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Abstract 

Purpose 

Industry decision makers often rely on a risk-based approach to perform inspection and 
maintenance planning. According to the Risk-Based Inspection and Maintenance Procedure 
project for the European industry, risk has two main components: probability of failure (PoF) 
and consequence of failure (CoF). As one of these risk drivers, a more accurate estimation of 
the PoF will contribute to a more accurate risk assessment. Current methods to estimate the 
PoF are either time-based or founded on expert judgement. This paper suggests an approach 
that incorporates the proportional hazards model (PHM), which is a statistical procedure to 
estimate the risk of failure for a component subject to condition monitoring, into the risk-based 
inspection (RBI) methodology, so that the PoF estimation is enhanced to optimize inspection 
policies. 

Design/methodology/approach 

To achieve the overall goal of this paper, a case study applying the PHM to determine the PoF 
for the real-time condition data component is discussed. Due to a lack of published data for 
risk assessment at this stage of the research, the case study considered here uses failure data 
obtained from the simple but readily available Intelligent Maintenance Systems bearing data, 
to illustrate the methodology. 

Findings 

The benefit of incorporating PHM into the RBI approach is that PHM uses real-time condition 
data, allowing dynamic decision-making on inspection and maintenance planning. An 
additional advantage of the PHM is that where traditional techniques might not give an accurate 
estimation of the remaining useful life to plan inspection, the PHM method has the ability to 
consider the condition as well as the age of the component. 
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Research limitations/implications 

This paper is proposing the development of an approach to incorporate the PHM into an RBI 
methodology using bearing data to illustrate the methodology. The CoF estimation is not 
addressed in this paper. 

Originality/value 

This paper presents the benefits related to the use of PHM as an approach to optimize the PoF 
estimation, which drives to the optimal risk assessment, in comparison to the time-based 
approach. 

Keyword: Risk based inspection (RBI), proportional hazard model (PHM), probability of 

failure (PoF), consequence of failure (CoF). 

 

1. Introduction 

Failure of pressure vessels presents a major risk to many industries and therefore the design 

and integrity management of pressure vessels are regulated through international codes and 

standards. Traditionally one of the principal integrity management measures prescribed by 

these standards has been to perform over-pressure testing at defined intervals during the life of 

a vessel, which ensures that defects which may exist and do not cause failure during such a test 

would safely propagate without reaching critical dimensions, before the next test is performed. 

Due to the cost of performing these tests, an alternative integrity management approach has 

been developed, which is called risk-based inspection (RBI). 

The RBI approach replaces regulatory over-pressure testing on pressure vessels with 

maintenance actions such as repair and replace based on inspection non-destructive testing 

(NDT) results. Because failure of pressure vessels can have catastrophic consequences, the 

inspection regime (where and when to do inspections) needs to be risk-based. 

The RBI approach is prescribed in industrial standards, such as the American API 580, for the 

petro-chemical industry and the European CWA 15740 standard for the power generation 

industry. This risk of failure of the pressure vessel is calculated as the product of CoF and PoF.  

Often, the CoF is a given and easy to define, but the PoF is more difficult and is the parameter 

which one wants to reduce through the implementation of the RBI regime. 

The standards define various ways (qualitative and quantitative) to estimate PoF. Quantitative 

methods are required for critical vessels and failure positions on such vessels. Preferably, the 
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quantitative method will be based on failure models, where the relationship between the 

inspection results (condition parameters) and remaining useful life is known. In cases where 

the failure model is not known or accurate, the next best practice would be to use failure 

statistical methods and to supplement this with Bayesian methods when data is scarce. Since 

RBI implies that inspections are performed and therefore that condition parameters will be 

available, it is argued in this paper that in these cases, a need exists for a PoF estimation method 

which uses both the statistical failure statistics, as well as the condition data, to estimate the 

PoF. 

A proportional hazards model (PHM) is proposed to serve this purpose. This model was 

originally developed in the health and medical sciences (Cox, 1972) but has now been in use 

in reliability engineering for a number of years (Vlok,1999). In this paper, the adoption of the 

PHM method for PoF estimation in RBI, is proposed and its application is demonstrated at the 

hand of a case study. With the application of PHM into RBI, the inspection decision is not only 

defined in terms of frequency and acceptability criteria, but the decision-making process 

becomes dynamic because real time condition data is used to update the PoF. 

