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Summary: The inability to get people to regularly test and know their HIV

status has caused the widespread unavailability of correct and comprehensive

data on HIV infection especially the time at which an individual was

first infected. Hence, mathematical scientists have relied extensively on

inference obtained from small samples to estimate the HIV incubation and

seroconversion times. We set out to obtain in this paper, (i) the distribution

functions of the HIV incubation period and seroconversion time by considering

the stochastic behaviours of the members of the population under discussion,

and (ii) the method of estimation that gives the best parameter estimate by

building on previous work of Lui et al. (1988) and Medley et al. (1988).

We obtained a one-parameter family distribution for the incubation period

and a two-parameter family distribution for the seroconversion time. Data

on homosexual individuals were used since we built on past work of Lui
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et al. (1988). Also AIDS incidence projection was done using the back-

calculation method. However, the shortfall of the back-calculation method was

not addressed in this paper as this is meant for further research.

1. Introduction

Acquired Immune Deficiency Syndrome (AIDS) is a fatal but containable

disease caused by the retrovirus HIV. It is found that there is a risk of

contracting HIV infection from exposure to infected persons. The exposure

can be through the sharing of intravenous hypodermic needles with infected

persons, transfusion of HIV infected blood, mother-to-child transmission at

birth, or performing a sexual act with HIV infected persons. As sex plays

an important role in human life, the virus has the ability to be quickly

transmitted from one infected individual to either an infected or non-infected

individual by the pattern of their intimate behaviour. Since the behaviour

is highly stochastic, the time for a susceptible to become an infective is

unpredictable. Hence, the dynamics of the spread of HIV presents several

perplexing difficulties even in the case of a specific community such as a

population of transfusion related cases of AIDS (Medley et al. 1988). The

foremost difficulty that baffles model builders is the incubation period of HIV.

The incubation period (IT) of HIV in an infected individual is the period from

the time of infection to the time of the first diagnosis of an opportunistic disease

associated with AIDS. According to Medley et al. (1988), one of the striking

features of AIDS is that the incubation period appears to be both long and

highly variable. Usually, the time of infection is not known in several cases.

However, the seroconversion time (ST) (i.e., the time at which an infected

individual becomes HIV positive) may be known in many cases. The latent
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period, namely, the interval between the time of infection and the time of

seroconversion is small (in weeks) compared to the incubation period (in years)

of HIV. Hence, the time of infection is taken to be the time of seroconversion.

Studies on the estimation of the HIV incubation period have been carried

out in the past. For instance, Medley et al. (1988) in their study observed

that the data on the time of infection was incomplete and estimated the

mean incubation period to be 4.5 years to 15 years. Chevret et al. (1992)

developed a new approach for estimating the incubation period of acquired

immunodeficiency syndrome (AIDS) based on age distributions. They

expressed the incubation period as the difference between the age at time of

diagnosis and the age at time of contamination. By assuming independence

between age at time of infection and incubation period, the age distribution of

newly diagnosed AIDS cases was given as the convolution product between

the distributions of the age of freshly infected patients and of the incubation

times. Hence, AIDS incubation time could therefore be estimated from the

age distribution of newly HIV infected subjects and newly diagnosed AIDS

cases.

Lee (1999) estimated the maturity of the HIV infection and the incubation

period of AIDS by using data from 363 seroprevalent (i.e. those who

were AIDS free at entry) Korean AIDS patients (including 59 seroincident

cases). He proposed two methods for computing the unknown times since

seroconversion: (a) fitting Weibull regression with the marker of matured

CD4+T cell count for seroincident cohorts, and (b), using a random effects

model with CD4+T cell count as a response for repeated measures from which

the times since seroconversion can inversely be extracted.

Rao and Kakehashi (2005) estimated HIV incidence density from

prevalence data and also the incubation time distribution by using the
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deconvolution technique and maximum likelihood method to estimate

parameters. The difference was that their data was not based on homosexual

men/women.

