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Abstract
16S rRNA gene amplicon sequencing is routinely used in environmental
surveys to identify microbial diversity and composition of the samples of
interest. The dominant sequencing technology of the past decade (Illumina)
is based on the sequencing of 16S rRNA hypervariable regions. Online
sequence data repositories, which represent an invaluable resource for
investigating microbial distributional patterns across spatial, environmental
or temporal scales, contain amplicon datasets from diverse 16S rRNA gene
variable regions. However, the utility of these sequence datasets is poten-
tially reduced by the use of different 16S rRNA gene amplified regions. By
comparing 10 Antarctic soil samples sequenced for five different 16S rRNA
amplicons, we explore whether sequence data derived from diverse 16S
rRNA variable regions can be validly used as a resource for biogeographical
studies. Patterns of shared and unique taxa differed among samples as a
result of variable taxonomic resolutions of the assessed 16S rRNA variable
regions. However, our analyses also suggest that the use of multi-primer
datasets for biogeographical studies of the domain Bacteria is a valid
approach to explore bacterial biogeographical patterns due to the preserva-
tion of bacterial taxonomic and diversity patterns across different variable
region datasets. We deem composite datasets useful for biogeographical
studies.

INTRODUCTION

The ubiquity of the 16S rRNA gene among prokaryotes,
coupled with the presence of both conserved and variable
nucleotide regions in its sequence, has led to its wide-
spread use in environmental studies examining the struc-
ture and diversity of prokaryotic communities (Straub
et al., 2020; Tringe & Hugenholtz, 2008). However, the
read length of the most commonly used next-generation

sequencing technology (i.e., Illumina) ranges from 100 to
300 bp, with typical paired-end sequencing covering only
a fraction of the full 16S rRNA gene (�1500 bp; Abellan-
Schneyder et al., 2021). Consequently, a shortcoming of
this technology has been that only between one and
three of the nine 16S rRNA variable gene regions
(i.e., V1–V9) can be sequenced in a single Illumina
sequencing run (Abellan-Schneyder et al., 2021;
Goodwin et al., 2016).
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Over the last 20 years of 16S rRNA gene based phy-
logenetics, multiple variable gene regions have been tar-
geted by different primer sets for amplification of the
intervening 16S rRNA gene regions and subsequent phy-
logenetic assignments (Abellan-Schneyder et al., 2021).
While attempts to establish universal protocols for
prokaryotic phylogenetic analysis of environmental sam-
ples, such as the Earth Microbiome project (Gilbert
et al., 2018), have arguably led to a greater consensus
on primer selection, the continued use of different vari-
able regions as phylogenetic markers adds complexity to
comparisons of different 16S rRNA gene amplicon data-
sets (Sperling et al., 2017; Tremblay et al., 2015; Yang
et al., 2016). Thanks to long-read sequencing technolo-
gies, such as PacBio and more recently Oxford Nano-
pore, the 16S rRNA gene can be sequenced fully
(Klemetsen et al., 2019; Matsuo et al., 2021; Numberger
et al., 2019; Winand et al., 2019). However, the vast
majority of published studies, and consequently the data
available in online sequence repositories, report Illumina
sequence data derived from primers designed for the
amplification of partial 16S rRNA gene sequences
(Gilbert et al., 2018; Pollock et al., 2018).

It is current practice for all sequences generated as
part of microbial ecological studies to be uploaded to a
public sequence repository (e.g., Leinonen et al., 2011;
NCBI Resource Coordinators, 2015). Consequently,
online repositories contain many publicly available 16S
amplicon sequence datasets derived from a huge spec-
trum of prokaryotic communities (Gilbert et al., 2018;
Jurburg et al., 2020). Some of those datasets are
derived from unique samples acquired from the most
remote and inaccessible regions on Earth
(e.g., Dragone et al., 2021; Staebe et al., 2019). Such
samples are arguably of great importance; for example,
for biogeographical surveys aimed at resolving complex
prokaryotic distributional patterns across large spatial,
environmental or temporal scales (Dickey et al., 2021).
However, the value and utility of these datasets may be
reduced by lacking consistency in prokaryotic phyloge-
netic analysis protocols, including primer selection for
variable region amplification (Abellan-Schneyder
et al., 2021; Pollock et al., 2018; Tremblay et al., 2015;
Yang et al., 2016). The use of different primers can lead
to the differential resolution of different organisms
(Fredriksson et al., 2013; Tremblay et al., 2015). Further-
more, this may also lead to loss of taxonomic resolution
as, when working with datasets composed of 16S rRNA
gene samples targeting different variable regions, it is
not possible to work at amplicon sequence variant
(ASV) level because different variable region sequences
are represented by different sets of ASVs (Callahan
et al., 2017) and are therefore not comparable.

