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Abstract
The iterative algorithm recently proposed by Waxman for solving eigenvalue
problems, which relies on the method of moments, has been modified
to improve its convergence considerably without sacrificing its benefits or
elegance. The suggested modification is based on methods to calculate low-
lying eigenpairs of large bounded Hermitian operators or matrices.

PACS numbers: 03.65.Ge, 02.60.Lj

Recently, Waxman [1] has proposed a convergent iterative algorithm for obtaining solutions
of the bound state eigenvalue problem, which does not involve a matrix diagonalization.
For operators which possess a continuum as well as a set of bound states, this is most
advantageous [2]. In the case of the ground state, for example, the eigenenergy, ε, is determined
numerically as a function of the coupling constant of the potential, λ, and inverted to yield the
ε corresponding to the required value of λ. The convergence rate of the algorithm, therefore,
depends on two factors: the number of iterations required to find an eigensolution for a
particular choice of ε and the number of times this must be repeated in order to determine the
value of ε which corresponds to the desired value of λ. In a recent paper, we have shown that
for many non-singular symmetric potentials which vanish asymptotically, a simple analytical
relationship between the coupling constant of the potential and the ground-state eigenvalue
exists which can be used to reduce the number of times λ has to be calculated for a given value
of ε [3]. Here we show that it is also possible to reduce the number of iterations necessary to
determine an eigensolution for a particular choice of ε. Furthermore, the existence of a simple
analytical relationship between ε and λ can be used to handle problematic situations that are
referred to as pseudoconvergence in other methods [4] and which can occur in the Waxman
algorithm as well.

In the Waxman algorithm, eigenpairs are determined as functions of the strength of the
potential in the following manner [1]. Here we shall use the abstract Hilbert space notation
for the most part and point out their meaning in a one-dimensional coordinate space where
appropriate. Starting from

(T − λV )|u〉 = ε|u〉, (1)
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with

u(x) = 〈x|u〉, lim
|x|−>∞

u(x) = 0, (2)

where T is the kinetic energy operator (or more generally a suitable Hermitian operator
for the unperturbed system), λ > 0 is the strength parameter of the potential (λV > 0
and V (x) → 0 as |x| → ∞) and the energy eigenvalue, ε (with ε < 0), is negative and
corresponds to a bound state. Using Green’s method, a solution to equation (1) is given by

|u〉 = λGεV |u〉, (3)

where the Green’s operator, Gε , can formally be defined as

Gε = (T − ε)−1, (4)

and the corresponding Green’s function satisfies

lim
|x|−>∞

Gε(x) = 0. (5)

Normalizing |u〉 with a suitable reference state |ref〉
〈ref|u〉 = 1 (6)

allows λ to be written as (see equation (3))

λ = 〈ref|GεV |u〉−1, (7)

which can then be used to eliminate λ from equation (3)

|u〉 = GεV |u〉
〈ref|GεV |u〉 . (8)

From equations (7) and (8), λ can be determined as a function of ε in the following manner.
For a particular choice of ε, equation (8) can be iterated

|n + 1〉 = GεV |n〉
〈ref|GεV |n〉 (9)

until it converges and λ can then be determined from equation (7). Repeating for different
values of ε yields a set of different values of the potential strength λ. When enough points have
been determined, a simple interpolation procedure can be used to determine the dependence
of ε on λ.

If we assume, that u is square integrable and therefore can be normalized we can choose
|u〉 as a reference vector in (8) yielding

|u〉〈u|GεV |u〉 = GεV |u〉 (10)

from which it is clearly seen that we are dealing with an eigenvalue problem for the operator
GεV with eigenvalue λ−1 = 〈u|GεV |u〉. The equation corresponding to (9) is now given by

|n + 1〉 = GεV |n〉
〈n|GεV |n〉 . (11)

From (11), it immediately follows 〈n|n + 1〉 = 1 and therefore

|n + 1〉 = |n〉 + c⊥
n |n⊥〉, (12)

where the (at present) unknown vector |n⊥〉 obeys 〈n|n⊥〉 = 0, 〈n⊥|n⊥〉 = 1 and c⊥
n �= 0 as

long as |n〉 is not an eigenvector. Normalizing |n + 1〉 yields

|n + 1〉′ = (
1 +

∣∣c⊥
n

∣∣2) −1
2
(|n〉 + c⊥

n |n⊥〉). (13)

Equation (13) defines the start vector for the next iteration step, and it can be easily
seen that the relative contribution of the ‘leading’ term |n〉 is reduced in each iteration step.
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It is now essential to note that in the n+1 iteration step, we have to deal with two vectors:
|n〉 and |n⊥〉 which define (in general) a two-dimensional subspace. Therefore, one could
ask, does equation (13) already define the best choice within this subspace to achieve optimal
convergence. Remember, we are looking for a linear combination of the form

|n + 1〉′′ = c1|n〉 + c2GεV |n〉 = dn|n〉 + d⊥
n |n⊥〉, (14)

where the c’s and the d’s are chosen to satisfy the normalization and the convergence
requirements. Clearly, in the original Waxman scheme c1 = 0. This corresponds to using the
method of moments or power method [5, 6] to solve equation (10).

Another choice would be to diagonalize GεV projected onto the two-dimensional subspace
spanned by |n〉 and |n⊥〉, and take one of the two eigenvectors as the new start vector in the
next iteration step. Such an approach has been proposed to calculate low-lying eigenvalues
of a Hermitian operator [7] and generalized to low-lying eigenstates of unbounded Hermitian
operators [8].

