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Abstract: Road scene understanding, as a field of research, has attracted increasing attention in
recent years. The development of road scene understanding capabilities that are applicable to real-
world road scenarios has seen numerous complications. This has largely been due to the cost and
complexity of achieving human-level scene understanding, at which successful segmentation of road
scene elements can be achieved with a mean intersection over union score close to 1.0. There is a need
for more of a unified approach to road scene segmentation for use in self-driving systems. Previous
works have demonstrated how deep learning methods can be combined to improve the segmentation
and perception performance of road scene understanding systems. This paper proposes a novel
segmentation system that uses fully connected networks, attention mechanisms, and multiple-input
data stream fusion to improve segmentation performance. Results show comparable performance
compared to previous works, with a mean intersection over union of 87.4% on the Cityscapes dataset.

Keywords: scene segmentation; self-driving; dual attention mechanisms; road scene understanding;
data fusion

1. Introduction

Road scene understanding, as a field of research, has attracted increasing attention in
recent years due to advancements in technology that provide hardware and software that
are increasingly capable of executing resource-intensive tasks and because such systems
are easy to install for various applications, resulting in improvements in accessibility,
performance, and affordability. Another factor contributing to the technological and market
push for better advanced driver assistance systems (ADAS) and advanced driving systems
(ADS) has been the motivation to significantly improve road safety. It has been observed
that distracted driving behaviour can significantly increase the chances of accidents, with a
direct correlation with road accident statistics [1,2].

However, the development of road scene understanding capabilities has seen numer-
ous complications as reported in various works [3–6]. This has largely been due to the cost
and complexity of achieving human-level scene understanding. These systems may take
many different forms and inspirations from other fields of engineering and science, but
ultrasonic, RADAR, LiDAR, and camera sensors have been commonly utilised to solve the
challenges of road scene understanding [7–9].

Almost all road scene understanding systems share a fundamental initial task that
has been deemed as crucial for performing accurate road scene analysis. This is called the
perception step and pertains to the ability of a system to sense or perceive its environment
of operation [10]. Therefore, road scene understanding systems must be reliable and
consistent, failing which unnecessary safety risks might be introduced by these systems,
which would defeat the purpose of such implementations, i.e., dangerous driving decisions,
undetected road scene hazards, or failure to comply with road laws and regulations.

Some factors affecting perception accuracy, reliability and scalability of ADS and
ADAS are often attributed to environmental factors. These systems frequently operate
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under highly dynamic conditions such, as at different times of day and under varying
weather conditions, illumination angles, and especially traffic conditions. Computer-vision-
based systems are notorious for becoming very unreliable in adverse weather conditions.
LiDAR specifically struggles when utilised in snowy driving scenarios, where too much
snow may obscure certain road features from the LiDAR sensor [7,8,11]. This is due to the
high reflectivity of snow. Camera-based ADS and ADAS have seen a surge in popularity,
mostly due to new techniques and methodologies that allow such implementations to
negate some disadvantages of other sensor hardware. This indicates that road scene
understanding systems are becoming cheaper to implement, as in some instances, cameras
can replace very expensive LiDAR equipment. Market trends have also contributed, with
the continual success of automotive tech companies such as Tesla and Comma AI.

Popular approaches reported in previous works can be categorised into a few high-
level groups: (i) object recognition and localisation, (ii) segmentation, and (iii) end-to-end
learning. Some studies have even opted to combine certain aspects of these approaches.
Object recognition refers to a classification process that strives to classify or group images or
features into distinct categories. Depending on the use case, object recognition can be used
to classify road-scene-specific objects for various uses. It is well known that not all elements
of a driving scene require the same degree of attention. Therefore, by classifying different
entities in a scene, they can each be processed accordingly and much more efficiently—
compared to processing everything in a scene the same manner. Object localisation has
often been added to recognition pipelines and refers to the process of locating features in
the image space relative to other features in the same space [12]. This has provided ADAS
and ADS with the ability to not only sense object types but also where they are in relation
to other objects [13]. Improved object avoidance, path planning, and object prioritisation
are some of the most notable improvements introduced by these systems [13–15]. Classical
object detection systems have utilised sliding window techniques [16].

This paper proposes a more unified road scene segmentation system that utilises a
combined approach to road scene segmentation. Several segmentation techniques and
related works are discussed in this paper, and the proposed system is described. This system
strives to improve road scene understanding by combining these techniques. Specifically,
multi-input stream data fusion, trainable upscaling, and a dual attention module are
combined with a fully connected network (FCN) backbone architecture. A custom loss
function is also implemented to optimise for mean intersection over union (mIoU), which
is a common segmentation metric used in related works.

2. Related Works

Various studies have emphasised the benefits of breaking the scene analysis problem
into smaller subsystems that each focus on different feature types [12,17]. Some studies
have proposed the utilisation of stereoscopic imagery to create depth image information
via the use of occupancy disparity maps. This allows for such systems to perform obstacle
detection based on generated depth information [9,13]. Similar to many other road scene
analysis systems, these systems also utilise information obtained from various pieces of
sensor hardware. They create occupancy disparity maps that, when overlaid with the
original RGB images, can provide probabilities of how far away various objects are from
the vehicle [9].

Computer-vision-based systems have often been compared to human vision, since how
humans perceive different road scenes and traffic scenarios can be considered one of our best
benchmarks with which to compare the performance of these systems. Humans have an
innate ability to process specific visual cues very efficiently and very effectively. However,
Computer-vision-based systems often have to infer the same information from video
streams and other low-level sensors. This has led to the identification of the semantic gap
that was proposed in [18]. The semantic gap was derived from the problem of autonomous
vehicles having to process spatial, spectral, and temporal information at a sufficient level.
As a result classification, systems are impacted more by this matter, as finer classifications
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are required. However, various studies have proposed methods to overcome this problem
by using variations of data fusion [13,17–19].

