minimum time necessary to reach an orthogonal state is
also relevant in connection with the time–energy Heisenberg uncertainty principle [33], which
can be formulated in terms of the minimum time that a system with a given spread in energy
requires to evolve to a distinguishable state (that is, to an orthogonal state).

Due to its great importance, both from the fundamental and from the practical points of
view, it is imperative to investigate and survey in detail all the implications of the concept
of entanglement. The aim of the present contribution is to explore some aspects of the
relationship between quantum entanglement and the speed of quantum evolution. In particular,
we introduce and investigate a family of energetically symmetric states with low entanglement
that saturate the quantum speed limit. To the best of our knowledge, these states are the first
symmetric N-qubit states saturating the speed bound, besides the |GHZ〉 states, that have been
reported in the literature.

The paper is organized as follows. In section 2 the bounds on the speed of quantum
evolution are briefly reviewed. The connection between entanglement and speed of evolution
in two-qubits systems is revisited in section 3, paying special attention to states of low
entanglement saturating the quantum speed limit. Some of the results obtained for two qubits
are extended to the case of N-qubits in section 4. Finally, some conclusions are drawn in
section 5.

2. Speed of evolution

A natural measure for the ‘speed’ of quantum evolution is provided by the time interval τ that
a given initial state |ψ(t0)〉 takes to evolve into an orthogonal state [11, 31],

〈ψ(t0)|ψ(t0 + τ)〉 = 0. (1)

Let E denote the energy’s expectation value,

E = 〈H 〉, (2)

and �E, the energy’s uncertainty,

�E =
√

〈H 2〉 − 〈H 〉2. (3)

A lower limit for the evolution time τ to an orthogonal state is given by [11]

τmin = max

(
πh̄

2E
,

πh̄

2�E

)
. (4)
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3. Bi-partite systems

First we are going to consider a composite system consisting of two qubits. That is, two
identical (but distinguishable) subsystems each one described by a two-dimensional Hilbert
space. The Hamiltonian governing the evolution of our system is of the form

H = H1 + H2, (5)

where Hi is a Hamiltonian acting only on the i-qubit. The time evolution operator associated
with the Hamiltonian (5) is local and, consequently, the amount of entanglement of the system
does not change in time. The two single qubit Hamiltonians Hi have the same structure,
with eigenstates, {|0〉, |1〉}, and corresponding eigenenergies E0 = 0, E1 = ε. Hamiltonians
like (5) are relevant for the study of some fundamental aspects of quantum entanglement (see
for instance [19]) and, particularly, in connection with the problem of the speed of quantum
evolution of entangled states (see [11]). Our composite system can be described in terms
of the basis {|00〉, |01〉, |10〉, |11〉}, which can be rewritten as {|0〉, |1〉, |2〉, |3〉}. The general
state of our two qubit system is then

|ψ(t0)〉 =
3∑

j=0

aj |j 〉, (6)

where aj ’s are complex coefficients satisfying the normalization requirement,
3∑

j=0

|aj |2 = 1. (7)

The degree of mixedness of the marginal density matrix associated with one of the
subsystems,

ρ1 = Tr2(|ψ〉〈ψ |), (8)

provides a quantitative characterization of the amount of entanglement of a pure state |ψ〉 of a
bipartite system. This degree of mixedness can be measured in several ways. One possibility
is to use the von Neumann entropy S = −Tr ρ1 ln ρ1, leading to an entanglement measure
called entropy of entanglement. Another possibility, frequently used in the literature because
of its advantages for numerical and analytical computations, is given by the linear entropy,
1 − Tr ρ2

1 [16–18]. This choice leads to the entanglement measure

E(|ψ〉) = 2
[
1 − Tr

(
ρ2

1

)]
, (9)

which is the one we are going to use in the present work. In terms of the measure E(|ψ〉),
factorizable pure states (which have zero entanglement) are characterized by E(|φ1〉|φ2〉) = 0.
On the other hand, states of maximum entanglement, such as

|ψEPR〉 = 1√
2
(|00〉 + |11〉), (10)

have E(|ψEPR〉) = 1. Intermediate degrees of entanglement correspond to values 0 <

E(|ψ〉) < 1. It must be mentioned that the main results that are going to be reported here do
not depend on the particular measure (9) adopted. Similar results would be obtained if other
measures (such as the concurrence or the entropy of entanglement) were used.

