
Querying Large C and C++ Code Bases: The Open Approach

Alexandru Telea
Institute of Mathematics and Computer Science

University of Groningen, Netherlands
a.c.telea@rug.nl

Heorhiy Byelas
Institute of Mathematics and Computer Science

University of Groningen, Netherlands
h.v.byelas@rug.nl

Abstract

Static code analysis offers a number of tools for the assessment
of complexity, maintainability, modularity and safety of industry-
size source code bases. Most analysis scenarios include two main
phases. First, the code is parsed and ’raw’ information is ex-
tracted and saved, such as syntax trees, possibly annotated with
semantic (type) information. In the second phase, the raw infor-
mation is queried to check the presence or absence of specific code
patterns which supports or invalidates specific claims on the code.
Whereas parsing source code is largely standardized, and sev-
eral solutions (parsers) exist already, querying the outputs of such
parsers is still a complex task. The main problem resides in the dif-
ficulty of easily translating high-level concerns in the problem do-
main into low-level queries into the raw data domain. We present
here an open system for constructing and executing queries on
industry-size C++ code bases. Our query system adds several
so-called query primitives atop a flexible C++ parser, offers sev-
eral options to combine these predicates into arbitrarily complex
expressions, and has a very efficient way to evaluate such expres-
sions on syntax trees of millions of nodes. We demonstrate the
integration of our query system, C++ parser, and interactive visu-
alizations, into the SOLIDFXintegrated environment for industrial
code analysis.

1 Introduction

Static code analysis is one of the most powerful, scalable, ro-
bust, and accepted techniques for program understanding, soft-
ware maintenance, reverse engineering, and reengineering activ-
ities. Static analysis encompasses a wide set of operations ranging
from code parsing and fact extraction, fact aggregation and query-
ing, up to interactive presentation. As compared to techniques
based on formal methods, which attempt to prove the correctnes
(or lack thereof) of the execution of a software system by check-
ing it against a set of invariants, static code analysis has gained a
wider acceptance, as the tools it involves have the scalability and
maturity required to be applicable on industry-size code bases of
millions of lines-of-code (LOC).

A typical static analysis pipeline would include three types of
tools, as follows:

1. Parsers are used to analyze the original source code and pro-
duce a raw, low-level, representation thereof. This comes in
most cases as a syntax tree, optionally annotated with type
information.

2. Query engines are used to check the presence (or absence)

of various facts in the code, by scanning the annotated syn-
tax trees for the occurrence of corresponding patterns. Such
queries can range from simple ones, e.g. ”is a variable x
of type T used in function f” up to sophisticated ones, e.g.
”show all variables used before initialized” or ”show the sys-
tem’s call graph”. Queries are related to metrics, the latter
being numerical values associated to specific code elements
or patterns, such as cyclomatic complexity, code modularity,
or class hierarchy depth.

3. Presentation engines are used to visualize the query results
in context. These can be as simple as listing the query results,
up to complex interactive visualizations of combinations of
software graphs, source code, and code metrics.

In this paper, we focus on code analysis systems that combine
the functionality of all three types of tools mentioned above for the
C and C++ languages. C++ is one of the most widely spread pro-
gramming language in the software industry. However, its com-
plexity poses several problems to the construction of a truly pow-
erful static code analyzer. While several C++ parsers exist, few are
able to output complete annotated syntax trees, which are needed
for a flexible query system. Secondly, query engines and parsers
are often monolithically combined in a single tool. This is unde-
sirable, as users require ways to design custom queries for custom
problems. What one needs, is an open query system which offers

• a flexible, but simple to learn, way to construct a wide range
of queries by assembling existing queries via some composi-
tion mechanism;

• an efficient execution for arbitrarily complex queries on real-
world code bases whose syntax trees may have millions of
nodes

Finally, as queries (and thus their results too) can be quite com-
plex, a way is needed to let users both pose a query and examine
its results in a simple and intuitive fashion.

In this paper, we present our experience in architecting such
an open query system. We start with an existing C and C++ parser
that generates full annotated syntax trees. Next, we design an open
query system atop the parser’s output, which satisfies our previ-
ously outlined requirements. Atop of these, we also add a query
management mechanism consisting of query (de)serialization and
query archiving in libraries. Finally, we integrate our query system
in SOLIDFX, a fully fledged Interactive Reverse-engineering En-
vironment (IRE) for C and C++, which combines parsing, query-
ing, and data visualization and offers to reverse engineers the same
look-and-feel that Integrated Development Environments (IDEs)
such as Visual C++ or Eclipse offer to software developers.