Scene segmentation is a form of classification implemented on a per-pixel level [20].
This classification technique has allowed various implementations to extract higher-level
features from different driving scenes [18,21,22], meaning that each pixel in a given image
space was classified into road-scene-specific classes.

Various scene segmentation techniques have been proposed, and some perform better
than others when applied to road scene analysis applications. Some have utilised colour
space information (RGB) captured from road scene images. Colour-based implementations
typically perform mathematical preprocessing on the colour space of input images, such
as progressive image smoothing. Tarel and Bigorgne [23] proposed a growing algorithm
that takes certain regions of the image space that are known to be road surface regions as
initialisation seeds.

Scene segmentation has been shown to be possible using RGB images, edge maps, and
texture-based information. These methods often suffer from unreliable performance when
used in real-world scenarios [18,24,25]. Deep learning, in particular, has been involved in
extensive contributions in this research space [3,7,8,20–22,26–29].

The creation of a more unified ADS or ADAS has been described by some as being a
very difficult problem [17]. However, a few studies have proposed unification strategies
that have shown promise in terms of building more unified road scene understanding
systems [4,18,28,30,31]. One study, in particular, managed to merge two basic input types
using a fully connected network (FCN) backbone architecture. The s-FCN-loc system was
proposed in [27]. This proposed system utilises both RGB colour images and channel-
duplicated contour images. Not only does the s-FCN-loc system utilise a unique parameter-
sharing concept, but it also includes the use of a pregenerated location prior map [27],
allowing the system to minimise computational complexity and to learn combined features
from all channel elements. Contour images are created from the RGB images using a
pretrained model based on structured forests [27].

In pursuit of even more unified ADS and ADAS, several studies have proposed “black-
box” systems that utilise end-to-end learning [20,31–34]. End-to-end learning often refers
to the process of learning a direct mapping between input vectors and end-goal output
vectors [33]. These systems often have direct driving control processing added to their
processing pipelines, meaning that they can achieve some degree of autonomous driving
directly based on raw camera inputs. However, some authors have noted that further
research is required to improve and better measure the robustness of such a convolutional
neural network (CNN) system. The main difference between end-to-end learning systems
and other scene understanding methods is required training techniques. Behavioural
cloning requires a strict balance between wanted and unwanted training samples.

End-to-end learning models can be implemented in a very efficient manner, but
what they lack in computational complexity, they make up for in training complexity.
Due to the nature of these systems, they often act like black-box models, which makes
monitoring their training parameters very difficult. Most performance monitoring can only
be done on the input and output sides of these models, meaning that researchers cannot
easily peek inside the model to better observe how it finds mappings between inputs and
outputs. Overall model performance can be increased by scaling up to larger and deeper
models, but this would also correspond to an immense increase in the number of required
training samples. It would also make calculating how the model works at various stages
computationally expensive [5,20,31–34]. All of the factors mentioned above result in a
model that is computationally cheap to run but very expensive to train.

Although most of the sources mentioned thus far proposed road scene understanding
techniques and methodologies that can be categorised into broad groups, some have pro-
posed techniques that differ considerably from conventional techniques in these research
areas [35]. Han et al. proposed two systems that based on generative adversarial networks
(GANs) [35]. These systems function on the basis that one network generates data samples
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and another network classifies those samples in terms of whether they belong to a specific
subset. From a high-level perspective, GANs operate using competing algorithmic func-
tions, where one network learns to create better fake samples, and the other network, in
turn, learns to better distinguish fakes from legitimate samples. This results in a weakly
supervised training approach in which models can be trained with less manual interven-
tion and labelling [35]. The main motivation for this approach is to lessen the inherent
dependencies of FCN models on strict, manually labelled datasets.

Another source took a less conventional approach to object detection and classification
using a 3D CNN architecture. The utilisation of stereoscopic depth images and RGB
colour images allowed researchers [36] to create volumetric point cloud representations of
objects. Each pixel was projected into a 3D matrix space, referred to as a volumetric pixel
or voxel. The main disadvantage of an approach such as this was found to be the efficiency
and increased computational complexity of processing 3D CNN models. Although this
approach may be beneficial for obstacle detection, it might hinder overall ADAS or ADS
performance. Therefore, this method was deemed unsuitable for more unified road scene
understanding systems.

As previously discussed, road scene understanding systems frequently utilise some
form of computer vision or machine learning approach, implying a heavy dependency on
large training data and training algorithms. However, numerous sources have investigated
improved training techniques [6,21,22,37–39]. The author of various studies have noted that
their results may have been negatively impacted by not having access to adequate datasets.
When such systems are not trained on an adequate number of training samples, they often
fail to infer critical features from smaller dataset, resulting in scene understanding models
that do not perform optimally or perform incorrectly in some cases. However, among
studies that opted to use existing datasets, some were found to be more popular for road
scene understanding than others. Some of the more popular datasets are the Cityscapes
dataset [21], the KITTI dataset [39], and the CamVid dataset [40].

Following this trend, other sources have also proposed various synthetic dataset
creation techniques in which simulators or virtual renderings are used to create semire-
alistic driving scenarios and environments. Simulators such as Cognata deep learning
autonomous simulation, Udacity self-driving car sim, Microsoft AirSim, and CARLA are
popular dataset creation tools in road scene understanding research [41–44]. Not only have
these tools provided more efficient ground truth generation, but they provided also given
researchers with much more control over the driving scene.

3. Materials and Methods

This section describes the design details, materials, and methods for the unified road
scene segmentation system proposed in this study. This system consists of several design
aspects that have been used in related works. These design aspects include an FCN
backbone network, dual attention modules for latent space attention, trainable upscaling
using fractionally strided convolution blocks, skip connections for detailed feature retention,
structured forests for efficient edge detection, stereoscopic depth detection, and multi-input
data fusion. These design aspects, which are combined in a novel manner, contribute
to a more unified road scene segmentation system, achieving competitive road scene
segmentation performance, as presented in Section 4.