The use of composite datasets may be particularly
important for studies aiming to establish prokaryotic
community patterns across vast and remote areas,
where sample collection is challenging and expensive.

Here, we explore whether environmental phylogenetic
sequence data stemming from diverse 16S rRNA gene
variable regions can be used as a resource for compar-
ative biogeographical studies. To test how these data
can be viably and validly combined, we sequenced
eDNA from 10 Antarctic soil samples using 5 primer
sets (i.e., 27F-519R, 341F-805R, 515F-806R, 515F-
926R and 926F-1392wR), obtaining amplicon
sequence data representing five different 16S rRNA
gene amplicons spanning seven 16S variable regions
(i.e., V1–V3, V3–V4, V4, V4–V5 and V8–V9).

EXPERIMENTAL PROCEDURES

Dataset description

Antarctic soil samples were collected during austral
summers 2009–2010 and 2011–2012 from 10 sites
located in four inland areas of the Prince Charles Moun-
tains: ME1 (�73.39647�, 65.60961�) from Mount Rubin,
ME2 (�73.31453�, 68.38944�) and ME3 (�73.33025�,
68.37564�) from Mawson Escarpment, MM1
(�73.43978�, 62.12661�) and MM2 (�73.43669�,
62.09061�) from Mount Menzies, and LT1 (�70.51775�,
68.00394�) and LT2 (�70.54608�, 67.85828�) from
Lake Terrasovoje; in RH1 (�70.505�, 72.60369�) from
the Reinbolt Hills; and in two coastal sites, C1
(�67.78251�, 62.79129�) and C2 (�68.59519�,
77.95883�), in proximity of the Prince Charles Moun-
tains (Figure S1 and Table S1). At each location, 500 g
of surface soil (0–10 cm) was collected by combining
five sub-samples from each plot into sterile Whirl-Pak
bags (Nasco, Fort Atkinson, Wisconsin), as described in
Czechowski et al. (2022), Czechowski, Clarke, et al.
(2016) and Czechowski, White, et al. (2016), for the
Prince Charles Mountains and Reinbolt Hills samples,
and in Velasco-Castrill�on et al. (2014) for the two
coastal samples. Soil samples were kept at �20�C right
after sampling and stored permanently at �80�C until
further processing.

DNA extraction and sequencing

DNA was extracted at the South Australian Research
and Development Institute (SARDI) using 400 g of soil for
each sample (Czechowski, Clarke, et al., 2016; Ophel-
Keller et al., 2008). 16S rRNA gene was amplified using
five primer pairs: 27F-AGAGTTTGATCMTGGCTCAG
and 519R-GWATTACCGCGGCKGCTG to target regions
V1–V3 (Engelbrektson et al., 2010); 341F-CCTACGGGN
GGCWGCAG and 805R-GACTACHVGGGTATCTAA
TCC for regions V3–V4 (Herlemann et al., 2011); 515F-
GTGCCAGCMGCCGCGGTAA and 806R-GGAC-
TACHVGGGTWTCTAAT for region V4 (Caporaso
et al., 2011); 515F-GTGCCAGCMGCCGCGGTAA and
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926R-CCGYCAATTYMTTTRAGTTT for regions V4–V5
(Parada et al., 2016; Quince et al., 2011); and 926F-
AAACTYAAAKGAATTGRCGG and 1392wR-ACGGGC
GGTGWGTRC for regions V8–V9 (Engelbrektson
et al., 2010). 16S rDNA amplicon libraries were prepared
using KAPA HiFi PCR kit (Roche) and sequenced by
Omega Bioservices (Norcross, USA) using the Illumina
MiSeq technology (paired-end, 300 cycles). The dataset
therefore comprises of 50 samples in total, where each of
the 10 Antarctic soil samples was amplified using 5 differ-
ent primer pairs, resulting in 5 different sequenced ampli-
cons. We denote the resulting 10 different samples as
ME1, ME2, ME3, MM1, MM2, LT1, LT2, RH1, C1 and
C2; and the five different amplified 16S rRNA regions as
V1–V3, V4, V4–V5 and V8–V9 (Table S1). All sequences
were uploaded to the European Nucleotide Archive
(accession number PRJEB55051).