Several mathematical and statistical analyses have been proposed in the

recent past to assimilate the data and provide information about the dynamics

of the epidemic (Anderson and May, 1991). In the statistical analyses of

the data, the gamma, Gompertz, Lognormal, Normal and Weibull distributions

were used to model the distribution function F (t) of the incubation period

(Brookmeyer and Gail, 1994; Anbupalam et al., 2002). The advantages and

disadvantages of using each of these models are outlined in Brookmeyer and

Gail (1994). In particular, the Weibull model is used in situations where it

is hypothesized that the hazard function λ (t) increases indefinitely and is

proportional to a power of time from infection (Brookmeyer and Gail, 1994).

The hazard function quantifies how the risk of AIDS evolves with time from

infection and is given by

λ (t) =
f (t)

S (t)
(1)

where f (t) = F ′ (t) and S (t) = 1 − F (t) are the probability density

function (p.d.f.) and the survival function (s.f.) of the incubation period

respectively. However, as Brookmeyer and Gail (1994) have pointed out, the

hazard function λ (t) should be consistent with epidemiological data and with

theoretical considerations of the pathogenesis of HIV infection. Not much

attention has been paid to the formulation of the distribution functions (hence

the hazard functions) of the latent and the incubation periods by considering the

stochastic behavioural aspects of the members of the population under study.

Accordingly, in this paper, two stochastic models are presented namely:

(i) Model I which is devoted to the determination of the distribution

function of the time to infection (i.e. the time period from the entry

of a susceptible in the specified community till he/she tested HIV
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positive) of a susceptible.

(ii) Model II which determines the distribution function for the incubation

period (i.e., the period from the time of seroconversion till the onset

of overt symptom of AIDS).

Essentially, a two-parameter family distribution function for the time to

infection and a one-parameter family of distribution for the incubation period

are obtained. It is observed that the distribution function of the incubation

period serves as a good fit for the data provided by Lui et al. (1988). Further,

the distribution function is used to project AIDS incidence by back-calculation

(Brookmeyer and Gail, 1994).

The lay-out of this paper is as follows: In Section 2, a stochastic model

for the determination of the p.d.f., q(t), of the time interval ST between the

time of entry of an individual into a population of homosexuals and the time

of his/her seroconversion (becoming HIV positive) is proposed. In Section

2.1 a two-parameter family of the probability distribution function of ST is

obtained. The moments of ST are obtained in Section 2.2 and the problem

of estimation of the parameters of q (t) is considered in Section 2.3. In

Section 3, a stochastic model for the determination of the probability function,

pn, of the incubation period (IT) is proposed. A one-parameter family of the

probability function pn of IT is obtained in Section 3.1 while the moments

of IT are obtained in Section 3.2. The problem of estimation of the parameter

of pn is considered in Section 3.3 and illustrated by a numerical example in

Section 3.3.4. The method of back-calculation is used in Section 4 to obtain

AIDS projection for a set of sample data.

2. A stochastic model for the time to infection

Consider a population of homosexual individuals consisting of susceptibles

and infectives. Assume that at time t = 0, a new member who is tested HIV
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negative enters into the population and makes sexual contacts with members

of the population. Assume further that his/her contacts occur at random time

points which follow a Poisson process with parameter λ, λ > 0. Let the

probability that the individual who has already had n contacts up to time t

when he/she tested HIV positive for the first time in the interval (t, t+4) be

given by

nµ4+ o (4) , µ > 0. (2)

Let the time to infection of the individual be represented by the random

variable ST. In the next section, we obtain the p.d.f. of ST.

2.1 The probability distribution function of the time to

infection

We define the p.d.f. of ST by

q (t) = lim
∆→0

Pr {t < ST < t+4}
4 . (3)

Then q (t)4 represents the probability that the individual tests HIV positive

for the first time in the interval (t, t+4) . At least one contact is needed to

get infected with HIV and so the infection occurs either in the first contact or

in a subsequent contact. Hence, we obtain

q (t) = e−λtλ c©e−(λ+µ)tµ+ e−λtλ c©

×
∞∑
n=2

e−(λ+µ)tλ c©... c©e−(λ+(n−1))λ c©e−(λ+nµ)tnµ, (4)
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where c© stands for the convolution symbol. Taking Laplace transform on

both sides of equation (4), we get

q∗ (s) =
∞∫
0

e−stq (t) dt =
λ

s+ λ
× µ

s+ λ+ µ
+

λ

s+ λ

×
∞∑
n=2

nλn−1µ

(s+ λ+ µ) ... (s+ λ+ nµ)