By utilising multiple input data types (RGB, contour, and stereoscopic depth), the
proposed segmentation system may learn more complex features as a result of considering
multimodal input data. Utilising an FCN backbone network, the encoder section of the
backbone encodes the input data streams into latent space features. A dual attention
mechanism then learns contextual focus from these latent space features, allowing the
system to capture features in the latent space that would otherwise be outside of the
scope of the receptive field of FCN kernels. The spatial attention module captures spatial
features based on their locality on each latent feature map, while the channel attention
module captures features between latent feature maps. The sum of the attention features
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is then passed to the decoder section of the backbone for upscaling and recomposition
into a segmented road scene image. Skip connections offer detail retention and minimise
the vanishing gradient effect that occurs as a result of feature downscaling operations.
Explanations of each of these system design aspects are presented in subsequent sections
of this paper, with more detail on their implementation and application.

3.1. FCN Backbone Architecture

An FCN architecture was chosen as the backbone of the road scene segmentation
system because of how popular such architectures have been in similar systems, providing
the ability to process various image sizes much more efficiently by condensing feature
maps into lower-dimensional states. Such architectures perform the bulk of their processing
before scaling each feature map back up to a specified dimensionality. This also means
that they have the ability to output images larger or smaller than the original input images.
However, additional learning effort is required for autoencoders to learn how to accurately
scale images to extreme sizes. Figure 1 illustrates the backbone FCN architecture that was
used in the design of the proposed road scene segmentation system.

Figure 1. FCN architecture that was chosen as the backbone for the implemented road scene segmen-
tation system.

The depiction of the FCN architecture in Figure 1 clearly shows the encoder and
decoder segments of the network. The encoder portion encodes various features into
deeper channel-wise feature maps as pooling layers (at the origin of the dotted arrows)
condense spatial dimensions. However, the decoder portion utilises fractionally strided
convolutional layers, which iteratively expand the condensed feature maps into their
original image resolution. The output of this architecture has dimensions of H × W × N,
where H, W, and N are the height, width, and number of classes, respectively. This provides
the decoder section with a trainable way to upscale feature maps, which is similar to how
trainable pooling layers are achieved.

3.2. Skip Connections

The FCN backbone architecture illustrated in Figure 1 also demonstrates the per-
sistence of skip connections between layers. These connections are denoted by arrows
pointing from specific sections in the architecture to others to show the flow of information
through the network. The use of skip connections in the network was inspired by multiple
sources, such as [31,45,46], which emphasise the need to preserve spatial information from
earlier layers in the architecture.

Pooling operations are largely to blame for the vanishing gradient effects observed in
many deep learning models. They downscale layer outputs to smaller sizes, and in doing
so, they lose some information. In some research fields, such as computer vision, higher-
resolution imagery has often led to greater performance gains from deep learning models,
although without entirely compensating for the negative effects of pooling operations.
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3.3. Additional Input Data Streams

The road scene segmentation system developed for this study was adapted to utilise
multiple input data streams. The concept of multiple input data sources for deep learning
models has been covered in several sources. The main inspiration to add this feature for
road scene segmentation is presented in [27]. It was observed from various sources that
some of the most difficult regions in a scene to segment are the boundaries between two
segmentation zones. These regions consist of pixel data that show transitional information
from one object class to another, and sometimes three or more classes meet at these junction
points of image space. In these specific cases, the ground truth labels comprise those pixels
assigned to their correct classes. However, because the edge pixels are so close to other class
labels, deep learning models often struggle to place them in their correct class groupings.
The aforementioned skip connections actively help to improve deep learning performance
in this regard. Another effective approach to improve boundary performance was proposed
in [27], i.e., the use of contour data (sometimes referred to as edge data).

The proposed system utilised a pretrained structured forest model to generate contour
images from a given RGB image, similar to the model used in [27], and was found to be
effective at highlighting outer boundaries instead of textured edges found within objects,
as illustrated in Figure 2.

(a) (b)
Figure 2. Contour map representation created using a pretrained structured forest model and
equivalent RGB input source. (a) RGB input image. (b) Converted contour map.

The use of structured forests for fast and efficient edge detection in the s-FCN-loc
system was inspired by [47]. The process of converting RGB or RGB-D images into semantic
contour maps—similar to that shown in Figure 2—functions by utilising random decision
trees. However, because these random decision trees are complex to train in this fashion,
the authors opted to aggregate several decision trees into an ensemble model (structured
forests).

Depth map images is another input data type implemented in the proposed system,
meaning that the system utilises a total of three input data streams alongside the aforemen-
tioned RGB images and contour maps. Depth map images can be created from stereoscopic
camera systems that combine two captured perspectives and produce an image with con-
textual depth information. This data type can often be produced alongside standard RGB
images, with data typically referred to as RGB-D images. However, for this implementation,
the choice was made to process depth data separately in a different network pipeline. The
main inspiration to include this data type came from [48,49], both of which showed that
by utilising contextual depth information, road scene segmentation performance can be
improved.

Figure 3 shows the input sections of the proposed system architecture, where each of
the aforementioned data types is represented as input to its independent convolutional
pipeline. It is worth noting that the output from each batch normalisation (BN) operation
was summed with the skip connections, as illustrated by dashed arrows. The resulting
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output feature maps of this input module were fed to the decoder segments in the network
as skip connections. They were also fed to the second stage of the encoder.

Figure 3. First three convolution blocks, illustrating the input data streams of the network architecture.

Figure 3 shows that the RGB and contour images are concatenated before entering a
separate processing line from the depth images. This implementation decision was inspired
by the s-FCN-loc system reported in [27]. Sharing a processing line of convolutional
layers provides a form of weight sharing between network input images and allows
elements of one data type to influence the feature extraction process of the other. Since
the information contents of RGB and contour data are similar in nature, these data types
were grouped together in this way. Depth data do not contain colour or object boundary
information. Instead, they convey information about object distances, already representing
a higher-dimensional data type. Therefore, we decided to include decided a dedicated
processing line of convolutional layers. Additionally, grouping two or more of the input
data streams improves model efficiency, as large-scale convolution blocks are not necessary
for each input.