In order to characterize those initial states |ψ(t0)〉 that evolve into orthogonal ones, one
has to consider the equation

P(x) = 〈ψ(t0)|ψ(t0 + τ)〉 = |a3|2x2 + (|a1|2 + |a2|2)x + |a0|2 = 0, (11)

where

x = exp(−iετ/h̄). (12)
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The initial state (6) evolves to an orthogonal state if and only if the quadratic equation (11)
admits at least one root with modulus equal to 1. This may happen in two different ways:
equation (11) may have two complex conjugate roots of modulus 1, or it may have two real
roots, of which one must have modulus equal to 1. Due to the notation that we are going to
introduce shortly, these two cases are going to be designated, respectively, the β-case and the
s-case.

3.1. β-case

This is the case where equation (11) has two complex conjugate roots

x = e± iβ, (13)

with

β = ετ

h̄
. (14)

The coefficients appearing in (11) can be written in terms of β,

|a0|2 = |a3|2 = 1

2(1 − cos β)
, |a1|2 + |a2|2 = − cos β

1 − cos β
= C. (15)

Expressing the energy’s expectation value 〈E〉 and uncertainty �E in terms of β (where
π/2 � β � π ) it can be verified that

�E � E, (16)

and consequently,
τ

τmin
= πh̄

2�E
= 2β

π
√

1 − cos β
. (17)

In order to get expressions for |a1|2 and |a2|2, one has to introduce a parameter, 0 � δ � 1
such that

|a1|2 = δC, |a2|2 = (1 − δ)C. (18)

Since a global phase factor does not affect the physical properties of a state, one can
choose the global phase factor such that a0 is real. Introducing three phase parameters

0 � γ1, γ2, γ3 � 2π, (19)

the coefficients a0, a1, a2 and a3 can be parameterized as follows:

a0 = 1√
2(1 − cos β)

, a1 = eiγ1

√
δ

(−cos β)

1 − cos β
,

(20)

a2 = eiγ2

√
(1 − δ)

(−cos β)

1 − cos β
, a3 = eiγ3

1√
2(1 − cos β)

.

Consequently, the entanglement E(|ψ(t0)〉) is a function of β and of four independent
parameters, whereas τ/τmin is only a function of β (remember that the entanglement of the
system does not change in time). Since we are interested in the relation between entanglement
and the speed of time evolution, we have to obtain an analytic expression for the boundary
curve of this relation, that is, one has to find the set of parameters yielding the minimum
possible entanglement for a given value of τ/τmin. This means finding the set of parameters
minimizing the value of E = 2

[
1 − Tr

(
ρ2

1

)]
for each value of β in the interval π/2 � β � π .

For a quantum state characterized by the coefficients (20) we have,

E = 1

(1 − cos β)2

{
1 + 4

√
δ(1 − δ) cos(γ3 − γ1 − γ2) cos β + 4δ(1 − δ) cos2 β

}
. (21)
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Figure 1. E versus τ/τmin for the 2-qubit case: the curves bounding regions R1 and R2 correspond
to {E(β, δ = 1/2), τ/τmin(β)} and {E(s, λ = 1/2), τ/τmin(s)}, respectively.

We see that, for any given value of δ the minimum value of expression (21) is obtained when

cos(γ3 − γ1 − γ2) = 1. (22)

In particular, by setting γ1 = γ2 = γ3 = 0, hence by making all the coefficients real, the
measure E is minimized. Taking the partial derivative of E(β, δ) with respect to δ and then
choosing δ = 1/2 gives zero for all β in the domain and hence δ = 1/2 corresponds to a
critical point. The second derivative test shows that E(β, δ) is a convex function of δ for all
allowed β and thus the critical point is indeed the global minimum.