=

∞∑
n=1

nλnµ

(s+ λ) (s+ λ+ µ) ... (s+ λ+ nµ)
. (5)

Using the identity
1

x (x+ b) ... (x+ nb)
≡ 1

n!bn

n∑
j=0

(−1)′
(
n
j

)
1

(x+ jb)
,

the equation (5) yields

q∗ + (s) = λ

∞∑
n=1

1

(n− 1)!
(n−1)


n∑
j=0

(
n
j

)
(−1)′ 1

(s+ λ+ jµ)

 . (6)

Inverting 6, we obtain explicitly the p.d.f. of ST given by

q (t) = λ

∞∑
n=1

1

(n− 1)!

(
λ

µ

)(n−1)


n∑
j=0

(
n
j

)
(−1)j e−(λ+jµ)t


= λ

∞∑
n=1

1

(n− 1)!

(
λ

µ

)(n−1)

e−λt


n∑
j=0

(
n
j

)
(−1)j e−jtµ


=

∞∑
n=1

1

(n− 1)!

(
λ
µ

)(n−1)

e−λt
(
1− e−µt

)n
= λe−λt

(
1− e−µt

) ∞∑
n=1

1

(n− 1)!

(
λ

µ

)(n−1) (
1− e−µt

)n−1

= λe−λt
(
1− e−µt

) ∞∑
n=1

1

n!

(
λ

µ

(
1− e−µt

))
= λe−λt

(
1− e−µt

)
exp

(
λ

µ

(
1− e−µt

))
. (7)
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The mode of the frequency curve corresponding to q (t) can be obtained by

solving the equation q′ (t) = 0 or

λe−λt (1− e−µt) exp
(
λ
µ (1− e

−µt)
)
λ
µ (µe

−µt)

+λ
(
−λe−λt

)
(1− e−µt) exp

(
λ
µ (1− e

−µt)
)

+λe−λt
(
µe−λt

)
exp

(
λ
µ (1− e

−µt)
)
= 0.

Or λ2 (1− e−µt) (e−µt)− λ2 (1−−µt) + λµe−µt = 0.
Or λe−2µt − (2λ+ µ) e−µt + λ = 0.

Or e−µt =
2λ+ µ+ µ±

√
(2λ+ µ)

2 − 4λ2

2λ
=
2λ+ µ±

√
µ24λµ

2λ
.

Since t > 0, 0 < e−µt < 1 and so the only possibility is e−µt =

2λ+ µ−
√
µ2 + 4λµ

2λ
.

Consequently, we obtain

tmod e =
1

µ
log

(
2λ

2λ+ µ−
√
µ2 + 4λµ

)
. (8)

The distribution function Q (t) is given by

Q (t) =

∫ t

0

q (u) du =

∫ t

0

λe−λu
(
1− e−µu

)
exp

(
λ

µ

(
1− e−µu

))
du.

Putting v = 1− e−µu, dv = µe−µudu,

Q (t) =
λ

µ

∫ 1−e−µt

v (1− v)
λ

µ
−1

e

λ

µ
v

dv. (9)

If λ = µ, then q (t) = λe−λt
(
1− e−λt

)
exp

(
1− e−λt

)
and

Q (t) =

∫ 1−e−λt

0

vevdv = [vev − ev]1−e
−λt

0 = e1−e−λt (−e−λt)− (−1)
= 1− e−λte1−e−λt . (10)
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In this case, the hazard function λ (t) is given by

λ (t) =
q (t)

1−Q (t) =
λe−λt

(
1− e−λt

)
exp

(
1− e−λt

)
e−λte1−e−λt = λ

(
1− e−λt

)
.

(11)

It can be observed that the hazard rate is increasing monotonically, which

agrees with Brookmeyer and Gail (1994). In the next section, the moments

of ST are obtained using equation (6).