The following stage of the encoder architecture consists of two pooling segments,
which reduce the dimensionality of the feature maps and contain more convolutional
blocks, as seen in the input module. The purpose of this module in the network architecture
is to extract high-dimensional features and condense the resolution of the feature maps
to more manageable sizes. Each pooling operation is followed by four or six convolution
blocks. Figure 4 shows this section of the network architecture.

Figure 4. Module architecture for the second stage of the encoder network. Smart pooling refers to
the previously discussed trainable downscaling method, and resolution sizes are clearly illustrated.
Similar to the input module shown in Figure 3, each skip connection connects to the next repeating
BN block.

The feature maps from each smart pooling block in Figure 4 are also fed to the decoder
module of the segmentation network, retaining fine-grained information when the decoder
module upscales the segmentation maps created from deep features.

3.4. Attention Modules

Self-attention modules have been around for a while, but they have seen an increase
in popularity for use in computer vision in recent years [50]. These modules are good at
extracting deep contextual features, and they are good at handling long-range dependencies.
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The authors of [50] proposed a dual attention network that utilises two attention modules
in parallel. This idea was adopted and combined with previous approaches to create an
improved road scene segmentation system. Subsequent attention modules operate on
the basis of feature maps from the encoder network modules but further downscaled to
1/8 resolution.

3.4.1. Spatial Attention Module

The spatial attention module creates a contextual mapping between any two pixels in
the feature map space. Therefore, it allows data outside the receptive fields of convolution
layers to influence the classification labels of those within. The computational flow of this
module is represented in Figure 5.

Figure 5. Spatial attention module computation flow. Adapted from [50], © 2019 IEEE.

To obtain position features, the attention module shown in Figure 5 passes the input
feature maps through 3 independent convolutional layers labelled B, C, and D. This takes
advantage of the receptive fields of these convolution operations. Next, each of the resulting
feature maps is reshaped, and matrix multiplication is applied to create a position map
similar that presented in [50]. A softmax activation is then applied to this position map to
create partial classification labels (S) at each position in this matrix. The softmax activation
is calculated as

sji =
e(BiCj)

∑N
i=1 e(BiCj)

(1)

for each element of S; the values are functions of matrices B and C. An intermediate matrix
was generated from the matrix multiplication between convolution D and the activated
position map (S) so as to apply these activations to the rest of the model. Finally, the
output feature map (E) was generated after multiplying a trainable parameter (α) by the
intermediate matrix, followed by an element-wise summation between the original input
feature map and the intermediate matrix. This resulted in the output of this module being
a weighted sum of features, where α is made trainable to weigh features accordingly [50].
This is calculated as

Ej = α
N

∑
i=1

(sjiDi) + Aj (2)

It is worth noting that the generated position map adopts dimensions of N × N, where
N is the product of the height and width dimensions of the original input feature map. The
depth dimension was processed in parallel using the channel attention module.



Sensors 2023, 23, 7355 9 of 23

3.4.2. Channel Attention Module

The channel attention module used in this system was also obtained from [50]. The
spatial attention module computes positional context between features, but the channel
attention module creates a contextual mapping between different filters or feature channels.
The computational flow for this module is shown in Figure 6.

Figure 6. Channel attention module computation flow. Adapted from [50], © 2019 IEEE.

Both attention modules compute their output feature maps similarly, with some
differences closer to the input side of each module. Whereas the spatial attention module
passes the module input through a set of convolution layers, the channel attention module
does not in order to conserve inter-feature relationships in the depth dimension [50]. The
second difference is with respect to the calculation of matrix X in Figure 6. X can be
computed as follows

xji =
e(Ai Aj)

∑N
i=1 e(Ai Aj)

(3)

The softmax operation for X is the same as for S, as shown in Figure 5. However, to
calculate X, the softmax only works with matrix A and AT , resulting in a channel map with
dimensions of C × C. The output of the channel attention module is calculated as

Kj = β
N

∑
i=1

(xji Ai) + Aj (4)

Similarities with (2) should be noted. Again, a trainable parameter (β) was imple-
mented to ensure that the output K was the weighted sum of channel features.

3.5. Decoder and Auxiliary Decoder Modules

In this implementation, the decoder section of the FCN backbone consisted of three
stages. Each stage doubles the resolution it receives and uses a fractionally strided convolu-
tion layer to do so. After every convolution layer, a PReLU layer is utilised as the activation
function. This gives this module the capacity to find learnable scaling solutions instead of
relying on non-trainable bilinear upscaling. Figure 7 illustrates the scaling layers for each
decoder block.

Figure 7. Single-decoder module block that utilises both fractionally strided convolution (TConv)
and bilinear upsampling (BiLinUp). Skip X represents the incoming skip connection from earlier
modules in the system architecture, and H × W × C represent the dimensions of the feature maps.
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The proposed network architecture utilises three of these stages, as shown in Figure 8.
The final module used in the proposed system is the auxiliary decoder module (depicted
as Aux Decoder in Figure 9). This module is a simplified version of the main decoder
module in order to conserve computational complexity. It serves no purpose other than
to provide an additional auxiliary loss calculation for the training of the system. Not only
does an auxiliary loss aid in counteracting the effects of vanishing gradients, but it also
creates additional complexity for the encoder modules to process. This provides a form of
training focus to the network when the encoder modules are being trained, which improves
the network’s ability to perform segmentation-rich feature extraction, as well as training
stability.

Figure 8. High-level overview of decoder module stages. Each stage uses fractionally strided
convolutional layers to upscale the input feature maps at that stage. These layers are then succeeded
by PReLU activation layers. H × W × C represent the dimensions of the feature maps.

Figure 9. High-level overview of the final road scene segmentation system architecture. H × W × C
represent the dimensions of the feature maps.

