Concentration and derivatization in silicone rubber traps for mass spectrometric and gas chromatographic analysis of air and water pollutants

Show simple item record

dc.contributor.advisor Rohwer, Egmont Richard en
dc.contributor.postgraduate Fernandes-Whaley, Maria Jose en
dc.date.accessioned 2013-09-07T10:47:53Z
dc.date.available 2009-04-07 en
dc.date.available 2013-09-07T10:47:53Z
dc.date.created 2008-09-03 en
dc.date.issued 2009-04-07 en
dc.date.submitted 2009-01-06 en
dc.description Thesis (PhD)--University of Pretoria, 2009. en
dc.description.abstract Estrogens, alkylphenols and bisphenol-A, enter the environment through waste water systems and waste disposal of manufactured products e.g. detergents, paints, polycarbonates and flameretardants. These analytes disrupt the endocrine function of living organisms affecting their reproductive health and those of future generations. Gas phase low molecular- mass aldehydes and amines are typically eye, nose, and throat irritants. Formaldehyde is classified as a probable human carcinogen. Given their negative impact on human health it is urgent to monitor pollutants at extremely low levels in both air and water. The aqueous pollutants are often concentrated using solid phase extraction cartridges or liquid-liquid extraction followed by derivatization. Methods that can most effectively and selectively pre-concentrate aldehydes and amines involve in situ derivatization. Unfortunately, the derivatizing reagents as well as their associated solvents or adsorbents, are responsible for problems encountered with these methods. Polydimethylsiloxane (PDMS) has emerged as the ideal concentration and reaction medium for trace analysis. However the expensive commercial devices such as SPME and SBSE both require the samples to be returned to the laboratory for concentration. Due to the open tubular nature of the PDMS multichannel trap (MCT), developed in our laboratory, it is ideally suited for on-site and online sampling. The MCTs have a high analyte capacity owing to the large volume of PDMS available for concentration. The derivatization reaction can be performed in situ providing a “onepot concentration and reaction device”. This allows for reduced risk of contamination of / or losses of the sample and a sampling method that can cater for both air and water samples. To demonstrate the versatility of the PDMS MCT, two approaches for concentration in PDMS were investigated in this study, namely, 1) the on-line concentration and in situ derivatization of volatile polar analytes from air followed by REMPI-TOFMS detection, and 2) the concentration of phenolic lipophilic analytes from water requiring derivatization prior to analysis by GC/MS. 1) Analyte and derivatizing reagent were simultaneously introduced into the PDMS trap using a ypress- fit connector. The reaction occurs in situ followed by thermal desorption using a thermal modulator array alone or in conjunction with a thermal desorption unit. The aldehydes and amine derivatives were successfully detected by the REMPI-TOFMS. Reaction efficiencies were determined at room temperature without catalysts. Formaldehyde yielded a low reaction/concentration efficiency of 41 % with phenylhydrazine in PDMS, while acetaldehyde, acrolein and crotonal displayed much improved values of 92, 61 and 74 % respectively. Both propylamine and butylamine yielded 28 % reaction/concentration efficiency with benzaldehyde in the PDMS matrix. Detection limits obtained with this technique were significantly lower than the permissible exposure limits set by the Occupational Safety and Health Administration. It should be noted that the detection limits were not determined by actual measurement but by extrapolation from a larger signal. 2) Aqueous analytes were concentrated in the PDMS MCT using a gravity flow rate of ~50 ìl/min. The trap was dried and 5 ìl derivatizing reagent added. At room temperature and without the presence of a catalyst, the reaction of alkylphenols with trifluoroacetic acid anhydride in the PDMS matrix was 100% complete after 5 minutes. Bisphenol-A reacted less than 50 % to completion during this period, but the amount of derivative formed remained constant. This study revealed that extraction efficiencies of the alkylphenols and bisphenol-A off the PDMS trap have poor batch-tobatch repeatability indicating that the PDMS matrix was not homogenous. For two different PDMS batches: tert-octylphenol displayed an extraction efficiency of 70 and 79%, nonylphenol displayed 84 and 43% while Bisphenol-A displayed 10 and 26% respectively. The thermally desorbed derivatives were analysed by GC/MS. Despite background contamination in the desorption unit, detection limits were at the ppt level. Detection limits were not determined by actual measurement but by extrapolation from a larger signal. en
dc.description.availability unrestricted en
dc.description.department Chemistry en
dc.identifier.citation a 2008 en
dc.identifier.other D539/gm en
dc.identifier.upetdurl http://upetd.up.ac.za/thesis/available/etd-01062009-131456/ en
dc.identifier.uri http://hdl.handle.net/2263/27149
dc.language.iso en
dc.publisher University of Pretoria en_ZA
dc.rights © University of Pretoria 2008 D539/ en
dc.subject Thermal desorption en
dc.subject Multichannel traps en
dc.subject Pdms en
dc.subject Polydimethylsiloxane en
dc.subject Air pollutants en
dc.subject Water pollutants en
dc.subject Concentration en
dc.subject In situ derivatization en
dc.subject Gas chromatography en
dc.subject Mass spectrometry en
dc.subject Resonance enhanced time-of-flight en
dc.subject UCTD en_US
dc.title Concentration and derivatization in silicone rubber traps for mass spectrometric and gas chromatographic analysis of air and water pollutants en
dc.type Thesis en


Files in this item

This item appears in the following Collection(s)

Show simple item record