Geochemical data and bioclimatic variable
extraction

Geochemical data reported in Czechowski, White, et al.
(2016) were used in this study (Table S2). Bioclimatic
variables (1981–2010) were extracted from CHELSA v
2.1 (Karger et al., 2017) in the R environment v 4.0.3
(R Core Team, 2021) using the R package raster v
3.5.15 (Hijmans, 2022). The extracted bioclimatic vari-
ables were BIO1 (mean annual temperature), BIO4
(temperature seasonality), BIO10 (mean temperature
of warmest quarter), BIO12 (annual precipitation),
BIO15 (precipitation seasonality) and BIO18 (precipita-
tion of warmest quarter).

Sequence data processing and analyses

Illumina sequencing adapters were trimmed with Trim-
momatic v 0.39 (Bolger et al., 2014), and default
parameters. The five datasets consisting of the seven
variable 16S regions (i.e., V1–V3, V3–V4, V4, V4–V5
and V8–V9) were then analysed separately in the R
environment v 4.0.3 (R Core Team, 2021) using dada2
v 1.16.0 package (Callahan et al., 2016). The resulting
ASVs (Callahan et al., 2017) were taxonomically anno-
tated with reference information of the SILVA database
v 138 (Quast et al., 2012). Subsequently, the data of
the five variable gene regions were combined, and
ASVs assigned to Eukaryotes, mitochondria and chlo-
roplasts removed. To overcome diverse read sample
size, the dataset was then normalized using scaling
with ranked subsampling (SRS) method with the R
package SRS; read counts were scaled using the total
read count of the smallest sample (n = 14,035; Beule &
Karlovsky, 2020). Because the different primer pairs
showed differential amplification of taxa from the
domain Archaea (Table S3), ASVs assigned to domain

Archaea were also removed, thereby retaining only
ASVs associated with domain Bacteria.

All statistical analyses were performed on taxonomy
datasets (i.e., at genus and phylum level) as it was
inappropriate to work at ASV level due to the use of dif-
ferent variable region sequences represented by differ-
ent sets of ASVs (Callahan et al., 2017). Comparisons
of taxonomic datasets at lower (i.e., genus) and higher
(i.e., phylum) taxonomic levels were conducted in order
to explore which taxonomic level was more consistent
between samples sequenced for different 16S rRNA
gene variable regions.

Plots were generated using the R libraries ggplot2 v
3.3.5 (Wickham, 2016), gplots v 3.1.1 (Warnes
et al., 2022), gridExtra v 2.3 (Auguie, 2017) and ggfor-
tify v 0.4.14 (Tang et al., 2016). Statistical analyses and
data manipulation were performed using phyloseq v
1.36.0 (McMurdie & Holmes, 2013), microviz v 0.9.0
(Barnett et al., 2021), vegan v 2.5.7 (Oksanen
et al., 2022), geosphere v 1.5.14 (Hijmans, 2021), Bio-
strings v 2.60.2 (Pagès et al., 2021) and ape v 5.6.2
(Paradis & Schliep, 2019).