3.6. Final System Overview

An overview of the final road scene segmentation system is shown in Figure 9. This is
a high-level depiction of how each component from previous sections is connected to form
the final system architecture.

3.7. Model Training

Several iterations of the proposed road scene segmentation system were implemented
and tested. This was done to ensure adequate understanding of the underlying concepts
and to ensure that each design parameter was understood in practice as well as in theory.
Due to the expensive nature of deep learning models, especially CNN-based architectures,
that process image data, powerful hardware was required to effectively train these models.
Input image dimensions and model hyperparameters were chosen to fit within available
computational resources.
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The development machine had the following specifications and was used as the
primary training machine for this study (equipment was sourced in the city of Pretoria,
South Africa):

• CPU: Intel Core i7 8700K;
• GPU: ASUS ROG STRIX OC 11 GB RTX 2080 Ti;
• RAM: 32 GB Corsair Vengeance 3000 MHz memory;
• Motherboard: MSI Z370 GAMING PRO CARBON AC;
• PSU: Templarius 850 W;
• Storage: 480 GB Kingston solid-state drive.

The proposed road scene segmentation system was implemented using the Python
language, along with various other Python library modules, among which Tensorflow and
Keras were used extensively throughout this study. The following module versions were
used for this development environment.

• Python 3.7;
• PyCharm Community Edition IDE;
• Tensorflow 2.5.0;
• Keras 2.5.0;
• OpenCV 4.5.5.62;
• Pillow 9.0.1;
• Matplotlib 3.5.1;
• NVIDIA Graphics Driver 516.94;
• NVIDIA GPU Computing Toolkit 11.0;
• NVIDIA cuDNN 11.0.

3.8. Dataset Creation and Preprocessing

For this implementation, it was decided to use the CARLA simulator for data collection
purposes and to create a custom dataset with which to compare Cityscapes performance
results to those reported in [44]. This allowed for much finer control over environmental
conditions in driving scenarios. The final dataset contained nearly 13,000 training sam-
ples (13 classes). Each sample is accompanied by pixel-accurate ground truth annotations
autogenerated by the simulator. The proposed road scene segmentation system was im-
plemented and tested under clear daytime driving conditions only, as adverse weather
condition testing was beyond the scope of this research. This dataset was manually created
purely from the described simulation environment. It does not include any image samples
from the Cityscapes dataset, as it is a secondary dataset separate from the CARLA simu-
lator dataset. Both were independently used to train their own version of the proposed
segmentation system, allowing comparisons to made in Section 4.

Each sample and its corresponding depth and ground truth images were scaled
to various resolutions in order to test the effects that resolution scaling had on various
performance aspects of the proposed system. Before training was initiated for each iteration,
the dataset was randomly shuffled, and an 80/20 split was implemented for training and
validation samples, respectively. RGB samples were used to generate contour maps before
training because this was a simple way to speed up the whole training process. Ground
truth images had to be converted into one-hot encoded matrices to train the model. Finally,
the dataset was standardised to achieve zero mean and unity variance across the training
data samples. For this study, model inputs were set to a resolution of 224 × 112. This
resolution was experimentally estimated to be large enough to test the viability of different
models but also small enough to not run out of system memory.

It was also observed that not all road-scene-specific classes occur in every scene,
causing unbalanced class distributions. To compensate for this, class weighting and label
smoothing were implemented during the training process of the proposed system.
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3.9. Training Cost and Evaluation

The final operation in the proposed system architecture was a softmax layer that
classified each pixel in each output feature map into one of the 13 predetermined object
classes (20 for the Cityscapes dataset). It is widely accepted by various sources that the
most popular cost function for multiclass classification problems is the use of categorical
cross-entropy loss. Cross entropy with softmax substitution is calculated as

H = − log

(
esp

∑C
j esj

)
(5)

where H is the cross entropy, sp is the feature map value, C is the represented classes in the
classification distribution, and sj is the classification obtained by the softmax operation [51].
Equation (5) is a simplified expression that is commonly referred to as softmax loss, as it
already contains terms imposed by the softmax operation before the cross-entropy loss
calculation [51,52]. The motivation for using this specific loss function follows the close
relationship between cross entropy and the Kullback–Leibler (KL) divergence theorem,
which states that a certain probability distribution may be expected from any two separate
probability distributions over the same random variable. This allows the uniqueness to be
calculated between these two distributions; when one distribution is replaced with that of
the ground truth label set, the predicted distributions can be assessed [52].

A second loss function was also investigated. This loss function works by directly
minimising the intersection over union (IoU) error generated as a result of mismatching
class masks. Referred to as IoU-loss in this study, this cost function computes the overlap
error between ground truth and predicted pixel regions. This loss function more directly
improved the segmentation capabilities of the proposed models, since it provides error
correction for the exact metric that needs to be optimised. IoU-loss is not yet a very well-
known or frequently used cost function for segmentation systems. However, it has been
gaining popularity as simple way to boost segmentation performance over cross entropy.
Cross-entropy-based cost functions have a tendency to focus on the classification of each
individual pixel into their respective class. However, IoU loss provides more flexibility
for edge pixels that reside on the border regions between multiple other classes, allowing
a small number of edge pixels to be incorrectly classified in exchange for allowing fewer
errors to occur inside a class mask where no other classes are present. This is often a much
more desirable outcome in road scene segmentation systems in which a tradeoff between
these two situations needs to be made. IoU can be calculated as

IoU =

(
YtYp

Yt + Yp − (YtYp)

)
(6)

where Yt represents the true labels, and Yp represents the predicted labels. This calculates
the global IoU for all classes. The error function is simply normalised to IoUloss = 1 − IoU.
Finally, the cost function that was utilised to train the final versions of the road scene seg-
mentation model used both functions, and a weighting between them was experimentally
obtained. The final loss function is expressed as

L = 1 −
(

YtYp

Yt + Yp − (YtYp)