In section 2 a review of the RBI approach is presented. Section 3 presents an overview of 

existing methods to estimate PoF in RBI. Section 4 addresses the proposed method to estimate 

PoF based on PHM. Then section 5 addresses a case study where the proposed approach is 

applied on bearings. The results and conclusions follow the case study. 

2. Risk Based Inspection 

Industry prefers risk-based approaches to schedule inspection and maintenance programs 

(Giribone & Valette, 2004). Risk based inspection is generally presented as an approach to 

prioritize and plan inspection. RBI has in the past been predominantly applied on pressure 

vessels. 

Risk assessment can generally be addressed as follows: 

 Qualitative or screening level (expert judgement) 

 Semi – Quantitative (rule based analysis) 

 Quantitative (probabilistic, statistical, mathematical modelling). 

The following sections address existing approaches to PoF modelling, based on the CWA 

15740 standard. This is similar to the API 580 approach. 
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2.1 Probability of failure estimation in the CWA methodology 

2.1.1 Qualitative assessment (Screening level) 

(Singh & Pretorius, 2017) describe the basic steps of the European methodology, which address 

the risk analysis on multiple levels, progressing from the initial screening step to a detailed 

quantitative assessment. 

During the screening stage, the assessment of risk consists of screening the components. The 

PoF estimation is performed by determining several specific criteria that could influence the 

PoF. 

The screening analysis is relatively fast, simple, and cost-effective. During screening, 

component risks are ranked using criteria like ‘high’, ‘medium’ and ‘low’ risk levels. After 

screening the components, semi quantitative analysis can be performed for components that 

fall into high and medium risk categories, while components in the low-risk category continue 

to be subjected to the required maintenance. 

The probability of failure at the screening stage is assessed by considering criteria such as: 

 The component ages. 

 Presence of degradation 

 Year of last inspection 

 Rate of degradation 

 Design concerns 

 Prior repairs of damage 

 Rate of degradation, etc. 

with each criterion having an associated weighting. The weight of each criterion is assigned 

according to the level of influence it has on the probability of causing failure. Furthermore, 

each criterion is scored relative to a qualitative measure of its influence on the component. 

To produce a precise probability of failure PoF, the score criterion expressed by 𝐶 is multiplied 

by the weighting of the criterion expressed by 𝑊. The sum of that product for different 

components is then multiplied by the generic failure frequency 𝐺𝐹𝐹, which is a factor used 

based on experience to identify failure frequencies of different components. 𝐺𝐹𝐹 is typically 

developed using expert judgement and history of components failure. 

PoF 𝐶1 𝑊1 𝐶2 𝑊2 𝐶3 𝑊3                 𝐺𝐹𝐹                                 (1) 
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2.1.2 Semi – Quantitative assessment (Level two risk assessment) 

Once the low risk components have been screened out as described in the previous paragraph, 

the high and medium risk components go to the semi-quantitative assessment (Narain Singh & 

Pretorius, 2017). 

The purpose of the level two PoF assessment is to determine the detailed factors that may affect 

the identified damage mechanisms for a given component. The generic failure frequency (𝐺𝐹𝐹) 

is once again used, but for this level, actual failure frequencies obtained from industry 

experience, are used where available. In instances where no industrial 𝐺𝐹𝐹 data is available, 

the RBI team will revert to the  𝐺𝐹𝐹 values that were used in previous 𝑃𝑜𝐹 determination. The 

level two risk calculation is performed in the same manner as the level one risk calculation. 

However, in the level two 𝑃𝑜𝐹 assessment the number of criteria for the component under 

analysis is greater than the previous assessment level. 

These criteria could be: 

 Component age 

 Total starts per year 

 Time since last inspection 

 Rate of degradation 

 Presence of hot spot 

 Nominal operating temperature 

 Corrosion susceptibility 

 Frequency of temperature excursions  

 Severity of temperature excursions 

 Design concerns 

2.1.3 Quantitative assessment (Level three risk assessment) 

The fully quantitative or detailed approach is essentially based on calculating the remaining 

useful life for the component under analysis. No further calculation is required when the 

calculation indicates that there is an acceptable period before failure. Otherwise even more 

detailed calculations are performed. 

