
 

 

Appendix S1 

 

Random forest classification 

A random forest classifier is a machine learning algorithm commonly used in remote sensing 
applications due to its ability to handle high-dimensionality, and high-collinearity data (Belgiu & 
Drăguţ, 2016; Murray et al., 2018; Sheykhmousa et al., 2020). In essence, a random forest classifier 
is a combination of simple, binary (i.e. true/false) decision trees that use a randomly selected 
subsample of training points and covariates to make a prediction (i.e. determine the drivers of forest 
loss). The combination of these decision trees (i.e. the random forest) often produces more accurate 
results than any of the individual decision trees (Belgiu & Drăguţ, 2016; VanderPlas, 2016). 
 
To determine the minimum number of decision trees needed, we tested the performance of the 
classifier using a wide range of individual trees (10-500) and concluded that more than 300 trees 
did not increase the accuracy of the results. To achieve good spectral separability of the drivers, we 
tested all the covariates (n=185) as well as several subsets of covariates, including for example, only 
the medians, only maximum values, only minimum values, only spectral indices. We iteratively 
tested the values of each covariate against each driver to assess the spectral differences of each 
driver, thus allowing us to select the spectral bands and indices that better described each driver 
(Error! Reference source not found.). To help discriminate the ‘Urban expansion’ class, we also 
used the Global Human Settlement Layers (Pesaresi et al., 2015) available in Google Earth Engine 
as additional covariates (Error! Reference source not found.). After applying the classifier, we 
post-processed the classified map with a majority filter to remove single, isolated pixels. Lastly, we 
computed the area of each driver in total, by country, both inside and outside protected areas. 

 

Limitations of the methods used 

Some limitations of the study must be acknowledged. Firstly, due to the similarities in their spectral 
signatures we had to combine different drivers of forest loss into single categories (e.g. human 
settlements and bare ground; or smallholder agriculture and grazing). For example, oil palm, tea, 
and cocoa plantations typically exhibit a strong peak in the near-infrared (NIR) region of the 
spectrum, and lower values in the visible region of the spectrum. While these plantations may be 
identifiable from high spatial resolution imagery (<3m from Google Earth), they cannot be easily 
differentiated from Sentinel 2 imagery (10-20m spatial resolution) because they display very similar 
spectral responses. As a result, we cannot uncouple the contribution of each individual crop to 
deforestation. Conservation efforts in the region could benefit from a more refined spatio-temporal 
classification of drivers of forest loss that includes more land cover classes, and how these classes 
change over time, however, this research is a first step into understanding how land cover is 
changing in the UGF. In the future, some of these limitations may be overcome with new high 
resolution (<5m) While limited in the spectral domain, high spatial resolution datasets can be used 
to unambiguously identify the different drivers of forest loss, to collect data for calibration and 
validation of models, as well as for Object-Based Image Analysis, to train Convolutional Neural 
Networks and other machine learning algorithms. For example, Norway’s International Climate and 
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Forests Initiative (NICFI) satellite program (NICFI, 2017) has created twice-yearly mosaics for tropical 
regions (including West African countries) from 2015 onwards. Users will have to trade off the 
spectral resolution of Landsat and Sentinel 2 satellites, for the spatial resolution of this dataset. 
However, these data will certainly benefit conservation efforts throughout the Upper Guinea Forest.  

Secondly, some drivers operate at different time scales. For example, oil palm plantations start as 
bare ground (after forest is cleared) and take several years to reach maturity; during this time, their 
spectral response will be similar to that of subsistence agriculture. When mature, the spectral 
response of oil palm plantations is similar to that of a forest and will remain like that for decades, 
until the mature palm trees die. In contrast, settlement expansion or bare ground can be detected 
within days or weeks, making these drivers easier to detect and classify from remotely sensed 
imagery. Since some crop plantations pre-date some Landsat and Sentinel 2 sensors, accurately 
classifying them remains a challenge using only optical remote sensing and spectroscopic 
approaches. Drivers of forest loss captured by satellite sensors. for example, forest clearing for 
subsistence agriculture and grazing activities can, over time, lead to large-scale timber extraction 
and intensive agriculture, however this is not always the case. The Landsat and Sentinel 2 imagery 
archives offer few cloud-free images of the study area prior to 2018 to accurately detect if, or when, 
the drivers of forest loss assessed here are permanent. As a result, the drivers of forest loss were 
analyzed only for 2019 and not for previous years. Object-based image analysis, high temporal 
resolution data acquisition, data harmonization, and radar remote sensing can help disaggregate 
drivers of forest loss over space and time in the UGF. 

Thirdly, here we assume that all intact forests are used by pygmy hippopotami, however these 
animals are known to remain close to water sources and avoid mountainous terrain (Bogui et al., 
2016; Eshuis et al., 2011; Ouattara et al., 2018). Further work on the conservation of this species 
must contemplate wetland, rivers, and swamp distribution to better account for the drivers that 
directly affect pygmy hippopotami and their distribution. Lastly, clouds are prevalent in the UGF, 
and the Hansen et al., (2013) dataset, has a limited number of observations of this region (Wulder 
et al., 2016). When combined, high cloud prevalence and low image availability, increase the 
misclassification of forest loss and standing forest. To overcome this limitation, we used Sentinel 2 
data which provides a higher number of observations for each site, thus increasing the probability 
of cloud-free pixels. We also found examples where standing forest had been classified as ‘loss', 
and areas where cleared forest was not classified as 'loss’ by the Hansen (2013) dataset. These 
misclassifications may be related to (1) the low number of usable observations for the region, (2) 
the definition of 'forest', and (3) the similarities in the spectral signatures of forests and crops such 
as oil palm, cocoa and forestry plantations. Despite these limitations, the Hansen (2013) dataset is 
the most comprehensive and accurate dataset of forest loss to date. With this in mind, and after 
the results from the independent accuracy assessment we are confident that our results provide 
insights into the forest loss dynamics in the Upper Guinea Forest.  

Lastly, we found areas of forest loss that followed the boundaries of some protected areas but from 
several hundreds of meters withing the protected areas which may have resulted in commission 
and omission errors in our analysis. This could be due to errors in the boundaries reported by UNEP-
WCMC & IUCN (2020), or by people deliberately leaving buffer areas to camouflage illegal activities 
inside the protected areas. We did not modify the boundaries of any protected areas and these 
causes should be further investigated. 
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