This paper is structured as follows. In Section 2, we present re-
lated work in the context of interactive static analysis and reverse
engineering, with a focus on C++. Section 3 describes the archi-
tecture of SOLIDFX in rough lines. We next detail the main com-
ponents: the C++ parser, the query and software metric engine,
and the data views, with a focus on the query system. Section 4
presents several applications of our tool on three real-life code
bases. Section 5 discusses our experience with using SOLIDFX in
practice and feedback obtained from actual customers. Section 6
concludes the paper with future work directions.

2 Previous Work

To understand the challenges of querying code during static
analysis, we present a brief overview of results related to fact ex-
traction, the fact querying proper, and fact visualization. In the
following, we focus specifically on C++ static code analysis, since
this is our target domain.

C++ static analyzers can be roughly grouped into two classes:
lightweight analyzers do only partial parsing and type-checking of
the input code, and thus produce only a fraction of the entire static
information. Lightweight analyzers include SRCML [Collard
et al. 2003], SNIFF+, GCCXML, MCC [Mihancea et al. 2007],
and several custom analyzers constructed using the ANTLR
parser-generator [Parr and Quong 1995]. Typically, such analyz-
ers use a limited C++ grammar and do not perform preprocessing
and scoping and type resolution. This makes them quite fast and
relatively simple to implement and maintain. However, such an-
alyzers cannot deliver the detailed information that we need for
our queries, as we shall see later. Moreover, lightweight ana-
lyzers cannot guarantee the correctness of all the produced facts,
as they do not perform full parsing. In contrast to these, heavy-
weight analyzers perform (nearly) all the steps of a typical com-
piler, such as preprocessing, full parsing and type checking, and
hence are able to deliver highly accurate and complete static infor-
mation. Well-known heavyweight analyzers with C++ support in-
clude DMS [Baxter et al. 2004], COLUMBUS [Ferenc et al. 2004],
ASF+SDF [van den Brand et al. 1997], ELSA [McPeak], and
CPPX [Lin et al. 2003]. However more powerful, heavyweight
analyzers are also significantly (typically over one order of mag-
nitude) slower, and considerably more complex to implement.

Heavyweight analyzers can be further classified into strict
ones, typically based on a compiler parser which will halt on lex-
ical or syntax errors (e.g. CPPX); and tolerant ones, typically
based on fuzzy parsing or Generalized Left-Reduce (GLR) gram-
mars, (e.g. COLUMBUS). Our early work to design an IRE for
C++ used a strict gcc-based analyzer [Lommerse et al. 2005]. We
quickly noticed the limitations of using strict analyzers. Typical
users do not have a fully compilable code base, e.g. because of
missing includes or unsupported dialects, but still want to be able
to analyze it, or at least that subset which is parseable.

The output of static analyzers, mostly produced by running
batches, can be fed to a range of visualization tools. Many such
tools exist, ranging from line-level, detail visualizations such as
SeeSoft [Eick et al. 1992] up to architecture visualizations which
combine structure and attribute presentation, e.g. Rigi [Storey
et al. 2000], CodeCrawler [Lanza 2004], or SoftVision [Telea
2004]. An extensive overview of software visualization techniques
is provided by Diehl in [Diehl 2007].

Related to static queries, there is little available in terms of a
generic, open query system for C++. Various analyzers, such as
COLUMBUS and CPPX, provide a limited set of built-in queries,
which aim to cover several code standards conformance and ’good

coding practice’ checks, e.g. that a baseclass should declare a
virtual destructor, or that overriding a method should not change
its access specifier. ASF+SDF goes probably the furthest here,
proposing a formalism to define (and check) assertions on syntax
trees. However, ASF+SDF is still far from full C++ support.

3 System Architecture

To understand the operation of the proposed open query sys-
tem, described further in Sec. 3.3, we first outline the architec-
ture of SOLIDFX, the Integrated Reverse-engineering Environ-
ment (IRE) into which the query system is combined with pars-
ing and visualization. SOLIDFXis a commercial tool, the result
of a design process of several years, combining our previous ex-
perience with a similar IRE called the Visual Code Navigator
(VCN) [Lommerse et al. 2005] in several projects involving com-
mercial, open-source, and academic C++ code, as well as our ex-
perience with using COLUMBUS.