In the CWA standard, the detailed risk assessment follows almost the same rules as in the 

screening level, although in greater detail. For most critical components, the CWA procedure 
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suggests more detailed analysis where the damage mechanism can be identified, and the 

degradation rate obtained. The PoF can then be estimated (Jovanovic, 2004). 

The quantitative methods for determining the PoF described above, can be divided into two 

discernible approaches. In the case where an accurate failure model is available and expected 

loading and environmental conditions are quantifiable, the life expectation for an identified 

failure mode is calculated. In this calculation, the ageing damage accumulation is estimated, 

and forms the basis of risk-based decisions in terms of inspection schedules. Such inspections 

monitor the damage parameters, such as crack sizes or corrosion damage and is essentially a 

condition monitoring activity. Depending on the observed damage found during these 

inspections compared to the failure model results, remaining useful life (RUL) calculations are 

performed to trigger repair/replace decisions, or updated future inspection schedules. This 

includes the case where RBI implementation is done on existing equipment, which would 

already have accumulated damage. Again, future inspection schedules are based on a calculated 

RUL, with a failure model being available and pre-existing damage parameters having been 

measured. 

In the case where an accurate failure model is not available, inspection schedules are based on 

historical or generic failure statistics, to estimate failure rates and probabilities. In this second 

approach, the inspections, or condition monitoring, are also aimed at finding damage (eg. 

cracking or corrosion damage), but since a failure model is not available to estimate a RUL, 

any indication of damage would typically lead to repair/replace actions. 

2.1.4 RUL and the P-F Curve  

The first quantitative approach for RBI described above, is essentially based on determining 

the RUL for the asset or component under analysis. The so-called P-F curve (Wiseman, Lin, 

Gurvitz, & Dundics, 2006) is one of the quantitative methods which could be used when 

condition parameters are be utilised to estimate the RUL for a given failure mechanism. 

The P-F curve is an important tool when managing an asset. It is a common way to represent 

the behaviour of an asset before a functional failure occurs. It shows the declining performance 

of an asset or a component over time, until it reaches a functional failure. Since failure is a 

process which can be caused by wear, fatigue, corrosion etc., these failure modes do not 

immediately cause the asset to fail. As such, the deterioration can be tracked, and the P-F 

interval can be used to define the inspection policy. 
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Figure 1: P-F Curve 

P expresses the potential failure point, which is the point where it is possible to detect that 

failure is about to occur. The detection of P is usually done by means of condition indicators. 

F is the functional failure point or the failed state. 

The P-F interval is the time between the potential failure point to functional failure, and the P-

F interval length is an important key to defining the inspection frequency. Determination of P 

is usually flagged at the attainment of specified values of some condition indicators. This could 

however be challenging. 

2.1.5 PoF estimation using failure statistics 

The second quantitative approach for RBI described above, uses statistical models, which are 

based on collecting data from plant experience for given components. Generic databases often 

assume that the failure rate is shaped as a ‘bathtub’ over a component’s lifetime and is divided 

in three zones (Jovanovic &Auerkari, 2002). If the failure rate is constant, the time to failure is 

exponentially distributed. 

The failure rate is for the generic curve is  , where 𝑛  is the number of observed cycles to 

failure and 𝑡 is the total operating time. The mean time to failure 𝑀𝑇𝑇𝐹  with 𝜆 the failure 

rate. 

2.1.6 Bayesian Approach 

Augmenting the quantitative approach based on failure statistics can be done using Bayesian 

Statistics. Bayes’ rule for events can be expanded to define a Bayes’ rule for random variables 

and their distribution functions. The expanded rule can be used to combine a prior distribution 

and a likelihood function to produce a posterior distribution. This posterior distribution can 

subsequently be used as an input in risk analysis. The Bayes’ rule can be written as (Guyonnet, 

2009): 
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𝑃 𝐴|𝐸
𝐸 𝐴

                                                                                                           (1) 

Usually, decision making based on statistical lifetime data as well as condition monitoring data, 

requires a large set of data which often is incomplete or missing. To overcome that problem, 

the use of expert judgement is accommodated by means of Bayesian statistics. The essential 

element is the revision of probabilities based on new information (Jardine & Tsang, 2013). 