From this point on we shall assume the above values for the four parameters. The
concomitant expression for the entanglement measure is then given by

E(β) = 2 − 1 − 6 cos β + cos2 β

(−1 + cos β)2
. (23)

The parametric plot of τ/τmin(β) versus E(β, δ = 1/2), with β ∈ [π/2, π ], yields the curve
bounding region R1 from below in figure 1.

Summing up, the β-case corresponds to the shaded region R1 in the (E, τ/τmin)-plane.
All the points in this region are physically realizable.

3.2. s-case

In this case equation (11) has two real roots. One of these roots must have modulus equal to
1, meaning it must be ±1 and thus either τ = 0 which is impossible since a state can never be
orthogonal to itself or

τ = πh̄

ε
. (24)

Therefore, one root must be −1. Denoting the other root s, the polynomial appearing in
equation (11) can be written under the guise

P(x) = |a3|2(x2 + (1 − s)x − s). (25)
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Note that the particular instance of the β-case corresponding to β = π coincides with the s-case
with s = −1. The coefficients of P(x) have to be positive, resulting in the restriction s � 0.
Comparing expressions (11) and (25) for P(x), and taking into account the normalization
requirement (7), results in

|a3|2 = 1

2(1 − s)
,

|a0|2 = −s|a3|2 = −s

2(1 − s)
, (26)

|a1|2 + |a2|2 = 1 − s

2(1 − s)
= 1

2
.

Introducing four parameters as in the β-case, we get

a0 =
√ −s

2(1 − s)
, a1 = eiµ1

√
λ

2
,

(27)

a2 = eiµ2

√
1 − λ

2
, a3 = eiµ3

1√
2(1 − s)

.

Since τ has the constant value (24), all the states in the s-family take the same amount of time
(actually maximum possible time) to evolve to an orthogonal state, but what can be different
among the states is the dispersion of the energy and hence τmin. Thus

τ

τmin
(s) =

√
1 − 6s + s2

(−1 + s)2
(28)

changes from state to state.
Once again, we are interested in the boundary curve of the entanglement and speed of

time evolution relation. In this case we are looking for the curve in the (E, τ/τmin)-plane
corresponding to the maximum value of E (maximum entanglement) for any given value of
τ/τmin. The E-measure associated with a state given by (27) is

E = λ(1 − λ)(1 − s)2 − s

(1 − s)2
− 2

1 − s

√
−sλ(1 − λ) cos(µ3 − µ2 − µ1). (29)

For given values of s and λ, the maximum of E is achieved when

cos(µ3 − µ2 − µ1) = −1. (30)

In particular, one can choose µ1 = µ2 = 0, µ3 = π , and thus make all the coefficients
real. Assuming that relation (30) holds, E becomes a function solely of s and λ and, for any
given value of s, the maximum of E corresponds to λ = 1/2. On the other hand, for given
values of s and λ, the minimum of (29) corresponds to cos(µ3 − µ2 − µ1) = 1, and letting
λ(1−λ) = −s/(1− s)2 yields E = 0 (that is, a separable state). In other words, the minimum
entanglement compatible with a given value of s (or a given value of τ/τmin) is zero.