In the design of SOLIDFX, we chose to use a tolerant extrac-
tor, as we noticed that users would not accept a tool that halts upon
(trivial) syntax errors. Also, we chose a heavyweight extractor, for
several reasons. First and foremost, we need all the facts in the
code, i.e. a complete annotated syntax tree, in order to design an
open query system, since we do not know upfront which facts one
will need to include in one’s queries. Also, in order to pose queries
on-the-fly on source code and also present their results in code-
level visualizations, we need fine-grained information such as the
location, scoping, and types of each identifier in the source code.
This level of detail requires a heavyweight extractor. Finally, the
parsing, querying and presentation (visualization) are tightly con-
nected in an easy-to-use environment via interactive, point-and-
click, operations. This is required for an easy learning curve and
favors users’ acceptance.

This tight integration of parsing, querying, and visualization
requires a fine-grained, but efficient, interface (API) to access the
syntax tree, or fact database. Unfortunately, no heavyweight tol-
erant C++ extractor (coming in open-source form) that we were
aware of offered such an interface, so we had to construct our own
one. In the following we describe the extractor, query system, and
data view components of our system, which are connected as de-
scribed by the architecture shown in Figure 1.

3.1 Fact Database

The fact database contains all the static code data we work
on. This includes the raw facts, produced by the extractor from
the source code, as well as several derived facts, produced by the
query and metric engines during the query process (Sec. 3.3). The
database acts as a central repository, read and written by the vari-
ous system components (Fig. 1).

To analyze a given code base, and produce the corresponding
fact database, one must set up a so-called project. A project is
much like a makefile, i.e. contains a set of source files, include
paths, #defines, and language dialect settings. Users can cre-
ate such projects either by hand, or by an automatic translation of
makefiles or Visual C++ project files, following a technique simi-
lar to the so-called ’compiler wrapping’ described for the COLUM-
BUS extractor [Ferenc et al. 2004]. For each source file (transla-
tion unit) in the project, the extractor parses and saves four kinds
of data elements in the database: lexical, syntax, type, and prepro-
cessor. Each data element is assigned a unique id. The database is
structured as a set of binary files, one per translation unit.

Figure 1. Dataflow architecture of SOLIDFX

The IRE components (parser, query engine, visualizations)
communicate with each other by lightweight sets of ids, called
selections, which resemble table views in a SQL database. The
database creation, which involves parsing the source code, is by
far the most consuming time of static analysis. After this pro-
cess is completed, queries and visualizations only modify selec-
tions, a process which can be done at near-interactive rates (Sec-
tions 3.3,3.4)

3.2 Extracting Facts

As outlined in Section ??, we use a C and C++ heavyweight
analyzer of own construction. We based this analyzer on ELSA,
an existing C++ parser designed using a GLR grammar [McPeak
]. Atop the parser which produces a parse forest of all possible in-
put alternatives, ELSA adds the complex type-checking, scoping,
and symbol lookup rules that disambiguate the input to yield an
Annotated Syntax Graph (ASG). The ASG contains two types of
nodes: abstract syntax tree (AST) nodes, based on the GLR gram-
mar; and type nodes, which encode the type-information created
during disambiguation, and are attached to the corresponding AST
nodes.

Although powerful, ELSA lacks some of the features we re-
quire in our interactive reverse-engineering context (Section ??.
First, ELSA requires preprocessed input, so no preprocessor
facts are extracted. Also, token-level information, such as exact
(row,column) locations, necessary for the code-level visualization
(Section 3.4), are missing. Second, error recovery lacks, so in-
correct code causes parse errors. Third, ELSA dumps the entire
parse tree of the fully preprocessed input, which causes unneces-
sary overhead, as explained later.

We have extended ELSA to eliminate all these limita-
tions [Boerboom and Janssen 2006], as follows. Our extended
fact extractor works in five phases (see Figure 2).

First, the parser, preprocessor and preprocessor filter operate in
parallel. The preprocessor reads the input files and outputs a token
stream enriched with (row,column) location data. For this, we can
use a standard C preprocessor, e.g. as provided by the Boost or
libcpp libraries), patched to output token locations along with the
tokens.