As previously argued, risk-based approaches for the scheduling of the inspections are becoming 

common. The Bayesian approach is well suited for this because it allows a systematic 

integration of expert judgement and data obtained from ongoing inspections (Aven & Pörn, 

1998). 

2.2  Summary of existing methods to estimate PoF in RBI 

Section 2.2 described current methods utilised to estimate the PoF for risk assessment. Figure 

2 below represents a framework summarizing the existing mehods described in the previous 

section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Framework summarising the existing methods. 
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Figure 2 represents a framework for the existing procedure to estimate the Probability of 

Failure (PoF) to assess risk. The framework is essentially constituted by four main blocks 

(Expert opinion likelihood block, Bayesian Approach block, Failure data block and Condition 

block) which are existing PoF estimation methods serving respectively as input to the risk 

assessment in the framework. A closed loop part which captures risk indices, is used to decide 

either to repair, to replace or let the component run according to the severity of the risk index. 

In summary, Figure 2 represents the progression in risk assessment, starting from the non-

quantitative approach, which is prevalent and offers no dynamic view of risk assessment, to 

the time-based approach, which may lead to the early replacement of components that still have 

useful life. A condition-based approach would resolve the shortcomings related to the non-

quantitative and time-based approaches by tracking the condition of a component. Being able 

to estimate the remaining useful life of a component, allows inspection and replacement to be 

planned. However, the condition-based approach relies on the availability of an accurate failure 

model. When this is not available the time-based approach would be the only option, even 

though the inspections performed because of the RBI assessment, will continuously add 

information, which will be under-utilised, only being used to inform replacement/repair 

decisions based on conservative acceptance criteria. Hence, this research proposes to combine 

the condition-based approach with component age, by means of a proportional hazard model 

(PHM). The following section addresses the suggested method to respond to the shortcomings 

highlighted in this paragraph.  

3. Newly proposed method to estimate PoF 

Figure 3 is the same as Figure 23 , the only difference being that an additional block is 

introduced for the proportional hazard model, which is the proposed method to estimate the 

PoF in cases where the condition data alone is not sufficient to predict an accurate RUL. The 

expected benefit for this method is justified by its ability to combine the age and condition for 

a better prediction of RUL compared to using only failure statistics. 
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Figure 3: Framework with the suggested method. 

The following section addresses more details on the PHM. 

3.1 Estimation of the PoF based on Proportional Hazards Model (PHM). 

3.1.1 Proportional hazards model 

The proportional hazard model incorporates the effects of covariates or explanatory variables 

on the distribution of lifetimes. Covariates are any measured parameters that are thought to be 

related to the lifetimes of components. For each given time, a covariate causes an increase or 

decrease in the hazard rate with respect to the baseline hazard rate. PHM may therefore be 

considered as a statistical procedure for the estimation of the risk of a component to fail, based 

on condition information obtained from a conditional monitoring process (Jardine & Tsang, 

2013). 

The PHM is now one of the most popular statistical models used for survival analysis. Its 

popularity arises from the fact that the PHM is part of a broader class of survival analysis 

models which provide information on the duration between an identifiable start and the 

occurrence of an event (Leclere, 2005). A key feature of the PHM approach is that it captures 

time series variation of the covariates and calculates their influences on the probability of a 

failure event occurring. 

The PHM is often presented in terms of the hazard rate formula of a Weibull distribution: 
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ℎ 𝑡, 𝑍 𝑡 𝑒𝑥𝑝 ∑ 𝛾 𝑍 𝑡                                                                                (2) where 

ℎ 𝑡, 𝑍 𝑡  is the hazard function, 𝑍 𝑡  are the covariates at time t, is the baseline hazard 

function with 𝛽 the shape parameter, and 𝜂 the scale parameter. The Weibull parameters, which 

allow for the construction of the baseline part of the model, are determined by maximizing the 

likelihood function. 

