Development of a generic Ehrlichia FRET-qPCR and investigation of ehrlichioses in domestic ruminants on five Caribbean islands

Show simple item record

dc.contributor.author Zhang, Jilei
dc.contributor.author Kelly, Patrick
dc.contributor.author Guo, Weina
dc.contributor.author Xu, Chuanling
dc.contributor.author Wei, Lanjing
dc.contributor.author Jongejan, Frans
dc.contributor.author Loftis, Amanda
dc.contributor.author Wang, Chengming
dc.date.accessioned 2015-11-16T06:17:54Z
dc.date.available 2015-11-16T06:17:54Z
dc.date.issued 2015-10-06
dc.description.abstract BACKGROUND : The Ehrlichia are obligate intracellular Gram-negative tick-borne bacteria that are important human and animal pathogens. There is a need for assays to rapidly and reliably detect and differentiate the five generally recognized species into groups in a single reaction: E. canis, E. chaffeensis, E. ewingii, E. muris and E. ruminantium. METHODS : We developed primers and probes against the 16S rRNA gene to enable us to reliably detect the five major Ehrlichia spp. in a single FRET-qPCR. We tested the Ehrlichia FRET-qPCR on reference strains and on DNA from the blood of domestic ruminants from five Caribbean islands. The Ehrlichia present were determined using melting point analysis and by sequencing the Ehrlichia FRET-qPCR products as well as those of a nested PCR against the citrate synthase gene (gltA). RESULTS : Our Ehrlichia FRET-qPCR was negative for the closely related Anaplasma marginale and A. phagocytophilum but gave positive reactions with reference strains of the most generally recognized species and with other less characterized Ehrlichia of domestic ruminants, mainly E. ovina, the Panola Mountain Ehrlichia, and Ehrlichia sp. BOV2010. Melting point analysis revealed 4 distinct groups: E. ruminantium (Tm ~55.8 °C); E. chaffeensis and E. ewingii (Tm ~57.7 °C); E. canis, E. muris, E. ovina and Ehrlichia sp. BOV 2010 (Tm ~62.0 °C); and the Panola Mountain Ehrlichia (Tm ~65.5 °C). The detection limit of the FRET-qPCR was ~ 5 gene copies in a reaction and the sequences of the FRET-qPCR products were as expected. With DNA from domestic ruminants from the Caribbean we found 12.2 % (134/1,101) positive: cattle (76/385; 19.7 %), sheep (45/340; 13.2 %) and goats (13/376; 3.5 %). Melting point analysis and sequencing of the FRET-qPCR and nested PCR gltA products showed the Ehrlichia we detected were E. canis or very closely related organisms. CONCLUSIONS : In a single reaction, our Ehrlichia FRET-qPCR can detect the Ehrlichia spp. we studied and differentiate them into four groups. Domestic ruminants in the Caribbean are not uncommonly exposed to Ehrlichia, possibly E. canis or very closely related organisms. en_ZA
dc.description.librarian am2015 en_ZA
dc.description.sponsorship Grants from the National Natural Science Foundation of China (NO: 31272575), the Priority Academic Program Development of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu, P. R. China and the Ross University School of Veterinary Medicine. en_ZA
dc.description.uri http://www.parasitesandvectors.com en_ZA
dc.identifier.citation Zhang, J, Kelly, P, Guo, WN, Xu, CL, Wei, LJ, Jongejan, F, Loftis, A & Wang, CM 2015, 'Development of a generic Ehrlichia FRET-qPCR and investigation of ehrlichioses in domestic ruminants on five Caribbean islands', Parasites & Vectors, vol. 8, art. no. 506, pp. 1-8. en_ZA
dc.identifier.issn 1756-3305
dc.identifier.other 10.1186/s13071-015-1118-5
dc.identifier.uri http://hdl.handle.net/2263/50472
dc.language.iso en en_ZA
dc.publisher BioMed Central en_ZA
dc.relation.requires Adobe Acrobat Reader en
dc.rights © 2015 Zhang et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License. en_ZA
dc.subject Ehrlichia en_ZA
dc.subject FRET-qPCR en_ZA
dc.subject Domestic ruminants en_ZA
dc.subject Caribbean islands en_ZA
dc.title Development of a generic Ehrlichia FRET-qPCR and investigation of ehrlichioses in domestic ruminants on five Caribbean islands en_ZA
dc.type Article en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record