Analysis of similarity (ANOSIM; Clarke, 1993) tests
were performed using the function anosim() from the R
library vegan v 2.5.7 (Oksanen et al., 2022). ANOSIM
tests were calculated on the Bray–Curtis dissimilarity
matrices obtained from the Hellinger-transformed
genus and phylum taxonomic datasets, using 10,000
permutations (Legendre & Anderson, 1999;
Legendre & Gallagher, 2001). Principal coordinates
analysis (PCoA) was performed using the function
pcoa() from the R library ape (Paradis & Schliep, 2019).
Distance-based redundancy analysis (dbRDA) was
performed using the function capscale(). Before run-
ning capscale() the geochemical and bioclimatic vari-
ables were standardized with decostand() and checked
for collinearity. The function ordiR2step() was used to
select the environmental variables to use in the RDA
model; these environmental variables were then
checked for significance using the function anova.cca
(). All these functions are part of the R library vegan v
2.5.7 (Oksanen et al., 2022). Bray–Curtis dissimilarity
and Jaccard dissimilarity matrices were calculated
applying the function vegdist() (vegan v 2.5.7) on the
community relative abundance and absence/presence
datasets, respectively. Shannon index was calculated
using the function diversity() (vegan v 2.5.7).

In addition to using the five datasets (i.e., V1–V3,
V3–V4, V4, V4–V5 and V8–V9), three mixed datasets
(i.e., Mix 1, Mix 2 and Mix 3) comprising 10 samples
randomly picked from the 5 variable region datasets
were created (Table S4). These datasets were used to
test whether Bray–Curtis and Jaccard dissimilarity
matrices calculated on the Hellinger-transformed bacte-
rial communities were consistent across 16S rRNA
gene datasets composed of samples sequenced using
a single variable region (i.e., V1–V3, V3–V4, V4, V4–
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V5 and V8–V9), and datasets composed of samples
sequenced using different variable regions (i.e., Mix
2, Mix 2 and Mix 3).

RESULTS AND DISCUSSION

Taxonomic characterization of the variable
region datasets

Prokaryotic community composition at domain
level

The number of reads passing quality checks ranged
from 17,123 to 60,358 for the five amplicon datasets
(Table S5). The percentage of amplicon sequences
assigned to Bacteria for the five amplicon datasets
were 99.3%–99.9% (V1–V3), 99.7%–100.0% (V3–V4),
97.1%–99.7% (V4), 99.1%–99.9% (V4–V5) and
84.2%–93.4% (V8–V9). Relative abundance for
archaeal microorganisms was below 1.0% in all sam-
ples from the datasets V1-V3, V3-V4 and V4-V5, and
ranged from 0.3% to 2.9%, and from 4.4% to 12.8% in
the V4 and V8–V9 datasets, respectively (Table S3),
indicating widely variable amplification of members of
domain Archaea across the 16S rRNA gene variable
regions, as previously reported (Bahram et al., 2019).
Therefore, all analyses shown in this study are based
solely on domain Bacteria, which was more consis-
tently represented in all the amplicon datasets.

Bacterial community composition at phylum
and genus levels

Of the 26 phyla represented in the normalized entire
dataset (i.e., dataset including all the samples
sequenced for the 5 variable regions), 15 phyla were
present with a relative percentage higher than 1% in at
least one sample (i.e., dominant phyla; Figure 1A,B).
These 15 phyla were represented in all the variable
region datasets. However, three of these phyla were
differentially abundant at relative abundances higher
than 5% across the different datasets; the phylum Acti-
nobacteriota ranged between 18.7% in V4–V5 and
25.3% in V8–V9, Bacteroidota between 12.4% in data-
set V4 and 18.4% in V4–V5 and Chloroflexi between
14.3% in V8–V9 and 22.4% in V3-V4 (Figure 1A). Dif-
ferences in phylum relative abundances were also
observed at single sample resolution (Figure 1B). Five
phyla showed at least one significant pairwise differ-
ence between variable region datasets, meaning that
33% of the dominant phyla were differentially distrib-
uted across different variable region datasets
(Figure 1C). The pairwise comparisons showing the
highest number of significant differences (5 phyla;
p < 0.05) were ‘V3–V4 versus V4–V5’ and ‘V4 versus

V4–V5’. The only pairwise comparison that did not
show any significant difference between any of the
dominant phyla was ‘V3–V4 versus V4’ (Figure 1C).
Taxonomic similarity between V3–V4 and V4 amplified
regions is not surprising, considering that the DNA
sequence of the 16S rRNA gene V4 region is included
in the V3–V4 region. Comparison of ‘V4 versus V4–
V5’, even if equally overlapping, showed as many dif-
ferences as the other comparisons. V4–V5 amplicons
have been previously shown to provide dissimilar taxo-
nomic profiles when compared with other amplicons
(Abellan-Schneyder et al., 2021).