3.1.2 Blending Hazards and Economics 

The PHM provides us with an approximate risk of failure for a component subjected to 

condition monitoring, with age as event data and condition parameters as covariates. The 

information obtained from the PHM could be utilized to obtain economic benefits. (Vlok, 1999) 

demonstrated that the optimal economic replacement decision can be based on the PHM risk 

estimation, by minimizing the total cost. Similarly, in this paper it is proposed to use the PHM 

for the PoF estimation for an optimal RBI policy.  

3.2  Advantages related to the proposed method to estimate the PoF 

One of the advantages related to the application of PHM to the RBI methodology is that the 

PHM uses instantaneous condition data at a given time, which leads to dynamic decision 

making in inspection scheduling. Another benefit is that the PHM approach is intended for 

situations where the covariates provide some indication of an approaching failure and, when 

combined with age, gives an improved indication of the risk of failure, compared to using only 

age as indicator. These advantages lead to an improved estimation of the PoF. 

4. Case study 

In this section, a case study is presented to illustrate the methodology, using failure data 

obtained from the simple but readily available IMS bearing data set. The RBI methodology is 

commonly applied to pressure vessels where the need for such investigations is higher to 

minimize the risk of accidents. However, in this research, the simple bearing data set is used 

for illustrative purposes, simply because datasets like these are very well-documented and well-

understood. A similar dataset for pressure vessels is not readily available publicly. 

The data for the IMS case study was generated by the NSF I/UCR Centre for Intelligent 

Maintenance Systems (IMS-www.imscenter.net) with support from Rexnord Corp. The 

following is a description of the testing configuration from which the test results were obtained. 

The bearing test rig hosted four test bearings on one shaft. The shaft was driven by an AC 

motor and coupled to the shaft via rub belts. The rotation speed was kept constant at 2000 rpm. 
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A radial load of 6000 lbs. was applied to the shaft and bearing by a spring mechanism. All the 

bearings were force lubricated. An oil circulation system regulated the flow and the 

temperature of the lubricant. A magnetic plug installed in the oil feedback pipe, collected debris 

from the oil as evidence of bearing degradation. The test was discontinued when the 

accumulated debris adhering to the magnetic plug exceeded a certain level and caused an 

electrical switch to close. 

Four Rexnord ZA-2115 double row bearings were installed. Each bearing had 16 rollers in 

each of the two rows, a pitch diameter of 2.815 in., a roller diameter of 0.331 in. and a tapered 

contact angle of 15.17 . A high sensitivity accelerometer was installed on each of the four 

bearings to record bearing housing vibration. Four thermocouples were attached to the outer 

race of each bearing, to record bearing temperature for monitoring the lubrication. Vibration 

data was collected every 20 minutes. The data sampling rate was 20 kHz and the data lengths 

were 20480 points. 

4.1 Simulations and Results. 

4.1.1 Fault diagnosis of bearings 

For this case study, the root mean square (RMS) and kurtosis of the measured acceleration 

signals are used as covariates for the proportional hazards model. 

The RMS value is associated to the energy of the signal. Usually, the appearance of a defect 

can be detected by an increase of the vibration level. The RMS values can be compared with 

levels while the bearing is still undamaged. 

Kurtosis is the fourth statistical moment of the vibration signal, normalized by the standard 

deviation raised to the fourth power. 

RMS and kurtosis are often used for condition monitoring because of their simplicity of 

application and interpretation. 

4.1.2 Graphical representation of the data (RMS and Kurtosis) 

The bearing test RMS and kurtosis results are depicted below for bearings 3 and 4. The interest 

in bearings 3 and 4 is justified by the fact that at the end of the test-to-failure experiment, 

defects occurred for bearings 3 and 4. 
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Figure 4: RMS as function of time for bearing 3 

 

Figure 5: Kurtosis as function of time for bearing 3 

 

 

Figure 6: RMS as function of time for bearing 4 
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Figure 7: Kurtosis as function of time for bearing 4 

4.2 Kurtosis and RMS as condition indicators 

Kurtosis is a useful feature to indicate an initially localised failure in a bearing with the kurtosis 

rising suddenly as the failure occurs. As the failure propagates around the bearing the fault 

becomes more distributed, the kurtosis generally drops (Randall, 2011) and kurtosis loses some 

of its value as fault indicator. Figures 8 and 9 below show both the kurtosis and RMS behaviour 

for bearing 4, they express the trend of the condition over time as it is the case in figure 1. 