The iteration scheme is then the following. From GεV |n〉, calculate a normalized vector
orthogonal to the vector |n〉:

|n⊥〉 =
(

GεV |n〉
〈n|GεV |n〉 − |n〉

)
∗ ∣∣c⊥

n

∣∣−1
, (15)

such that 〈n⊥|n⊥〉 = 1 and 〈n|n⊥〉 = 0. The matrix representation of GεV in the subspace
spanned by |n〉 and |n⊥〉 is(

εn vn

v∗
n αn

)
, (16)

with

εn = 〈n|GεV |n〉 = λ−1
n , vn = 〈n|GεV |n⊥〉, αn = 〈n⊥|GεV |n⊥〉. (17)

Now the 2 × 2 matrix (16) can be diagonalized yielding two eigenvalues and the
corresponding two eigenvectors. One of the eigenvalues always lies above εn, the other
one below εn as long as vn �= 0. (Here we make use of the fact that λ is real.) If we always
choose the upper eigenvalue, the εn form a monotonically increasing sequence bounded by
the highest eigenvalue of GεV . Therefore, the sequence is convergent. (Similar arguments
hold, if one chooses the lower eigenvalue in each step in case the spectrum is bounded from
below.) Since in each step the modified iteration step is an optimization with respect to the
original power method step, one might expect an improved convergence rate.

In order to investigate the convergence properties, we have performed a number of
calculations with matrices where a discrete spectrum for T was chosen and a random potential V
was added. The signs in equation (1) were chosen such that λ is positive and the monotonically
increasing iteration scheme (i.e. increasing in terms of εn = λ−1

n and therefore decreasing in
terms of λn) described above was chosen. Figure 1 shows a typical convergence pattern for a
20 × 20 matrix using the original Waxman method (power) compared to the modified scheme
proposed here (2 × 2). The number of iterations needed until a specified convergence limit
is achieved for the new scheme is roughly one half that required for the original Waxman
algorithm. Figure 2 illustrates the convergence properties of the modified iteration scheme
in another, more dramatic, case where the original algorithm has considerable difficulty to
converge. It can be seen from both examples that the convergence rate improves significantly.

To judge the advantage of the faster convergence one has to take into account that because
of the last term in equations (17) the new scheme is always one additional iteration step
(GεV |n⊥〉) ahead, and in each iteration step there are more vector operations. While the latter
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Figure 1. Typical convergence rates of the coupling constant λ for different ground-state energies
ε for the Waxman algorithm (power) and the modified algorithm (2 × 2) using a 20 × 20 matrix
model Hamiltonian.

Figure 2. Convergence rates of the coupling constant λ of different ground-state energies ε for
the Waxman algorithm (power) and the modified algorithm (2 × 2) using a 20 × 20 matrix which
yields very poor convergence as the model Hamiltonian.

are negligible as far as computational resources are concerned, the additional iteration step
has to be taken into account. Even then this increases the total number of iterations only by 1
and still results in a considerably accelerated convergence.

It is interesting to understand why achieving convergence in the second example is so
slow. In figure 3, we show the convergence of λn for different energies as a function of
iteration number n. It can be seen that convergence in certain cases is delayed by a number
of steps in such a way that seems to indicate that ε (or λ) appears to converge to an incorrect
value. Such behaviour, which we referred to as pseudoconvergence, is common in several
iterative algorithms and has been discussed earlier for the Lanczos and modified-Lanczos
algorithm [4].
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Figure 3. Convergence curves of the coupling constant λ for different ground-state energies
ε for the Waxman algorithm using a 20 × 20 matrix as a model Hamiltonian which causes
psuedoconvergence.

Figure 4. Dependence of the numerically determined coupling constant λ on the ground-state
energy ε for the Waxman algorithm (power) and the modified algorithm (2 × 2) using a 20 ×
20 matrix as a model Hamiltonian which causes pseudoconvergence. The two curves which are
identical when full convergence is achieved have been vertically shifted apart from each other for
better visibility.

In general, two problems arise with pseudoconvergence: how to detect and how to remedy
it? The remedy in the present case may be to switch from the power to the 2 × 2 scheme.
Since the 2 × 2 scheme itself suffers from pseudoconvergence, further measures as discussed
in [4] may be appropriate.
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The task of detecting pseudoconvergence is more difficult since if you look, e.g., at the
rate of the change of the eigenvalue in the successive iteration steps, this can only indicate that
there may be convergence. However, as has been shown recently for a wide class of potentials,
smooth relations between ε and λ exist [3]. We therefore show the corresponding relations for
the pseudoconvergence exhibited in figure 4. It can be seen that the power method exhibits
marked deviations from the smooth behaviour at ε values 7 and 8. In figure 2, we can see that
for these values the power method seemed to have converged rapidly. In fact, and we checked
this with the exact results, pseudoconvergence occurred, which the algorithm had failed to
detect. Similarly in figure 4 in the 2 × 2 scheme, one would suspect that pseudoconvergence
occurred for ε = 6 which is actually the case.

To summarize, the examples suggest that the modified algorithm has considerably
improved convergence rates in general. In the case where pseudoconvergence occurs, the
savings may become dramatic. The use of the Waxman algorithm enables one to detect
the occurrence of pseudoconvergence reasonably quickly from the marked deviations from
the smooth dependence of λ on ε. As in the power method scheme, the modified scheme
does not require an explicit matrix representation in a large basis. Thus a major advantage
of Waxman’s method, namely the fact that the scheme can be applied directly to operators
and wavefunctions in coordinate space, either using a discretized numerical or a parametrized
analytical representation [3], is preserved when migrating to the modified algorithm.
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