The parser reads the token stream from the preprocessor as it
performs reductions and builds the AST. We extended the ELSA
parser in order to handle incorrect and incomplete input, as fol-
lows. When a parse error is encountered, we switch the parser to a
so-called error recovery rule, which matches all incoming tokens
up to the corresponding closing brace (if the error occurs in a func-
tion body or class declaration scope) or semicolon (if the error oc-
curred in a method, namespace, or global declaration scope). Be-
sides skipping the erroneous code, we also remove the correspond-
ing parts from the parse tree. The effect is as if the code block
containing the error was not present in the input. This approach
required adding only six extra grammar rules to ELSA’s original
C++ GLR grammar. Our approach, where error-handling grammar
rules get activated on demand, resembles the hybrid parsing strat-
egy suggested by [Knapen et al. 1999]. Compared to ANTLR,
our method lies between ANTLR’s basic error recovery (consum-
ing tokens until a given one is met) and its more flexible parser
exception-handling (consuming tokens until a state-based condi-
tion is met). All in all, our design balances well implementation
simplicity with a good granularity of error recovery.

The error-recovery parsing is followed by ELSA’s original AST
dismbiguation and type-checking. Next, we filter the extracted
facts (preprocessor, AST nodes, and type nodes) and keep only
the facts which originate in, or are referred from, the project
source files (Section 3.1). This eliminates all AST nodes which
are present in the included headers but are not referred to by AST
nodes contained in the analyzed sources, i.e. all declarations and
preprocessor symbols contained in the include headers which are
not referred to in the sources. Filtering the parsed output is essen-
tial for performance and scalability, as it reduces the output with
one up to two orders of magnitude 1. Finally, the filtered output is
written to our database files using a custom binary format.

The several design choices made for the parser implementation,
i.e. using the ELSA highly-optimized, hand-written, parser; pro-
viding lightweight error recovery at global declaration and func-
tion/class scope levels; filtering unreferenced symbols from the
parser output; and writing the output in an optimized binary for-
mat, deliver a fast, tolerant, heavyweight parser. SOLIDFX is
roughly three to six times faster than COLUMBUS, one of the
fastest heavyweight C++ parsers that we could test, on projects
of millions of lines of code [Boerboom and Janssen 2006]. For
such projects, the fact databases saved on disk can take hundreds
of megabytes. However, as we shall see next, querying such
databases is still very fast.

3.3 Query and Metrics Engine

Now that we outlined the parser and fact database components,
we can detail the query and metrics engine, the core of our static
code analysis system.

Formally, a query implements the function

Sout = {x ∈ Sin|q(x, pi) = true} (1)

1This is not surprising, considering that a typical ”Hello world” pro-
gram including stdio.h or iostream contains 100000 lines of code
after preprocessing, of which only a tiny fraction is actually used

Figure 2. Architecture of the SOLIDFX C++ parser (main components shown in bold)

Figure 3. Query system architecture, with main elements marked in bold

that is, finds those elements x from a selection Sin which satisfy a
predicate q(x, pi), where pi are query-specific parameters.

The query engine is designed as a C++ class library which im-
plements several specializations of the above query interface q, as
follows (see also Fig. 3 which depicts the architecture of our query
system).

For AST nodes x, VisitorQuery visits the tree rooted at x and
searches for nodes of a specific syntax-type T , e.g. function, op-
tionally checking for attributes, e.g. the functions name. For each
of the approximately 170 syntax types T in our C++ GLR gram-
mar, we generate a query class containing children queries for T s
non-terminal children and properties, or data attributes, for T s ter-
minal children. For instance, the Function query has a property
name for the functions name (which is an identifier, i.e. terminal,
in the grammar), and two children queries body and signature for
the functions body and signature (which are non-terminals). Be-
sides queries for AST nodes, which search for syntax, we also cre-
ated TypeQueries which search for type-data, and LocationQueries
which search for code fragments having a particular file, line, or

column location in the code.
Queries can be composed in query-trees. The query composi-

tion semantics is controlled by a separate customizable Accumu-
lator class. When a child qc of a query q yields a hit, q calls its Ac-
cumulators accumulate() method, which returns true when the
Accumulators condition has been met, else false. By default, all
query nodes use an AND-accumulator, which returns true when
all queries in a query-tree are satisfied. We designed Accumula-
tor subclasses for different operators, e.g. AND, OR, <, =, and
similar. These let us easily implement complex queries by com-
bining simple ones. For example, to find all functions whose name
begins with ”Foo” and have at least two parameters of type ”Bar”,
we set the Function querys name attribute to ”Foo*” (using reg-
ular expressions or wildcards), the name attributes of the Type
nodes of the functions parameter children-queries to ”Bar”, and
an AtLeastAccumulator with a default-value of 2 on the functions
signature child-query.