Therefore, kurtosis and RMS are both indeed useful condition indicators, but they nevertheless 

provide only partial information on the condition of the component. It is therefore proposed 

here to combine failure time information with the condition information to enhance the risk 

assessment. As previously discussed, the combination of age and condition information is 

enabled by the application of PHM. This is shown later in figure 12. 

 

                                Figure 8: RMS versus time 

K
U

R
T

O
S

IS



15 
 

 

                               Figure 9: Kurtosis versus time 

4.3 Time based approach and risk assessment 

This section addresses the time-based approach for RBI. The previous section highlighted that 

the condition indicators kurtosis and RMS alone are not adequate for identifying machine 

condition. This can be dealt with by either applying more sophisticated signal processing to 

find better condition indicators, or as it is done here, this paper is a mixing of condition with 

age (time-based) to make better decision on RBI, before reaching that mixing of age and 

condition, let us first have a look on the time-based approach.  

The same steps undertaken in section 4.4.1 to estimate the regression coefficients required to 

build the PHM, are also needed for the 2 parameters Weibull, or time-based approach. Equation 

(3) below, which is the log likelihood function for the 2 parameters Weibull distribution, must 

be maximized to determine the regression parameters. 

Λ 𝑁𝑙𝑛 𝛽 𝑁𝛽 ln 𝜂 𝛽 1 ln 𝑡
𝑡
𝜂

                   3  

The maximum likelihood of the log likelihood function given by equation (3) gives the 

following equation: 

1
𝛽

∑ 𝑡 𝑙𝑛𝑡

∑ 𝑡

1
𝑁

𝑙𝑛𝑡                      4  

The determination of the shape parameter 𝛽 in equation (4) is normally dealt with numerically. 

Using a MATLAB code, the output gave a shape parameter 𝛽 4  for the bearing data.  

The differentiation of equation (3) with respect to 𝜂 gives: 

𝜂
1
𝑁

𝑡
1
4

𝑡 360 ℎ𝑜𝑢𝑟𝑠           5  
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With 𝛽 and  known, the hazard or risk of failure for the time- based approach is: 

ℎ 𝑡                                                  6   

 

                   Figure 10: Hazards versus time (time-based) 

The cumulative distribution function (cdf) or probability of failure curve related to the hazard  

represented in figure 12, is given in figure 11 below. 

Figure 11 : Probability of failure for time-based  

 

The economical approach for time-based approach consists of finding an optimal time of 

replacement which minimizes the cost per unit time. Referring to Jardine et al. (2013), the 

optimal preventive replacement time of a component subject to breakdown is given by: 

 

𝐶 𝑡
𝐶 𝑅 𝑡 𝐶 1 𝑅 𝑡

𝑡 𝑅 𝑡 𝑀 𝑡 1 𝑅 𝑡
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We consider a 3/1 cost ratio so that the failure cost 𝐶  in South African Rands (ZAR) is three 

times the preventive cost 𝐶 . If we further assume that 𝐶 2000 𝑍𝐴𝑅  and 𝐶 6000 𝑍𝐴𝑅, the 

results after computation are given below: 

 

Table 1: Table of results for time-based approach. 

 

Time (Hours) Reliability R(t) 

Probability of 

failure  F(t) 

Cost per unit Time 

C(tp) 

1 0 1 0 Inf 

2 60 0,999 0,001 33,410 

3 120 0,987 0,0123 17,2743 

4 180 0,9394 0,0606 13,1416 

5 240 0,8208 0,1792 13,1323 

6 300 0,6174 0,3826 16,2892 

7 360 0,3679 0,6321 24,5829 

8 420 0,1568 0,8432 49,3550 

9 480 0,0424 0,9576 154,5658 

10 540 0,0063 0,9937 893,1391 

11 600 0,0004 0,9996 1,1228e+04 

12 660 0,0004 0,9995 3,6433e+05 

13 720 0 1 7,4051e+07 

 

                        

Considering table 1, the optimal expected replacement cost per unit time is 13,13 Rands/day.  