2.2 The moments of ST

The k-th moment of ST is given by

E
[
ST k

]
= (−1)k

[
dk

dsk
{q∗ (s)}

]
s=0

. (12)

Consequently, from equation (6) we obtain

E
[
ST k

]
= k!e

λ

µ
∞∑
j=0

(−1)j

j! (λ+ jµ)
k

(
λ

µ

)j
. (13)

For the particular case λ = µ = λ, the mean and variance of ST obtained from

equation (13) are given by

E [ST ] =
e− 1
λ

(14)

V ar [ST ] =
2e

λ2

∞∑
n=0

(−1)j

(j + 1) (j + 1)!
−
(
e− 1
λ

)2

. (15)

The parameters of q (t) are estimated in the next section by using the method

of maximum likelihood.

2.3 Estimation of the parameters of q(t)

The likelihood function L (λ, µ) for a sample of size n is given by

L (λ, µ) = λn exp

(
−λ

n∑
i=0

ti

)
n∏
j=1

(
1− e−µtj

)
exp

{
λ

µ

(
n−

n∑
k=1

e−µtk

)}
.

(16)
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The logarithm of L is given by

loge L = n log λ− λ
n∑
i=1

ti +

n∑
j=1

log
(
1− e−µtj

)
+
λ

µ

(
n−

n∑
k=1

e−µtk

)
.

(17)

When loge L reaches its maximum value, the values of λ and µ satisfy the

following simultaneous equations:

n (λ+ µ)− λµ
n∑
i=1

ti − λ
n∑
k=1

e−µtk = 0 (18)

µ2
n∑
j=1

tje
−µtj

1− e−µtj + λµ
n∑
k=1

tke
−µtk − nλ+ λ

n∑
k=1

e−µtk = 0. (19)

From equation (18), we obtain

λ =
nµ

µ
n∑
i=1

tj +
n∑
k=1

e−µtk − n
. (20)

Substituting equation (20) into equation (19), we obtain the following

transcendental equations for µ:

µ

 n∑
j=1

tje
−µtj

1− e−µtj

µ n∑
j=1

tj +

n∑
k=1

e−µtk − n


+n

(
µ

n∑
k=1

tke
−µtk − n+

n∑
k=1

e−µtk

)
= 0.

(21)

Equation (21) can be solved using the Newton-Raphson algorithm (Sastry

1994). Accordingly, we put

ψ (µ) = µ

 n∑
j=1

tje
−µtj

1− e−µtj

ν n∑
j=1

tj +

n∑
k=1

e−µtk − n


+n

(
µ

n∑
k=1

tke
−µtk − n+

n∑
k=1

e−µtk

)
.

(22)
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If µ(0) is an initial approximate value of µ, then the (l + 1)-th iterate of µ is

given by the equation

µ(l+1) = µ(l) −
ψ
(
µ(1)

)
ψ′
(
µ(1)

) , l = 0, 1, ... (23)

3. A stochastic model of the HIV incubation period

Assume that an individual has tested HIV positive for the first time at time

t = 0. Let the conditional probability that he/she shows the first identifiable

symptoms of AIDS during the n-th year given that he/she has not shown any

symptoms of AIDS in the previous years be given by

1− e−nµ, n = 1, 2, ..., µ > 0 (24)

Let IT be the random variable representing the incubation period. In the next

section, a one-parameter family of distribution functions of IT is obtained.

3.1 The probability distribution of the incubation period

Let the probability function of IT be defined by

pn = Pr {IT = n} . (25)

Then pn represents the probability that the individual shows the first symptom

of AIDS in the n-th year. To find pn, we observe that the individual did

not show any symptom in the first year, did not show any symptom in the

second year,..., did not show any symptom in the (n− 1)-th year and shows

first symptom in the n-th year. By using the multiplication rule, we obtain

pn = e−µe−2µ...e−(n−1)µ
(
1− e−nµ

)
, n = 1, 2, ... (26)

Simplifying equation (26) yields

pn = e−
(n−1)n

2 µ − e−
n(n+1)

2 , n = 1, 2, ... (27)
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Clearly, we get

n∑
n=1

pn =

n∑
n=1

[
e−

(n−1)n
2 µ − e−

n(n+1)
2 µ

]
=

(
1− e−1×2µ

)
+
(
e−1×2µ − e−2×3µ

)
+ ... = 1.

The mode l of the distribution is given by

e−
(l−2)(l−1)

2 µ
(
1−e−l−1µ

)
≤e−

l(l−1)
2

(
1−e−lµ

)
≤e
−l(l+1)

2 µ
(
1−e−(l+1)µ

)
.