The total number of genera in the entire dataset
was 627, ranging from 363 in the V1–V3 dataset to
434 genera in V4–V5 dataset (Table 1[A]). The number
of dominant genera (i.e., genera represented by a rela-
tive abundance higher than 1% in at least one sample)
in the entire dataset was 74 and ranged from 42 in V4
and V4–V5 to 60 in V1–V3, indicating that the dominant
community at genus level differed widely across differ-
ent variable region datasets (Table 1[B]). Of these
74 genera, 11 (accounting for the 15% of the dominant
genera) showed significant differences (p < 0.05) in at
least one of the pairwise comparisons between data-
sets. The pairwise comparison with the highest number
of significantly diverse comparisons was observed
between V3–V4 and V8–V9; and the lowest number
was observed between V3–V4 and V4, and V4 and
V4–V5 (Figure 2). Four of the genera showing signifi-
cantly diverse distributions across primer datasets
belonged to Actinobacteriota (Iamia, Marmoricola,
Nakamurella and Nocardioides), one to Abditibacteriota
(Abditibacterium), one to Verrocomicrobia (Candidatus
Udaeobacter) and one to Planctomycetota (Tundri-
sphaera). All these phyla showed differential distribu-
tion in at least one pairwise comparison (Figure 1C).
The only phylum that was differentially abundant, but
was not associated to any differentially abundant gen-
era in the dominant community, was Gemmatimona-
dota. Differences in community composition between
the variable region datasets and samples taken at dif-
ferent locations were compared with assess whether
using different variable regions has a significant impact
on beta-diversity analyses. ANOSIM statistics per-
formed on the phylum-level taxonomic dataset showed
R values of 0.79 (p = 0.00009) and 0.19 (p = 0.00030)
for the factors ‘Sample’ (i.e., ME1, ME2, ME3, MM1,
MM2, LT1, LT2, RH1, C1 and C2) and ‘Variable region’
(i.e., V1–V3, V3–V4, V4, V4–V5, V8–V9), respectively.
ANOSIM statistics performed on the genus-level taxo-
nomic dataset showed a higherR for the factor ‘Sam-
ple’ (r = 0.89; p = 0.00009) and a lower R for factor
‘Variable region’ (r = 0.11; p = 0.01260) where p was
also higher compared with the phylum dataset
(Table 2). These results suggest that despite the signifi-
cant differences in community composition between dif-
ferent variable regions of the same sample, samples
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extracted from distinct locations were still clearly sepa-
rated regardless of the variable region used. We there-
fore conclude that the use of different variable regions

had a relatively low impact on overall community com-
positions when comparing samples from different loca-
tions. It is worth noting that compared with the phylum

(A)

(B) (C)

vs
.vs
.

vs
.

vs
.

vs
.
vs
.

vs
.

vs
.
vs
.

vs
.

F I GURE 1 Dominant phyla (i.e., phyla present with a relative abundance higher than 1% in at least one sample) relative abundance
distribution in the five variable region datasets (i.e., V1–V3, V3–V4, V4, V4–V5 and V8–V9) (A). Relative abundance of dominant phyla in all
samples where only relative abundances >1% are represented by a dot (B). Tukey’s test showing the pairwise comparisons between different
datasets performed for each phylum (C).
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dataset, the genus dataset showed substantially more
taxonomic consistency between samples sequenced
using different variable region primer sets. This sug-
gests that when working with datasets composed of
samples sequenced using different 16S rRNA gene
variable regions, it is more reliable to work at the lower
(e.g., genus) rather than higher (e.g., phylum) taxo-
nomic levels.