The following section consists of estimating the expected optimal cost based on Risk (PHM) 

instead of time as it is the case in this section. The cost per unit time obtained for time-based 

will be compared to the cost per unit time for PHM to evaluate the advantages of PHM over 

the time-based approach.   
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4.4 PHM Approach 

4.4.1 Building the PHM 

The PHM model incorporates both the kurtosis and the RMS.   

The first step of this investigation consists of estimating the regression coefficients 𝛽, 𝜂, 𝛾 

required to build the PHM. (Carstens & Vlok, 2013) argue that the log-likelihood function 

represented by equation (8) should be maximised: 

𝑙 𝛽, 𝜂, 𝛾 𝑟𝑙𝑛 𝛽
𝜂 ∑ 𝑙𝑛 𝑇

𝜂 ∑ �̅� 𝑍  𝑇 ∑ exp �̅� 𝑍  𝑡  𝑑 𝑡 𝜂  (8). 

The outcome from this optimisation renders a shape parameter β=5, a scale parameter ή=780 

hours the weight of the covariate γ1=0.1525 (weight of the RMS) and γ2=6.9101 (for the 

kurtosis)                                               

The above regression parameters are obtained from the maximum likelihood equation (8): 

The risk equation corresponding to the above parameters with kurtosis and RMS as covariate, 

is given by: 

  

ℎ 𝑡, 𝑧 𝑡 exp 0.1525 𝑅𝑀𝑆 6.9101 𝐾𝑈𝑅𝑇                                           (9) 

A graphical representation of this equation for the PHM with RMS and kurtosis as covariates 

is given as figure 12 below. 

 

Figure 12:  Risk versus time for the bearings 
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4.4.2 Probability of failure estimation using the PHM 

The probabilistic hazard rate ℎ 𝑡, 𝑍 𝑡  ̅  is a function depending on the time only, without 

considering that the condition of the component, is given by the formula. 

ℎ 𝑡, 𝑍 𝑡  ̅
,

,
                                                                                                            (10) 

The probability density function f(t) can be determined by the product of the hazard rate h(t) 

and reliability R(t) means 𝑓 𝑡 ℎ 𝑡 𝑅 𝑡  . However, such probabilistic approach is limited 

because it is only time-based. Cox addressed this problem in the PHM by assuming that the 

hazard rate of an item is the product of a baseline hazard rate ℎ (t) and a functional term which 

is function of time and covariates (Vlok,1999). 

Then  

ℎ 𝑡, 𝑍 𝑡 ℎ 𝑡 exp 𝛾, 𝑍 𝑡 . 

According to Vlok (1999), the reliability of the component taking account of the covariates is 

given by: 

𝑅 𝑡, 𝑍 𝑡 exp 
𝛽
𝜂

𝑡
𝜂

exp 𝛾 𝑍 𝑡  

                                                                   = exp exp �̅� 𝑍 𝑡 𝑑 𝑡 𝜂  

After discretization, the equation above can be approximated by: 

𝑅 𝑡, 𝑍 𝑡 exp ∑ exp �̅� 𝑍∗ 𝑡 )                                                (11) 

with 𝑡 𝑡 … … … … … … … . 𝑇  inspection time. 

If the cumulative distributive function (cdf) is defined as the probability of failure at each 

inspection time could then be defined. 

𝐹 𝑡, 𝑍 𝑡 1  𝑅 𝑡, 𝑍 𝑡                                                                                                    (12) 

The PoF related to the condition of the bearings at a given time is given below as the cdf: 
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Figure 13: PoF (cdf) for the bearings 

4.4.3 Interpretation of the results 

The event and condition monitoring data were recorded under the form of acceleration at a 

given inspection time. To be able to build the PHM, event and condition monitoring data were 

computed in equation (8) which is the likelihood function. The outcomes from the likelihood 

function are displayed in figure 12 (risk curve). Observing the PHM parameters that are 

obtained, it can be concluded that both time and covariates have influence on the model and 

decision making. 

During the computation of the data, it was observed that with RMS as the only covariate, the 

weight of the covariate was smaller compared to the case where kurtosis was considered as 

covariate. This observation does make sense since kurtosis is the fourth statistical moment, 

normalized by the standard deviation to the fourth power.  