Both E and τ/τmin (assuming (30)) have the property that for any u < 0,

E(s = u, λ) = E
(

s = 1

u
, λ

)
,

τ

τmin
(s = u) = τ

τmin

(
s = 1

u

)
. (31)

Thus the case −1 � s � 0 is equivalent to the case s � −1, and so we are only going to
consider −1 � s � 0. Another property of E is that for any 0 � c � 1,

E(s, λ = c) = E(s, λ = 1 − c). (32)

In order to obtain the family of states that saturate the speed bound, we set τ/τmin = 1 in
equation (28). The only solution is s = 0. The parameter λ may adopt any value in the range
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[0, 1], with λ = 1/2 and λ = 0, 1 corresponding, respectively, to the maximum and minimum
value of E , namely 1/4 and 0. In the latter instance the two qubits are not entangled (the state
is factorizable). One of the two qubits is in an eigenstate of its Hamiltonian and thus does
not evolve in time, nor does it contribute to the dispersion of the energy. The other qubit has
maximal dispersion and hence evolves to an orthogonal state at the speed limit. On the other
hand, all the states

|ψ(λ)〉 =
√

λ

2
|01〉 +

√
1 − λ

2
|10〉 − 1√

2
|11〉 (33)

with 0 < λ < 1, thus with 0 < E � 1/4, are entangled. We see that, unlike the β-case
(see equation (17)) where only β = π/2, hence only maximally entangled states saturate
the bound, there is now a continuous family of partially entangled states (parameterized by
the parameter λ) that saturate the speed bound and evolve as fast as possible. On the opposite
side of the quantum speed range, the slowest evolution occurs when τ/τmin = √

2, thus when
s = −1. In that case λ = 1/2 (together with condition (30)) corresponds to the state

1
2 [|0〉 ⊗ (|0〉 + |1〉) + |1〉 ⊗ (|0〉 − |1〉)], (34)

which is clearly maximally entangled (and, consequently, has E = 1). The set of parameter
values s = −1, λ = 1/2, together with µ3 = µ2 = µ1 = 0, corresponds to the state

1
2 [|0〉|0〉 + |0〉|1〉 + |1〉|0〉 + |1〉|1〉], (35)

which also evolves in the slowest way, but has zero entanglement. We thus see that the states
of the s-family with τ/τmin = √

2 cover the complete range of amounts of entanglement: from
separability to maximum entanglement.

A summary of the above results is provided in figure 1. The parametric plot
{E(s, λ = 1/2), τ/τmin(s)} (taking into account (30)) corresponds to the boundary of the
region R2. This curve is given (in terms of the parameter s) by the equations

E(s, λ = 1/2) = 2 − 1

4

[
−4

√−s

1 − s
+

7 + s(−10 + 7s)

(−1 + s)2

]
,

(36)
τ

τmin
(s) =

√
1 − 6s + s2

(−1 + s)2
.

Therefore, the s-case corresponds to the shaded region R2 in the
(
E, τ

τmin

)
-plane. All the points

within this region are associated with physically realizable states.
We see that, in a sense, the β-family (region R1) and the s-family (region R2) behave in

opposite ways. In region R1 states evolving faster (that is, with smaller values of τ/τmin) tend
to exhibit increasing entanglement. In contrast, in region R2 states with decreasing values
of τ/τmin tend to have lower entanglement. However, it must be kept in mind that regions
R1 and R2 also differ in connection with the absolute time τ needed to reach an orthogonal
state. In region R2 all states take the same time τ to evolve into an orthogonal state. In region
R1, the absolute evolution time to an orthogonal state is minimized by states of maximum
entanglement.

The lower boundaries of region R1 and region R2 intersect at a point corresponding to
the parameter values β = 1.798 41 and s = −0.017 9989. Thus the blank region, which
corresponds to points in the

(
E, τ

τmin

)
-plane that are not physically allowed, is bounded by

{E(s, λ = 1/2), τ/τmin(s)} for −0.017 9989 � s � 0 and {E(β, δ = 1/2), τ/τmin(β)} for
π/2 � β � 1.798 41. These results are consistent with previous research, in the sense that
either entanglement or the asymmetry of the state can enhance time evolution.
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The states evolving to an orthogonal state at the highest possible speed (in the sense of the
speed bound) have either maximum entanglement (E = 1) or (relatively) low entanglement
(0 � E � 1/4). Consequently, there is an entanglement gap, given by

1
4 < E < 1, (37)

corresponding to entanglement values that are not physically permitted for states evolving at
the quantum speed limit. Those states saturating the speed bound and having the particular
amount of entanglement given by

EESSLE = 1
4 (38)

are especially interesting because they define a family of energetically symmetric states with
low entanglement (ESSLE) that saturate the speed bound. By ‘energetically symmetric’ states
we mean states where the energy’s expectation value E, and the energy’s variance (�E)2 are
evenly shared among all the subsystems (in this case, the two qubits involved).