The higher reliability of the genus dataset, com-
pared with the phylum dataset, may be due to a variety
of reasons. First, taxonomic datasets are obtained by

summing all reads belonging to ASVs assigned to spe-
cific taxa. However, different primers induce amplifica-
tion taxonomic biases; that is, differentially amplify
different taxa (Fredriksson et al., 2013; Tremblay
et al., 2015). Higher taxonomic levels (e.g., phylum)
could therefore accumulate more biases than lower tax-
onomic levels (e.g., genus) because they group a
higher number of ASVs. The differential abundance of
a specific genus will be reflected at the phylum level,
and this is shown by the fact that four phyla (out of the
five phyla that showed a differential distribution across

TAB LE 1 Number of genera (A), dominant genera (i.e., genera represented by a relative abundance higher than 1% in at least one sample;
B), rare genera (i.e., genera represented by a relative abundance lower than 0.1% in all samples; C), Shannon index (D) and unique genera (E)
in each sample and amplicon dataset.

Amplicon dataset

Sample

Entire datasetME1 ME2 ME3 MM1 MM2 LT1 LT2 RH1 C1 C2

A

V1–V3 148 84 148 81 158 78 191 135 176 219 363

V3–V4 199 84 168 92 175 94 168 141 191 204 386

V4 176 103 185 94 169 117 189 180 230 185 416

V4–V5 145 116 244 104 192 125 203 193 238 217 434

V8–V9 209 77 171 92 186 104 176 136 174 165 385

Shared 82 45 79 42 78 49 93 65 96 101 222

B

V1–V3 21 17 15 16 13 15 21 20 19 20 60

V3–V4 16 12 14 14 14 11 15 14 16 16 40

V4 14 13 11 11 10 10 13 13 12 16 42

V4–V5 16 15 11 14 10 16 15 17 11 15 42

V8–V9 12 18 14 9 15 16 14 20 12 19 43

Shared 6 6 7 5 6 4 7 6 5 9 22

C

V1–V3 40 15 39 27 50 11 58 33 52 84 247

V3–V4 75 15 47 25 68 21 40 32 46 56 253

V4 65 32 66 33 67 37 64 70 82 60 297

V4–V5 37 42 113 34 70 52 75 75 98 74 338

V8–V9 85 14 49 27 71 32 55 28 46 39 267

Shared 0 0 50 2 2 0 2 0 3 2 56

D

V1–V3 4.3 3.9 4.4 3.7 4.3 3.8 4.5 4.3 4.4 4.6

V3–V4 4.6 3.9 4.6 3.9 4.5 4.0 4.5 4.5 4.6 4.7

V4 4.5 4.1 4.6 3.9 4.5 4.1 4.5 4.5 4.8 4.5

V4–V5 4.4 4.0 4.7 4.0 4.5 4.1 4.5 4.5 4.6 4.6

V8–V9 4.7 3.9 4.6 4.0 4.6 4.0 4.5 4.4 4.5 4.5

E

V1–V3 22 3 11 3 6 5 10 5 21 21

V3–V4 28 3 5 4 10 2 5 1 23 14

V4 23 2 10 3 5 8 12 12 30 10

V4–V5 13 5 20 4 9 12 7 9 25 15

V8–V9 42 2 12 5 12 7 15 7 16 7

Shared 1 0 0 0 0 0 0 0 0 1
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diverse amplicon datasets) are represented by genera
that showed differential distribution in the dominant
bacterial community (Figures 1C and 2B). Second,

read counts reported at the phylum level derive from
taxonomically classified genera belonging to that spe-
cific phylum, but also from unknown organisms that

(A) (B)

vs
.

vs
.

vs
.

vs
.

vs
.
vs
.

vs
.

vs
.
vs
.

vs
.