)
− 0.1 log

(
esp

∑C
j esj

)
(7)

4. Results

In this section, the proposed road scene segmentation system is evaluated using the
Cityscapes dataset and the CARLA dataset.
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4.1. Model Performance

Figure 10 shows the results obtained by training multiple versions of the proposed
segmentation model. For each of the training iterations, a different configuration of the
model was used. To evaluate the effects of adding additional data streams to the model, a
training iteration was executed for every permutation of input data. In Figure 10, the line
graphs labelled as “condep”, “rgbcon”, “rgbdep”, “rgb”, “con”, and “dep” represent the
model configurations with no RGB data, no depth data, and no contour data; only RGB
data; only contour data; and only depth data, respectively. Similarly, “shared” refers to a
model configuration that uses the same encoder block for both RGB and contour input data,
effectively sharing the network weights between the two input streams. This was inspired
by the s-FCN-loc system as an efficiency improvement [27]. The “smth_w” plot refers to
a data configuration where the standard proposed model was trained on 10% smoothed
ground truth labels and suppressed class weighting was applied. Finally, “noatt” refers to
a model configuration with no attention module blocks.

The proposed approach allows for the evaluation and comparison of these different
model configurations. It is clear that some configurations performed significantly better
than others in terms of accuracy and mIoU, while, at the same time, logging lower loss
values, as each model was trained for more epochs. Prior experiments have shown that
these training runs do not yield results than those obtained by training for more epochs.
Longer training times may be beneficial for production versions of such a system but
would not be useful for comparisons within the scope of this research. It should also be
noted that no double-descent behaviour was observed during longer training runs. This
reinforces that longer training iterations would not be very useful, likely due to the way
the Adam optimiser works. Therefore, all training was set to only run for 100 epochs. The
best-performing epoch would provide the weights for that specific model.

Figure 10c shows the mIoU of each training iteration, which is considered the metric
that is most indicative of segmentation performance. It is clear from these training iterations
that the proposed attention modules provided significant performance benefits compared
to autoencoder models with no attention module. In this case, the mIoU increased from
70.8% to 87.4%.

Dual attention mechanisms offer feature aggregation of long-range dependencies in
images and in the latent features of the network [50]. Since two attention mechanisms were
proposed for the design of this system, spatial and channel-wise features could be analysed
to correlate features that aid in road scene segmentation. The benefit of this is that the
proposed system may exploit related features that are farther apart than the receptive field
of the convolutional layers of the system. The specific operation of each attention module
is explained in Section 3.4.

Similar improvements in mIoU were observed when comparing the smoothed and
weighted model iteration with the weight-sharing iteration. The weight-sharing training
iteration was the only model configuration that showed noticeable degradation of per-
formance the longer it was allowed to train. Since this behaviour was only observed in
validation data and not in training data, it can be concluded that this model configuration
suffers more from overtraining/overfitting than other configurations.

A surprising was how small the performance differences were between the proposed
smth_w model configuration and the rgbdep model configuration. It was clear from
this result that contour data do not necessarily add that much additional information
to the system, which aids it in performing effective scene segmentation on Cityscapes
data. Overall, the RGB input data stream provided the most useful data to perform scene
segmentation tasks. This is evident when observing that training and model configurations
that include RGB data are often the top performers in these test results. This observation
is expected, as the intuition behind computer vision segmentation systems is to mimic
human cognition and understanding of driving scenes. Visual information is the main
sense humans use to perceive dynamic environments such as these.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Performance graphs for the proposed scene segmentation system logged over 100 epochs
of training. The total validation loss, validation accuracy, and validation mIoU are shown for
Figures (a–c), respectively. Similarly, training loss, training accuracy, and training mIoU are shown for
Figures (d–f), respectively. (a) Total validation loss as the sum of the decoder loss and the auxiliary
decoder loss. (b) Validation accuracy calculated for each predicted pixel. (c) Mean intersection over
union based on validation data. (d) Total training loss as the sum of the decoder loss and the auxiliary
decoder loss. (e) Training accuracy calculated for each predicted pixel. (f) Mean intersection over
union calculated over the training dataset.
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Table 1 presents the classification performance indicators for each of the model con-
figurations. Precision, recall, and F1 score relate to the classification power of each model.
This means that these performance indicators only convey information on how well each
model can classify a pixel in an image to belong to a specific class. They do not convey
information on the spatial or channel locality of the pixel being classified. This is why mIoU
has been so popular in this research space, as it is directly affected by pixel locality and
predicted classification. It can be observed that some models have very similar precision,
recall, or F1-score values; however, their mIoU values can differ significantly for this reason.
If a high number of pixels is being classified correctly but located outside the main area for
that specific class, higher classification scores and lower mIoU scores may result.

Table 1. Model training configuration performance indicators. Averaged precision, recall, F1 score,
and mean IoU are tabulated along with results from related works to compare mIoU scores.

Configuration Precision Recall F1-Score Support (Pixels) Mean IoU

smth_w 0.677 0.641 0.654 25,088,000 0.874
shared 0.530 0.406 0.421 25,088,000 0.790
condep 0.614 0.563 0.578 25,088,000 0.830
rgbcon 0.617 0.575 0.587 25,088,000 0.856
rgbdep 0.691 0.619 0.642 25,088,000 0.873

rgb 0.649 0.538 0.570 25,088,000 0.856
con 0.501 0.418 0.440 25,088,000 0.808
dep 0.524 0.466 0.481 25,088,000 0.810

noatt 0.674 0.625 0.645 25,088,000 0.708
DSNet [3] - - - - 0.718
PSPNet [6] - - - - 0.802

LDPNet [53] - - - - 0.711

Table 2 shows that the rgbdep and smth_w models similarly in some cases. The most
noticeable difference is that the smth_w model performed much better between different
classes than the rgbdep model. This interclass performance difference likely occurs because
of the added contour image data that forms part of the smth_w model architecture. The
improvements in class boundary regions allowed the proposed model to differentiate more
effectively between different classes in a driving scene.