(28)

The median θ of the distribution is given by

1− e−
θ(θ+1)

2 µ =
1

2
. (29)

From equation (29), we have

µθ (θ + 1)− 2 log 2 = 0. (30)

Solving equation (30), the median is given by

θ =

√
µ2 + 8 log 1− µ

2µ
. (31)

3.2 The moments of incubation period

The mean of IT is given by

E [IT ] =

∞∑
n=1

npn

=

∞∑
n=1

n

{
e−

(n−1)n
2 µ − e

−
n(n+1)

2 µ

}

=

∞∑
n=0

n

{
e
−
n(n+1)

2 µ

}
. (32)



A STOCHASTIC POINT PROCESS 305

The second moment of IT is given by

E
[
IT 2

]
=

∞∑
n=1

n2pn

=

∞∑
n=1

n2

{
e−

(n−1)n
2 µ − e

−
n(n+1)

2 µ

}

=

∞∑
n=0

n

{
e
−
n(n+1)

2 µ

}
. (33)

3.3 Estimation of the parameter of pn

Equation (27) represents a one-parameter family of probability distributions

and for estimation of the parameter, either the method of moments or the

method of maximum likelihood can be used.

3.3.1 The method of moments

Let t1, t2, ..., tm be a random sample of size n drawn from a population of

incubation times of HIV infected individuals. Then the sample mean is given

by

t =
1

n

m∑
n=1

. (34)

Replacing E [T ] by t in (32), we have

t =
∞∑
n=0

e−
n(n+1)

2 µ. (35)

As the incubation time of an HIV-infected individual can never be greater than

100 years, equation (35) can be truncated in the following manner:

t =

100∑
n=0

e−
n(n+1)

2 µ. (36)

An approximate value µ of µ can be obtained from equation (35) by using the

Newton-Raphson algorithm.
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3.3.2 The method of maximum likelihood

The likelihood function L (µ) for a sample {n1, n2, ..., nm} of size m is

given by

L (µ) =

m∏
j=1

e−
(nj−1)nj

2 µ
(
1− e−µnj

)
. (37)

The logarithm of L (µ) is given by

loge L (µ) = −
µ

2

m∑
i=1

(ni − 1)ni +
m∑
j=1

log
(
1− e−µnj

)
. (38)

When loge L (µ) reaches its maximum value, the value of µ satisfies the

following equation:
∂L

∂µ
= 0. (39)

From equation (39), we obtain

m∑
i=1

ni
eniµ

1− e−n,µ
1

2

∑
i=1

m
(
n2
i − ni

)
. (40)

By applying the Newton-Raphson algorithm to equation (40), an approximate

value µ for µ can be obtained.

3.3.3 The method of median

The value of µ can be estimated from equation (30) for a sample of incubation

times, we obtain the sample median θ∗ and then replacing θ in equation (30)

by θ∗, we have the following equation for a crude estimation µ∗ of µ:

µ∗ =
2 log 2

θ∗ (θ∗ + 1)
. (41)

A numerical example to compare the three methods is provided in the next

section.

3.3.4 A numerical example

The data of 84 homosexuals and bisexual men analysed in Lui et al. (1988) is

used to obtain the incubation periods of twenty one individuals who developed



A STOCHASTIC POINT PROCESS 307

AIDS prior to the year 1988 (Table 1). Estimates for the value of µ by the

three methods are obtained and corresponding expected values and standard

deviations are determined. The estimates are then used to test the goodness of

fit of the distribution obtained.

Table 1. HIV incidence data of 84 homosexuals

Year

of HIV Year of diagnosis

infec-

tion 1979 1980 1981 1982 1983 1984 1985 1986 Censored Total

1978 0 0 0 1 0 1 1 0 3 6

1979 0 0 0 0 0 0 1 7 8

1980 0 0 0 1 1 1 9 12

1981 0 2 2 1 5 19 29

1982 1 0 3 0 19 23

1983 0 0 0 2 2

1984 0 0 4 4

From this table, the following incubation times (in years) of 21 persons

were obtained as:

4, 6, 7, 7,4, 5, 6, 2, 2, 3, 3, 4, 5, 5, 5, 5, 5, 1, 3, 3, 3.