F I GURE 2 Relative abundance of dominant genera (i.e., genera present with a relative abundance higher than 1% in at least one sample) in
all samples where only relative abundances >1% are represented by a dot (A). Tukey’s test showing the pairwise comparisons between different
datasets performed for each genus (B).
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could not be classified at the genus (or other taxo-
nomic) level. This could bring to further uncertainties at
the phylum level as different phyla are composed of dif-
ferent percentage of unknown organisms (Table S6
and S7). Finally, the number of genera in a dominant
community is higher than the number of phyla, and
therefore the number of differentially abundant genera
(11 compared with 5 phyla) has less statistical weight
(10% of the genera showed statistically significant
(p < 0.05) pairwise differences, compared with 33% for
phyla; Figures 1C and 2B).

We note that, conversely, Abellan-Schneyder et al.
(2021) found phylum-level resolution to be more pre-
served between different 16S rRNA gene variable
regions compared with genus-level resolution. Irrespec-
tive of these conflicting results, we propose that phylum-
level analyses are not suitable for performing high-
resolution analyses of bacterial communities, as they
group widely different organisms with different metabolic
capacities and potentially diverse environmental roles
(Kersters et al., 2006; Tischler et al., 2019). We therefore
recommend that, when working with composite data-
sets, all such analyses are performed at the lowest pos-
sible taxonomic level, such as species level or genus
level. Our analyses were restricted to genus-level
assignments (see Winand et al., 2019), since only 1% of
ASVs could be validly assigned at species level.

Alpha diversity, dominant, rare and unique
genera

The number of genera (i.e., richness), dominant gen-
era, rare genera, unique genera and Shannon index
metrics varied among different 16S rRNA gene variable
region data, even on a single sample (Table 1). How-
ever, pairwise correlations between variable region
datasets showed that richness and Shannon index
were consistent across all the variable region datasets
(p < 0.05; Figure 3A,D and Table S8). For the number
of unique genera, only the comparisons ‘V3–V4 versus
V4–V5’ and ‘V4–V5 versus V8–V9’ did not show signif-
icant correlations (Figure 3E and Table S8). Only one
correlation for the number of dominant genera, and four

correlations for the number of rare genera were statisti-
cally significant (Figure 3B,C and Table S8).

These results suggest that it is statistically valid to
derive alpha diversity metrics (e.g., richness and Shan-
non diversity) and identify unique genera when compar-
ing composite datasets. However, even if the pairwise
correlations are statistically significant, the number of
shared genera between the same sample, analysed by
sequencing different variable regions, is low (Table 1).
Our conclusion is that, whereas analyses of bacterial
diversity trends across samples are reliable and valid,
detailed descriptions of which taxa are present or
absent from a specific sample are neither reliable nor
recommended.

Biogeographic analyses

In biogeographical studies, the relationship between
microbial communities and geographical distances or
environmental variables are often based on similarity
and dissimilarity matrices, such as Bray–Curtis dissimi-
larity matrix calculated on transformed relative abun-
dance community datasets, or Jaccard dissimilarity
matrix calculated on absence/presence datasets are
commonly used (Schroeder & Jenkins, 2018). To test
whether these matrices varied due to different variable
region datasets, we performed pairwise correlation
analyses between the different variable regions, and
mixed datasets created by randomly choosing samples
from all the variable region datasets (Mix 1, Mix 2 and
Mix 3; Table S4). All these datasets had a positive sig-
nificant correlation between each other higher than
0.90 (p < 0.05; Figure S2). This demonstrated that
mixed datasets can be reliably used to explore similari-
ties and dissimilarities in bacterial community composi-
tion and distribution, and to apply statistical analyses
based on these parameters (e.g., cluster analyses,
distance-decay).

PCoA and dbRDA (adjusted R2 = 0.427 and
p = 0.001) cluster analyses, both widely used in biogeo-
graphical studies, showed a clear grouping of the data-
set by sample (Figure 4). Composite datasets can
therefore be reliably visualized in 2D space where the
same samples, even when sequenced for different vari-
able regions, showed similar relationships to climatic
(BIO4, temperature seasonality; and BIO10, mean tem-
perature of warmest quarter) and geochemical (gravel,
pH, sulphur concentration) variables (Figure 4B). Finally,
correlations between Bray–Curtis dissimilarity matrix,
obtained from the entire bacterial community dataset,
and sample geographical distance and environmental
variables were performed. Even if these analyses were
performed on the entire dataset (i.e., composite of all
samples independently of the sequenced 16S rRNA
gene variable region), bacterial community distributions
correlated significantly with sample geographical