A given query tree q is applied on a given input element x by
using the visitor pattern to find those elements y in the AST rooted

at x matching the type of q’s root, followed by an application of
q(y) based on recursion over q’s children-queries. Overall, the
query composition can be modified transparently by different ac-
cumulators, without having to change the query classes. We store
query-trees in XML, and provide a query editor, so users can edit
queries on-the-fly, without recompilation, and organize queries in
custom query libraries. We have so far designed over 70 queries
that cover a number of static analyses, such as identifying basic
code smells e.g. case branches without break, class member ini-
tializations differing from the declaration order, changing access
specification of a class member when overriden, base classes with
constructed data members and no virtual destructors; and extract-
ing class hierarchy, include, and call graphs. The query mecha-
nism allows a flexible specification of a wide set of static queries,
ranging from ”find all variables called x” to ”find all classes inher-
iting from Base and containing a method which throws exactly
two exceptions of type E”. Several examples of queries and their
applications are presented next in Section 4.

Queries can be executed on both in-memory and on-disk fact
databases. On-disk queries are very efficient and have a negligible
memory footprint, given the index maps that allow random access
to elements-by-id and iterating over same-type elements (Sec. 3.1).
We also implemented a cache mechanism which loads and keeps
entire parsed translation units in memory on a most-recently-used
policy. This improves query speed even further at the expense
of more memory, roughly one megabyte per 5000 LOC. Another
simple and effective speed-up uses early query termination when
evaluating the query-tree accumulators. All in all, these mecha-
nisms allow us to query millions of ASG nodes in a few seconds.

Several code metrics can be implemented directly using the
query engine. For example, the metrics of the type ”number of
occurrences of code pattern P ” can be implemented directly as

m(x) = |q(x, pi)| ∈ R,∀x ∈ Sin. (2)

This associates a numeric value m(x) to each element x of a se-
lection Sin based on the number of hits of a corresponding query q
which searches pattern P . Several metrics, such as McCabe’s cy-
clomatic complexity, class interface sizes, coupling metrics, and
most of the object-oriented metrics discussed in [Lanza and Mari-
nescu 2006] can be implemented in this way.

3.4 Queries and the Data Views

The third and final component of SOLIDFX provides a set of
interactive data visualizations, or views. These views serve both as
input and output to the query operations: Users can select elements
in the views and pass them as input to queries or metric engines,
whose outputs can further serve as inputs for the views.

Figure 4 shows several data views. The project view lets users
set up an analysis project, much like one sets up a build project in
Visual Studio or Eclipse. The output view shows the fatabase files
created by the parser, while the selection view shows all selections
in the database. In this view, one can specify if the elements of
a selection are to be shown in the other views, and if so, how to
color them (as discussed next)2. The query view shows all avail-
able queries in the XML query library (Section 3.3).

To perform a query, e.g. ”select all function definitions with n
parameters”, one selects the query in the query view, fills in the
desired attributes, e.g. the value for n in the query GUI, and clicks
on the selection to query in the selection view. A new selection,

2We recommend viewing this document in full color

containing the query’s output, is automatically added to the selec-
tion view. To browse the elements in a selection and their code
metrics, if any, we provide a separate view called selection mon-
itor, which uses the ’table lens’ technique: a combination of text
and colored bar graphs [Telea 2006]. When zoomed in, the table
lens looks like a usual Excel table. When zoomed out, each row
becomes a pixel row colored and scaled to show the data values,
so the entire table becomes a set of vertical graphs.

Code views show the actual source code in the desired files.
Selected code is highlighted in the respective selections’ colors,
thereby enabling one to spot the occurrence of particular events.
We now see that, to construct such highlights, we need the exact
(row,column) locations of every AST node and preprocessor direc-
tive from the parsing phase (Sec. 3.2). Code views can be zoomed
out by decreasing the font size, thereby allowing one to overview
larger amounts of code than using standard editors.