The sample mean is 4.19 years and the sample median is 4 years. By using

the Newton-Raphson algorithm in equation (36), with Table 2, we have the

optimal value µ̂ = 0.09 so that the expected value of IT is 4.19 years with a

standard deviation of 2.15 years. On the other hand, for the same data of 21

persons, by adopting the Newton-Raphson algorithm in equation (40), we get

µ̃ so that the expected value of IT is 1.41 years with a standard deviation of

0.59 year. Also, using equation (41), we get µ∗ = 0.07 so that the expected

value of IT is 4.80 years with a standard deviation of 2.48 years. The three

computed values of the parameter µ are listed in Table 2.
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Table 2. Values of the parameters of µ

Method µ Mean Standard deviation

Moments µ̂ = 0.09 4.19 2.15

Maximum likelihood µ̂ = 1.01 1.41 0.59

Median µ∗ = 0.07 4.80 2.48

Further, by applying the χ2 test, it was observed that the value of µ obtained

by the method of moments fits closely to the observed data. Hence in what

follows, we assume ν = 0.09 and proceed to project AIDS incidence by the

back-calculation method with a sample data (Bacchetti 1990).

4. The back-calculation and the infection rate

One of the methods used in estimating and projecting the infection rate from

AIDS incidence data is the back-calculation method (Brookmeyer & Gail,

1994). It is an important method of constructing rates of HIV infection and

estimating current prevalence of HIV infection and future incidence of AIDS

(Bacchetti et al., 1993). This method has been used by many mathematical

scientists to obtain and predict the AIDS incidence of different populations.

Amongst the work done are those of Verdecchia and Mariotto (1995) who

modelled past HIV infections in Italy considering the interaction between age

and calendar time. Anbupalam et al. (2002) also used the back-calculation

method to project future AIDS cases in Tamil Nadu by assuming that the

incubation distribution was Weibull and Log-logistic. Ong and Soo (2006)

estimated the HIV infection rates and projection in Malaysia while Lopman

and Gregson (2008) used the back-calculation method to reconstruct the

historical trends in HIV incidence in Harare, Zimbabwe by using mortality

data. They also attempted to determine the amount of peakedness of HIV

incidence and when the peakedness occurred in Harare, Zimbabwe.
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The method in continuous time is based on the convolution equation

A (t) =

∫ t

0

g (s)F (t− s) ds (42)

where A (t) represents the expected cumulative number of AIDS cases

diagnosed by calendar time t, g (s) is the infection-rate at calendar time

s and F (t) is the distribution of the incubation period. Equation (42) is a

Volterra integral equation for g (s) and has been obtained by noting that an

individual can be diagnosed to have AIDS before calendar time t, provided

he/she has been infected at some time s < t and has an incubation period less

than t− s. For a given AIDS incidence data, A (t) can be fitted and a model

used for F (t) in 42 so that the rate g (s) can be computed by de-convolving

equation (42). Taking Laplace transform on both sides of (42), we have

A∗ (u) =
g∗ (u) f∗ (u)

u
(43)

so that

g∗ (u) =
u A∗ (u)

f∗ (u)
. (44)

By inverting (44), we obtain the infection rate g (s).

On the other hand, the back-calculation in discrete time is based on the

equation

E (Yj) =

j∑
i=1

gipj−i+1 (45)

where Yj is the number of AIDS cases diagnosed in the j-th year [j − 1, j] , gj
is the number infected in the beginning of the j-th year and pj is the probability

that a person who is infected at the beginning of the 1st year is diagnosed with

AIDS in the j-th year. If An denotes the expected cumulative number of AIDS

cases diagnosed up to the end of the n-th year, then using equation (45), we

have
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An =

n∑
j=1

E (Yj) =

n∑
j=1

j∑
i=1

gipj−i+1. (46)

Equation (46) is analogous to equation (42).

We proceed to illustrate the back-calculation in discrete time with the data

used in Bacchetti (1990) where the monthly infection rate and monthly AIDS

incidence among gay men in San Francisco in the cohort born from October

1929 through September 1959 were estimated. Taking t = 0 to correspond to

January 1978 and the time unit as year, the data is given in Table 3 below.