4. N-qubits ESSLE states saturating the quantum speed limit

Now we are going to consider a system consisting of N qubits evolving according to the
Hamiltonian

H =
N∑

i=1

Hi, (39)

where each of the single qubit Hamiltonians Hi have eigenstates |0〉, |1〉 with eigenvalues 0, ε

respectively.
When considering entangled N-qubits states, we can take as a reference the GHZ state,

|GHZ〉 = 1√
2
{|0 . . . 0〉 + |1 . . . 1〉}. (40)

This is an entangled, energetically symmetric state that evolves into an orthogonal state and
saturates the quantum speed bound. The time needed for the GHZ state to reach an orthogonal
state is

τGHZ = πh̄

Nε
. (41)

Although there is no rigorous criteria for defining a maximally entangled multipartite state,
there are various reasons for describing the N-partite |GHZ〉 states as maximally entangled
[20]. For instance, the N-qubits |GHZ〉 states exhibit the maximum violations of multiparty
inequalities imposed by local realistic theories (see [20] and references therein). To have
an idea of how much entanglement the GHZ state contains, note that the marginal density
matrix ρ1 associated with any of the N qubits corresponds to the totally mixed qubit state 1

2I2,
which has the maximum possible von Neumann entropy, namely ln 2 (and also the maximum
possible value of the E-measure, namely E = 1/2). This means that, when considering the
N-qubit system as partitioned into a single qubit subsystem and an (N − 1)-qubits subsystem,
the GHZ state exhibits maximum entanglement.

Let us now consider the (energetically symmetric) N-qubits state

|ESSLE〉 = 1√
2
|00 . . . 0〉 +

1√
2N

{|100 . . . 0〉 + |010 . . . 0〉 + · · · + |00 . . . 01〉}. (42)

This state corresponds, for N = 2, to the s-case (see equations (27)) with s = −∞ and
λ = 1/2 (which, as far as the values of E and τ/τmin are concerned, is equivalent to the state
(33) with s = 0 and λ = 1/2). The state (42) takes a time

τ = πh̄

ε
(43)
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to evolve into the orthogonal state

|ESSLE〉⊥ = 1√
2
|00 . . . 0〉 − 1√

2N
{|100 . . . 0〉 + |010 . . . 0〉 + · · · + |00 . . . 01〉}. (44)

The state |ESSLE〉⊥, in turn, takes a time τ to evolve back to the state |ESSLE〉. The energy’s
expectation value and the energy’s dispersion of the state |ESSLE〉 are given by

E = �E = ε

2
(45)

and, from equation (4), it follows that this state saturates the speed limit,

τ = τmin. (46)

In order to compare the amount of entanglement exhibited by |ESSLE〉 with that associated
with |GHZ〉 we need an appropriate measure of N-qubit entanglement. The study of the
properties and applications of multipartite entanglement measures has been the focus of an
intense research activity in recent years [21–30]. An N-qubit entanglement measure for pure
states |φ〉 was advanced by Meyer and Wallach [22] that was later shown by Brennen [23] to
be equivalent to the average of all the single-qubit linear entropies,

Q(|φ〉) = 2

(
1 −

N∑
k=1

tr ρ2
k

)
. (47)