4.2. Dataset Configuration and Comparisons

For these experiments, different dataset configurations were used. It was observed
that the specific configuration that yielded the best mIoU results continually required the
dataset with label smoothing and class weighting applied to it. However, Figure 11 shows
the distribution of each of the main classes contained in the Cityscapes dataset (20 classes).
This dataset possesses up to 34 classes. However, only 20 commonly used classes are
officially supported by the dataset maintainer, with more being added.

It should be noted from Figure 11 that a tempering factor of 100 was used to adjust
the class weights. Through experimentation, it was observed that using the full class
weights often had detrimental effects on the mIoU metric. To counter this effect, weights
were limited to a maximum of 100, which prevented the class weights from equalising
completely. It is hypothesised that this provides the training algorithm an opportunity to
evaluate which classes have a slightly higher priority than others. This is something not
as easily achieved when all classes are normalised to have the same weighting on the loss
calculations.
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Table 2. Mean IoU calculated for each class in the Cityscapes dataset using each of the created scene
segmentation models.

smth_w shared condep rgbcon rgbdep rgb con dep noatt

None 0.461 0.315 0.459 0.435 0.500 0.423 0.373 0.418 0.416
road 0.968 0.921 0.961 0.965 0.973 0.967 0.950 0.957 0.787

sidewalk 0.786 0.598 0.703 0.762 0.723 0.738 0.625 0.722 0.545
building 0.927 0.868 0.906 0.896 0.919 0.924 0.854 0.864 0.741

wall 0.448 0.257 0.332 0.317 0.400 0.234 0.128 0.171 0.347
fence 0.396 0.097 0.360 0.275 0.350 0.184 0.169 0.195 0.322
pole 0.447 0.172 0.476 0.401 0.521 0.353 0.232 0.311 0.437

traffic light 0.427 0.077 0.397 0.283 0.481 0.213 0.002 0.170 0.401
traffic sign 0.554 0.317 0.395 0.504 0.576 0.435 0.264 0.206 0.439
vegitation 0.920 0.866 0.883 0.917 0.907 0.904 0.871 0.782 0.747

terrain 0.600 0.531 0.466 0.601 0.594 0.583 0.300 0.291 0.472
sky 0.941 0.923 0.948 0.936 0.961 0.934 0.905 0.876 0.777

person 0.741 0.640 0.706 0.657 0.782 0.747 0.558 0.593 0.618
rider 0.414 0.002 0.383 0.380 0.227 0.270 0.161 0.234 0.329
car 0.918 0.811 0.909 0.900 0.925 0.897 0.869 0.879 0.758

truck 0.472 0.006 0.284 0.414 0.530 0.380 0.036 0.380 0.327
bus 0.686 0.083 0.333 0.373 0.525 0.332 0.076 0.410 0.430

train 0.350 0.006 0.391 0.154 0.369 0.126 0.114 0.234 0.211
motor-cycle 0.267 0.002 0.104 0.344 0.105 0.234 0.008 0.010 0.144

bicycle 0.583 0.036 0.372 0.570 0.522 0.453 0.372 0.200 0.491

(a) (b)

Figure 11. Illustration of Cityscapes normalised dataset distributions—both unweighted (a); and
weighted (b) with a a tempering factor of 100 to balance out the negative training effects of under-
represented classes.

Figure 12 illustrates the segmentation results for each model listed in Table 1. The
order of the segmented images correlates with the order in which they are listed in the table.
The same model was used to segment each image in each row. The first row of images
comprises the captured RGB images, and each image was randomly selected from the test
subset.

It can be seen from Figure 12 that each model manages to perform scene segmentation
of the given driving scene. The performance differences between these images are often
subtle, but the details can show how robustness and consistence of each of the models. Some
models struggle to keep large, solid regions that belong to the same class labelled correctly.
An example of this behaviour can be seen in the third row of images in Figure 12 (shared
model), as well as the second to last row (dep model). This can also be observed where
the car is not fully segmented to be the same colour of pixels. Similarly, the persistence
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of distant traffic signs and traffic lights is a good indicator of model performance, since
these objects often constitute small details that are difficult to preserve in autoencoder
segmentation models.

Figure 12. Segmentation results from each of the tested models on randomly selected validation data.
The rows correlate with the order listed in Table 1, with the first row representing the original RGB
images taken by the camera.

The proposed smth_w model achieved a maximum mIoU of 87.4% during experimen-
tation. This was higher than some of the previous mIoU scores that were achieved in other
published literature that also compared the mIoU scores of their model implementations
on the Cityscapes dataset. PSPNet yielded an 80.2% mIoU on the same dataset in 2017 [6].
In 2020, DSNet reported an mIoU score of 71.8% on Cityscapes data, which is lower than
that achieved in this report [3]. However, DSNet did not have nearly as many trainable
parameters as the model proposed in this research. It focused much more on inference
efficiency rather than accurate pixel classification. Similarly, LDPNet achieved a 71.1%
mIoU in 2020 [53]. Finally, looking at the benchmark section on the official Cityscapes
dataset hosting website at the time of writing, several anonymous mIoU reports show
that the latest research could be achieving around 85–87% mIoU. These reports are not yet
verifiable and should not be taken more seriously than a rough indicator of the expected
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mIoU scores that modern research could achieve. It should also be noted that the resolution
of the images that other systems work on can vary erratically. This could mean that a higher
mIoU score does not necessarily mean that a model performs better than another model
if the one with a higher score works on much lower-resolution data. Depending on how
the dataset was configured, lowering the resolution typically makes the segmentation task
easier for the model to perform. This was verified during experimentation.

4.3. CARLA Dataset Results

This dataset was created using the CARLA simulator and was also used to assess the
performance of the proposed scene segmentation system. The results are illustrated in
Figure 13.

(a) (b)

Figure 13. Performance graphs for the proposed scene segmentation system on the CARLA dataset
logged over 100 epochs of training. The validation accuracy (a), and the validation mIoU (b) are
presented as the main performance indicators.