Table 3. Data on AIDS incidence among gay men in San Francisco

j 1 2 3 4 5 6 7 8 9 10 11

Yj 0 0 1 26 93 278 560 840 1264 1464 1455

Table 4. Probability distribution of the incubation time

n 1 2 3 4 5 6 7 8 9 10

pn 0.09 0.15 0.18 0.18 0.15 0.11 0.07 0.04 0.02 0.01

For µ = 0.09, the probability distribution of the incubation time is given

in Table 4. Following Brookmeyer and Gail (1994), we proceed to obtain

the discrete time infection curve. We assume for simplicity that infections

occurring in a calendar year are counted at a single time point, for example,

January 1 of the year and

g (2n− 1) = g (2n) = βn, n = 1, 2, ... (47)

Equation (47) provides a simple smoothness assumption on the annual

infection rate. Consequently, equation (45) leads to the following matrix
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equation:

E (Y1)
E (Y2)
E (Y3)
E (Y4)
E (Y5)
E (Y6)
E (Y7)
E (Y8)
E (Y9)
E (Y10)
E (Y11)


=



0.09 0.00 0.00 0.00 0.00 0.00
0.24 0.00 0.00 0.00 0.00 0.00
9.34 0.09 0.00 0.00 0.00 0.00
0.36 0.24 0.00 0.00 0.00 0.00
0.32 0.34 0.09 0.00 0.00 0.00
0.25 0.36 0.24 0.00 0.00 0.00
0.18 0.32 0.34 0.09 0.00 0.00
0.11 0.25 0.36 0.24 0.00 0.00
0.06 0.18 0.32 0.34 0.09 0.00
0.03 0.11 0.25 0.36 0.24 0.00
0.01 0.06 0.18 0.32 0.34 0.09




β1

β2

β3

β4

β5

β6



(48)

Using the Poisson Regression Analysis (PRA) (Koch et al., 1986; McCullagh

& Nelder, 1989), the values of βj for j = 1, 2, ..., 6 are estimated. The

method is based on the assumption that the random variable Yj has a Poisson

distribution. Setting µj = E (Yj) , the likelihood function corresponding to

the sample {n1, n2, ..., n11} of {Y1, Y2, ..., Y11} is given by

ϕ (µ1, µ2, ..., µ11) =

11∏
i=1

eµi
µNii
ni!

. (49)

But from equation (48), we have

µ1 = 0.09β1

µ2 = 0.24β1

µ3 = 0.34β1 + 0.09β2

µ4 = 0.36β1 + 0.24β2

µ5 = 0.32β1 + 0.34β2 + 0.09β3

µ6 = 0.25β1 + 0.36β2 + 0.24β3

µ7 = 0.18β1 + 0.32β2 + 0.34β3 + 0.09β4

µ8 = 0.11β1 + 0.25β2 + 0.36β3 + 0.24β4

µ9 = 0.06β1 + 0.18β2 + 0.32β3 + 0.34β4 + 0.09β5
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µ10 = 0.03β1 + 0.11β2 + 0.25β3 + 0.36β4 + 0.24β5

µ11 = 0.01β1 + 0.06β2 + 0.18β3 + 0.32β4 + 0.34β5 + 0.09β6

and hence substituting of these equations in 49, we find that ϕ becomes a

function of β1, β2, ..., β6. Differentiating loge ϕ with respect to βj and

equating the results to 0, the following system of equations is obtained:

11∑
i=1

(
µi − ni
µi

)
∂µi
∂βj

= 0, j = 1, 2, 3, 4, 5, 6. (50)

The system of equations 50 does not yield an explicit solution and so an

iterative method is used to obtain an approximate solution for (β1, β2, ..., β6)

as given below:

β̂1 = 6, β̂2 = 33, β̂3 = 1041, β̂4 = 2583, β̂5 = 3416, β̂6 = 5172.

The above values can be used to forecast AIDS incidence on short term. For

example, the predicted AIDS incidence in the 12th year is obtained as 6523 by

using the following extended equation

Ŷ12 = β̂1 (p11 + p10) + β̂2 (p9 + p8) + ...+ β̂6 (p3_p2) . (51)
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