The UML view is a custom view showing UML-like class di-
agrams. The diagrams themselves are extracted from the fact
database using queries which search for classes, inheritance re-
lations, and associations. The latter can be defined e.g. as function
calls, variable uses, or type uses. The extracted diagrams can be
laid out by hand or automatically using the GraphViz library [AT
& T 2007] or a custom graph layout library we developed. More-
over, class and method metrics can be drawn atop of the laid out
diagrams using icons scaled and colored to show the metric val-
ues, following an extension of the technique described in [Termeer
et al. 2005]. The combination of diagrams and metrics enables
users to perform various types of code quality and modularity as-
sessments (see Section 4).

Besides these built-in views, external visualization tools can be
integrated within our IRE by writing appropriate data exporters.
The inset in Fig. 4 shows such an external view which uses the
SQL Lite database browser executable, with no modification, to
visualize the data in a selection, i.e. the code element ids, their ac-
tual code, and the metrics computed on it, saved as a SQL database
table by a data exporter. This type of integration allows us to ex-
tend our IRE by reusing several existing software analysis and vi-
sualization tools with a minimal amount of effort. External views
are preferred when the interaction between the fact database and
the view is rather loose, and when the amount of data to be passed
to the view is limited, as compared to the built-in views, which
heavily access the fact database at a fine-grained level.

4 Applications

We illustrate now the SOLIDFX IRE with several examples
from a number of industrial projects3. In all these cases, the ana-
lyzed C++ code was developed by third parties, and we were not
familiar with the code or its purpose before the analysis4. The re-
sults of the analyses were discussed together with the stakeholders,
mainly using the data views. An typical analysis session would
take a few hours from the initial code hand-over until the results
were available. A complete code base assessment would typi-
cally take three to six such sessions, where increasingly refined
questions and hypotheses would be tested during the later sessions
by means of specific queries on narrowed-down parts of the code
base.

3A video showing SOLIDFX in use is also available at www.
solidsource.nl/video/SolidFX/SolidFX.html

4The only exception to this is the wxWidgets code base

database view
output view

selection monitor

Figure 4. Overview of the SOLIDFX Integrated Reverse Environment

4.1 Finding Complexity Hot-Spots

In the first application, we examine the complexity of the
wxWidgets code base, a popular C++ GUI library having over
500 classes and 500 KLOC [Smart et al. 2005]. After extraction,
we query all function definitions and compute several metrics on
them: lines of code (LOC), comment lines (CLOC), McCabes
cyclomatic complexity (CY CLO), and number of C-style cast
expressions (CAST). Next, we group the functions by file and
sort the groups on descending value of the CY CLO metric, using
the selection monitor widget. Figure 5 bottom shows a zoomed-
out snapshot of this widget, focusing on two files A and B. Each
pixel row shows the metrics of one function. The long red bar at
the top of file B indicates the most complex function in the sys-
tem (denoted f1). We also see that f1 is also the best documented
(highest CLOC), largest (highest LOC), and, interestingly, in the
top-two as number of C-casts (CAST). Clearly, f1 is a highly
complex and important function in wxWidgets.

Double-clicking the table row of f1 opens up a code view
showing all the selected function definitions and our clicked f1
flashing (Fig. 5 top, see also the video). The functions in the code
view are colored to show two metrics simultaneously, using a blue-
to-red colormap: the CY CLO metric (highlight fill color) and the
CAST metric (highlight frame color). We see that f1 stands out
as having both the body and frame in red, i.e. being both complex
and having many casts. In the selection monitor, we also see that
the function having the most casts, f2 (located in file A), is also
highly complex (high CY CLO), but is barely commented (low
CLOC). This may point to a redocumentation need.

4.2 Modularity Assessment

In this second application, the stakeholders were interested to
assess the overall modularity of two given subsystems of a com-
mercial database solution. The assessment was needed as a first
step in a subsequent porting process. For this, we first extracted
the static call graphs from the code, using a custom designed query
that would look for function definitions and function calls, and link
calls to the definitions using a technique which basically repro-
duces the working of a classical linker. Besides the call graphs, we
also extract the system hierarchy, seen as methods-classes-files-
folders. The call graph and hierarchy trees are next exported and
visualized by Call-i-Grapher, a third-party tool designed to display
large hierarchical graphs [Holten 2006]. The hierarchy is shown
as a set of concentric rings, the sectors of which indicate methods,
classes, and files (from inside to the outside) (Fig. 6). Call rela-
tions are drawn as splines, bundled to indicate relations emerging
from, or going to, the same hierarchy ancestor.