Here ρk, k = 1, . . . , N , stands for the marginal density matrix describing the kth qubit of the
system after tracing out the rest. This quantity, often referred to as ‘global entanglement’ (GE),
measures the average entanglement of each qubit of the system with the remaining (N −1)-
qubits. The GE measure is widely regarded as a legitimate, useful and practical N-qubit
entanglement measure [23–27]. This measure is invariant under local unitary transformations
and non-increasing on average under local quantum operations and classical communication.
In other words, Q is an entanglement monotone. Another desirable property of this measure is
that it can be observed without the need for full quantum state tomography [23]. This measure
has been applied to the study of several problems involving multipartite entanglement, such
as entanglement generation by nearly random operators [24] and by operators exhibiting
particular matrix element distributions [25], thermal entanglement in multi-qubit Heisenberg
models [26], and multipartite entanglement in one-dimensional time-dependent Ising models
[27]. Generalizations of the GE entanglement measure involving the average values of the
linear entropies associated with more general partitions of the N-qubit systems into two
subsystems (and not only the partitions of the system into a 1-qubit subsystem and an (N−1)-
subsystem) have also been recently the focus of considerable interest [28–30]. In particular,
Scott [28] recently studied interesting properties of the family of multiqubit entanglement
measures given by

Qm(|φ〉) = 2m

2m − 1

(
1 − m!(N − m)!

N !

∑
s

tr ρ2
s

)
, m = 1, . . . , [N/2], (48)

where the sum runs over all the subsystems s consisting of m qubits, ρs are the corresponding
marginal density matrices, and [x] denotes the integer part of x. The quantities Qm measure
the average entanglement between all the subsystems consisting of m qubits and the remaining
N − m qubits. The measures Qm have been applied to the study of quantum error correcting
codes and to the analysis of the (multipartite) entangling power of quantum evolutions [28].
Another way of characterizing the global amount of entanglement exhibited by an N-qubit state
is provided by the sum of the (bi-partite) entanglement measures associated with all the possible
bi-partitions of the N-qubits system [21]. For the particular families of (symmetric) states that
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we are going to consider here, the main conclusions obtained from the (1-qubit):((N − 1)-
qubits) bi-partitions are the same as those obtained when taking into account all the possible
bi-partitions.

We are now going to use the N-qubit measures of entanglement (47) and (48) to compare
the amount of entanglement exhibited by the |ESSLE〉 and the |GHZ〉 states. Because of the
symmetry of these states, the average of all the single-qubit linear entropies is equal to the
linear entropy of the marginal density matrix associated with just one qubit,

ρ1 = Tr2,...,N {|ESSLE〉〈ESSLE|}, (49)

which is given by

ρ1 =
(

1

2
+

N − 1

2N

)
|0〉〈0| +

1

2
√

N
{|0〉〈1| + |1〉〈0|} +

1

2N
|1〉〈1|. (50)

The eigenvalues of ρ1 are

λ = 1

2

{
1 ±

√
1 − N − 1

N2

}
, (51)

which, in the limit of a large number of qubits, yield

lim
N→∞

λ = 0, 1. (52)

The GE entanglement measure of the ESSLE state is given by the single-qubit linear entropy,

Q(|ESSLE〉) = 2
[
1 − Tr

(
ρ2

1

)] = N − 1

N2
. (53)

It is important to stress that this single-qubit marginal entropy actually represents a global
property of the complete N-qubits system: the entropy 1 − Tr

(
ρ2

1

)
measures the amount of

entanglement between each of the N qubits and the remaining N − 1 qubits. We see that
Q(|ESSLE〉) is a decreasing function of N, and tends to 0 when N → ∞. Consequently,
the amount of entanglement between each qubit of the system and the remaining (N − 1)

qubits tends to zero as N increases. Therefore, as N increases, the amount of entanglement
exhibited by |ESSLE〉, as measured by the N-qubit GE measure, becomes much smaller than
the amount of entanglement associated with |GHZ〉. However, the state |ESSLE〉 does saturate
the quantum speed limit. We thus see that, as the number of qubits of the system increases,
only a small amount of entanglement (as compared with the entanglement exhibited by the
|GHZ〉 state) is needed to obtain an energetically symmetric state that saturates the quantum
speed limit.