The aim is to incorporate the PHM to RBI leading to the estimation of the probability of failure.  

Firstly, the risk or hazard estimation, based on age and condition ℎ 𝑡, 𝑍 𝑡  is estimated from 

condition and failure data.  From this, the reliability (R), as well as the probability of failure 

(cdf) can be calculated.  The result is depicted in Figure 13.  

4.4.4 Optimal decision making based on PHM 

The PHM provides us with the approximate risk of failing for the component based on the age 

and covariates (RMS and kurtosis for the case study in this paper). The information which is 

made available by the PHM should be utilized to obtain economic benefits. 

For optimal decision making with the PHM in reliability, Makis and Jardine (2013) made a 

model available. The model specifies the optimal renewal policy in terms of an optimal hazard 
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leading to the minimum life cycle cost (LCC). To be able to determine the hazard rate which 

leads to the minimum LCC it is needed to predict the behaviour of covariates. 
 

Makis and Jardine’s model assumes the covariate behaviour to be stochastic and approximating 

it by a non - homogeneous Markov chain in a finite space. Referring to that model, the expected 

average cost per unit time is a function of the threshold risk level given by: 

 

∅ 𝑑
𝐶 𝐾𝑄 𝑑

𝑊 𝑑
 

 

(13) 

 

where, 𝑄 𝑑 𝑃 𝑇 𝑇  represents the probability that failure replacement will occur and 

𝑊 𝑑  the expected time until replacement  and 𝐾 𝐶 𝐶 . 

For the case of this paper, the prediction of the covariates (RMS) behaviour was performed 

using a Markov chain and the following transition probability matrix (TPM) with five states 

was found. Each state expresses a given range of the covariate.  

 State1  State 2  State 3  State 4  State 5 

State 1  0 0,667  0,333 0 0

State 2  0 0,862  0,138 0 0

State 3  0 0,1875  0,75 0,0625 0

State 4  0 0  0 0 1

State 5  0 0  0 1 0

 

Then the optimal average cost per unit time found after computation using formula 13 is 6.92 

Rand/day which is less than the 13.13 Rand/day for the time-based approach. This is one of the 

important benefits related to the use of PHM compared to the time-based approach. 

4.5 Benefits of incorporating PHM into RBI 

Risk-based inspection often follows either time-based or condition-based approaches. It is 

well-known that time-based approaches are often suboptimal, but even condition-based 

approaches are not always ideal, for example when the condition indicators do not vary 

monotonically with the remaining useful life. This is illustrated in section 4.2 of this paper. 

Section 4.3 illustrates a time-based approach in which an optimal replacement policy based on 

age only leads to a cost per unit time equal to R13.13/day. However, an approach which uses 

PHM to incorporate age together with condition, seems to perform much better than a purely 
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time-based approach. This is clear from the case study where the optimal average cost per unit 

time is R6.92 Rand/day.  

Knowing that the expected outcome from RBI is an optimal inspection schedule, this 

demonstrates the advantage of the PHM compared to the time-based approach. PHM offers a 

lower cost inspection schedule. This is possible since the probability of failure estimation, 

which is an important input for risk computation, is improved. PHM uses real time data and 

allow dynamic decision on inspection and maintenance planning. 

 

5. Conclusions 

Risk based inspection is an ideal tool for asset management because of its ability to optimize 

the inspection schedule and extent of inspection, which contribute to the savings of cost and 

prioritize inspection on important components. This research suggests an approach based on 

proportional hazard model which optimizes the PoF estimation compared to the traditional 

time-based method. 

PHM is used in this paper as a prognostic model involved in the computation of PoF estimation 

which drives the risk computation. It has been observed in this research that when using 

condition only to predict the remaining useful life (RUL), there is a probability to get inaccurate 

information because condition indicators such as RMS and kurtosis do not change 

monotonically with RUL. 

The incorporation of PHM into RBI enables the use of time-based failure data with real time 

condition data, which helps the decision maker to make dynamic decisions on inspection 

schedule and maintenance planning. 

Finally, this proposed approach is one of the suitable ways to optimize the quantitative 

approach for risk-based inspection since the PoF is well determined by means of the PHM.  
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