The dataset distributions for the CARLA dataset are illustrated in Figure 14. This
shows that the CARLA dataset only has 13 classes, which is less than the 20 tested classes
from the Cityscapes dataset. Looking at the performance results in Figure 13, it is clear that
the CARLA dataset yielded higher scores for accuracy and mIoU than the typical scores for
the Cityscapes dataset. This was expected, as fewer classification classes typically makes
the segmentation task easier to accomplish.

The evaluated segmentation performance correlates closely between the two datasets.
The main observation when comparing these models on each dataset was that the CARLA
dataset was significantly easier to process for each of the models. This was due to two main
factors: the aforementioned lack of classification classes in the CARLA dataset and the
synthetic nature of the CARLA data itself. It was noticed that the CARLA dataset was not
as realistically generated as actual real-world data from the Cityscapes dataset; therefore,
the segmentation effort is much less on the less realistic synthetic dataset.
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(a) (b)

Figure 14. Illustration of custom CARLA-normalised dataset distributions–both unweighted (a)
and weighted (b) with a tempering factor of 100 to balance out the negative training effects of
under-represented classes.

5. Discussion

This paper proposes a more unified road scene segmentation system that strives to
encourage rich semantic feature extraction from driving scenes by combining specific
techniques found in related works. The main elements of the proposed system include the
use of an FCN backbone model architecture, skip connections, a multi-input fusion strategy,
parameter sharing, dual attention modules, and trainable upscaling. Together, this system
manages to perform road scene segmentation on image data from driving scene datasets.
The rest of this chapter discusses the obtained results.

5.1. Interpretation of Results

It was clear from the obtained results that additional input data streams had a no-
ticeable effect on segmentation performance. This has not only been verified in previous
works but also in this study. The RGB data stream was the most useful data stream that
the segmentation model could process, followed by the depth image data stream and the
contour image data stream. For any other permutation of the three input data streams, con-
tour data showed the least improvement relative to a baseline model with a single-stream
input architecture. Contour data seemed to only have been useful in very specific scenarios
and situations, and as expected, it only focused on boundary regions between different
classes. It was also observed that depth images were very useful additions to the proposed
scene segmentation system, and when combined with either of the other two data types,
segmentation performance increased.

Unbalanced classification classes was another factor affecting the model segmentation
performance. This is especially difficult to correct when the classes contained in the datasets
are very sparse. Large balancing weights can occasionally cause strange behaviour during
the training process of a deep learning model. This necessitated the tempering of the
balancing weights to ensure that they did not exceed a certain threshold. Significant
improvement in mIoU was observed when different segmentation models were trained
with class weighting applied versus when no class weighting was applied.

Label smoothing did not show system improvements overall. This was likely due
to the construction of the loss function. The total loss function for this study contains
terms that relate to the calculated IoU for each class. It was concluded that IoU-based
loss calculations do not benefit from label smoothing in the same manner as cross-entropy
loss calculations—if any benefit at all. Therefore, we recommend not applying label
smoothing techniques for future iterations of the proposed scene segmentation system,
instead applying class weighting strategies to compensate for class exposure bias.
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Based on the obtained results, it it clear that the addition of the proposed attention
module blocks resulted in significant mIoU improvements. Scene segmentation systems in
the existing literature have achieved workable segmentation results; however, the addition
of attention mechanisms was intended to supply a form of focus to the scene segmenta-
tion model.

It is concluded that the improvements observed in terms of the segmentation perfor-
mance of the proposed model were significant enough that attention mechanisms should
be included in similar future research. Depending on how these models are trained and
implemented, attention blocks or modules can add significant segmentation capabilities
at the cost of a larger model with more trainable parameters. This was partially verified
in [50], but in this paper, we applied these attention modules in a more unified architecture
alongside other segmentation strategies. This not only contributes to reaffirming the im-
provements to road scene segmentation performance that attention mechanisms may have
but also their versatility to operate as slot-in modules in different deep learning model
architectures.

5.2. Future Work

This research study primarily focused on road scene segmentation approaches that
can be unified to improve their scene perception capabilities. We did not extensively cover
other factors that influence scene segmentation performance. It was observed that model
design elements such as the number of trainable parameters, network depth, and input
resolution can all significantly affect segmentation performance.

Therefore, future work should focus on investigating the effects that these elements
can have on more unified road scene segmentation systems. Common practice between
previous studies, in terms of resolution testing, has not been extensively covered, which
made it difficult to draw adequate comparisons between different system implementations.
It is also known that the number of model parameters and their resolution have a direct
effect on model efficiency and inference speed. How they affect factors such as classification
accuracy and mIoU can still be investigated more thoroughly.

6. Conclusions

In this paper, we presented a novel road scene segmentation system that utilises
several existing scene segmentation techniques to improve mIoU performance. This system
was implemented with a more unified design than those found in related works, which
allowed for rich segmentation features to be extracted from driving scenes. The focus of
this paper was achieving competitive segmentation performance on well known datasets,
such as the Cityscapes dataset. The proposed system achieved an mIoU score of 87.4% on
the Cityscapes dataset, which is a comparable result to some of the latest reported results
from the Cityscapes website [21]. Research such as that presented in this paper is currently
contributing to the improvement of ADS and ADAS, thereby improving the safety of roads
for all road users.
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The following abbreviations are used in this manuscript:

ADAS Advanced driver assistance system
ADS Advanced Driving system
BN Batch normalisation
CNN Convolutional neural network
CPU Central processing unit
FCN Fully convolutional network
GAN General adversarial network
GPU Graphical processing unit
KL Kullback–Leibler
MDPI Multidisciplinary Digital Publishing Institute
mIoU Mean intersection over union
PReLU Parametric rectified linear unit
PSU Power supply unit
RAM Random access memory
ReLU Rectified linear unit
RGB Red, green, blue
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