It is also useful to evaluate upon the state |ESSLE〉 the more general N-qubit entanglement
measure Qm (given by equation (48)),

Qm(|ESSLE〉) = 2m

2m − 1

[
m(N − m)

2N2

]
. (54)

We see that, for any given m, the measure Qm(|ESSLE〉) goes to zero as N → ∞. For
even values of N, we can also consider the case m = N/2 (that is, considering the average
entanglement associated with all partitions of the system into two subsystems with N/2 qubits
each). In that case we obtain, for N → ∞,

QN/2(|ESSLE〉) → 1
8 , (55)

which is again much smaller than the value 1/2 associated with the |GHZ〉 state.
Consider now the states

|N;M〉 = 1√
2
|00 . . . 0〉 +

√
M!(N − M)!

2N !
{|1 . . . 10 . . . 0〉 + · · · + |0 . . . 01 . . . 1〉}, (56)
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where

1 � M � N. (57)

The sum within curly brackets in (56) consists of all the
(
N

M

)
factorizable N-qubits states with

M qubits in state |1〉 and (N − M) qubits in state |0〉. The case M = 1 corresponds to the
previously defined |ESSLE〉 state, while in the case N = M the |GHZ〉 state is recovered. All
the states |N;M〉 are energetically symmetric, and all of them evolve to an orthogonal state
in the shortest possible time (that is, all of them saturate the speed bound). The time required
by |N;M〉 to reach an orthogonal state is

τ(N;M) = πh̄

Mε
. (58)

For a given value of N, the amount of entanglement associated with |N;M〉 increases with
M, adopting its maximum value for the |GHZ〉 state. We thus see that for the family of
states |N;M〉 there is a correlation between the absolute time required to reach an orthogonal
state and the amount of entanglement. Within this family of states, the states with higher
entanglement reach an orthogonal state sooner.

5. Conclusions

We have investigated some aspects of the relationship between entanglement and the speed
of quantum evolution in multi-qubit systems. As was pointed out by Giovannetti, Lloyd and
Maccone, both entanglement, on the one hand, and the uniformity of the distribution of energy
resources among the subsystems, on the other hand, play an important role in connection with
the speed of quantum evolution of multi-partite systems. Energetically symmetric, separable
pure states do not saturate the speed bound. On the contrary, the speed limit can be reached
for energetically symmetric, entangled states. However, how much entanglement is needed
to reach the aforementioned bound? In the case of two-qubits, we found that maximally
entangled states are not needed for that purpose. There are energetically symmetric states of
(relatively) low entanglement that saturate the bound. In the present effort we have provided
a systematic study of the connection between speed of evolution and entanglement for two-
qubits pure states (summarized in figure 1) paying special attention to the role played by the
distribution of the energy resources among the qubits. In particular, we showed that there is
a triangular-shaped, physically forbidden region in the (E − τ/τmin)-plane, involving states
of low entanglement saturating the speed limit. On the line τmin = τ , corresponding to the
maximum quantum speed, this region gives the entanglement gap 1/4 < E < 1, corresponding
to entanglement values that can not be realized by states saturating the quantum speed limit.

We have also constructed energetically symmetric states of low entanglement (ESSLE)
for N-qubits that evolve at the speed limit. The ESSLE states become less and less entangled
(in comparison with the GHZ state) as N increases. Thus, we can conclude that for large N very
little entanglement is needed for an energetically symmetric state to reach the quantum speed
limit. In the present effort we have only discussed pure states. It would be important to extend
some of the present considerations to mixed states of multi-qubit systems. In that case, it
would be interesting to explore systematically the correlations existing between entanglement
and the time needed to reach a state with a given fidelity distance with respect to the initial
state, in connection with the role played here by the evenness of the distribution of energy
resources among the subsystems. The case of mixed states, however, is considerably more
complicated than the case of pure states [14] and, consequently, it seems that the only way to
conduct such a study is by recourse to a systematic numerical survey of the state-space.
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