TAB LE 2 Analysis of similarities (ANOSIM) performed on the
Hellinger-transformed phylum and genus dataset for factors ‘Sample’
(i.e., ME1, ME2, ME3, MM1, MM2, LT1, LT2, RH1, C1 and C2) and
‘Variable region’ (i.e., V1–V3, V3–V4, V4, V4–V5 and V8–V9).

Dataset Factor

ANOSIM statistics

R p

Phylum level Sample 0.79 0.00

Phylum level Variable region 0.19 0.00

Genus level Sample 0.89 0.00

Genus level Variable region 0.11 0.01
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distance (r = 0.1835, p = 0.0009) and environmental
variables (r = 0.2283, p = 0.0009), showing bacterial
distributional patterns consistent with results previously
observed in other Antarctic soil studies (Bottos
et al., 2020; Chong et al., 2015; Chown et al., 2015).

We therefore conclude that phylogenetic sequence
datasets obtained by the amplification of different 16S
rRNA gene variable regions can be used in correlation
analyses based on bacterial dissimilarity matrices
where the possible confounding signals, given by

differential variable region taxonomic resolution, still
allow for the detection of significant correlations.

CONCLUSIONS

Although our phylogenies differ as a result of the vari-
able taxonomic resolutions of the different 16S rRNA
gene variable regions, we suggest that the use of multi-
primer datasets for biogeographical studies of the

V1–V3 vs. V3–V4
V1–V3 vs. V4
V1–V3 vs. V4–V5
V1–V3 vs. V8–V9

V3–V4 vs. V4
V3–V4 vs. V4–V5
V3–V4 vs. V8–V9
V4 vs. V4–V5
V4 vs. V8–V9
V4–V5 vs. V8–V9
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F I GURE 3 Pearson’s correlations from pairwise comparisons of variable region datasets performed on number of genera (A), number of
dominant genera (B), number of rare genera (C), Shannon index (D) and unique genera (E) in the dataset. Pearson’s coefficient (r) is reported
only for significant statistical correlations (p < 0.05). More details on the Pearson’s pairwise correlation statistics are reported at Table S6.
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domain Bacteria is valid due to the preservation of bac-
terial taxonomic and diversity patterns across amplicon
datasets of different variable regions. However, in line
with previous literature (Abellan-Schneyder et al., 2021;
Tremblay et al., 2015; Yang et al., 2016), we do not rec-
ommend any descriptive analyses of shared and

unique taxa among different samples. Similarly, we do
not recommend the use of composite datasets for the
analyses of specific taxa. These limitations do not con-
stitute a problem when working on biogeographical
studies where the focus is not on which taxa are shared
between samples, but rather how many taxa are shared

(A)

(B)

F I GURE 4 Principal coordinates analysis (PCoA; A) and distance-based redundancy analysis (dbRDA; B) performed on the Hellinger
transformed taxonomic dataset (genus level). dbRDA shows the effect of significant (p < 0.05) explanatory climatic and geochemical variables on
bacterial community distribution. BIO4, temperature seasonality; BIO10, mean temperature of warmest quarter.
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and how closely related the communities of two distin-
guished samples are (i.e., use of similarity and dissimi-
larity matrices).

While we have identified composite 16S rRNA gene
datasets as useful resources for biogeographical studies
where the focus is on prokaryotic distribution trends
across geographical distances and environmental gradi-
ents, we would emphasize that analyses of such datasets
must be done with caution. For example, the amplified
16S rRNA gene variable region is not the only source of
bias among different datasets; sample collection and
DNA extraction methods, among other factors, can also
play a role (Pollock et al., 2018; Teng et al., 2018). Ensur-
ing that all the samples have been collected using consis-
tent methods and that all samples have been extracted
using similar protocols (e.g., beat-beating for soil sam-
ples) is therefore an important factor to consider.
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