The subsystem shown in Fig. 6 left is quite modular. We can
easily discern the way its five subsystems call each other. Edge
colors indicate the call direction: callers are red, callees are blue.
We immediately see, for example, that libraries is only called from
database and that emphcore does not call libraries. In contrast, the
subsystem shown in Fig. 6 right, albeit of a similar size in terms
of methods and classes, is far less modular. Here, we see two
files which call each other in a highly complex way. There is little
structure to see, so little hope that one can easily split these files
into smaller loosely coupled units to simplify understanding and,
later, porting. Here, we used the edge color to show the call type:
green indicates static calls, whereas blue shows virtual calls. The
blue edges appear to be somewhat bundled, so there is still some

Figure 5. Finding complexity hot-spots in the wxWidgets code base

hope we can locate some interface classes (containing mainly vir-
tual functions) in this way.

4.3 Maintainability Assessment

In the third and last application, we are interested to assess the
maintainability of a C++ code base implementing an UML editor
using OpenGL, wxWidgets, and the STL library. The application
was developed over a period of several years by three persons. The
last developer, who worked for the second half of the period, did
not have in the end a clear idea of the entire code architecture,
and was concerned about the code maintainability. We started the
analysis by extracting a number of class diagrams from the source
code. The classes were loosely grouped into diagrams manually
by the developer, based on his intuition and insight as to which
belong together. As association relations, we considered method
calls and referring to class types. Next, we computed three metrics
on the methods: the lines-of-code (LOC), lines-of-comment-code
(CLOC), and McCabe’s cyclomatic complexity (CY CLO).

Figure 7 shows one of the extracted class diagrams, laid out

automatically using GraphViz. Class heights are proportional to
their methods’ counts. Inheritance relations are drawn as black
lines, while associations are drawn as light-gray lines (in order
to reduce the visual clutter). On this picture, the architect recog-
nized three main subsystems of the considered code base, along
a Model-View-Controller pattern: the data model, containing the
main application data structures; the visualization core, contain-
ing the control functions; and the visualization plug-in, containing
rendering (viewing) functions. The diagram also shows that these
subsystems are quite decoupled, which indicates a good maintain-
ability. Further, we see the heavy use of several STL classes,
mainly for the data model. This does not pose any maintenance
problems, as it was decided to use STL in the system implementa-
tion from the beginning, and STL is stable and well-documented
software.

Atop the class icons, the computed LOC and CY CLO met-
rics are visualized using colored bar graphs. Long, red horizon-
tal bars indicate high values. Thin, blue bars indicate low values.
Within each class, the bar graphs are sorted in decreasing order of
the CY CLO metric. Looking at Fig. 7 top, we quickly discover

vc7/include database corelibraries

corelibraries

libraries 2

Figure 6. Call graph visualizations. Modular system (left) versus ’spaghetti code’ (right)

an outlier class, marked X, in the visualization plug-in subsystem.
This class has the highest CY CLO and LOC values in the entire
system, and has also many methods. All other classes have rela-
tively small CY CLO and LOC values, as indicated by the thin
bars. Figure 7 bottom shows a zoomed-in view of the visualiza-
tion plug-in. The sorted bar graphs, coupled with textual tooltips
(not shown in the image), allow us to quickly locate the most com-
plex methods, found of the class X, of the entire system. The
most complex method has a McCabe value of 40, which is very
large. Looking in detail at the code of X, we could later see that
it was indeed very complex. However, the diagram shows us also
that class X is not referred to directly from outside the visualiza-
tion plug-in. Moreover, the lead developer recognized this class as
containing his own code, which was indeed not yet cleaned up and
refactored. Hence, although maintaining this class is indeed hard,
this problem will not propagate to the entire system, but stays con-
fined within the plug-in. Overall, it was assessed that the entire
system is quite maintainable.

5 Discussion

At the current moment, SOLIDFX is a mature product capa-
ble of handling complex analyses and constructing visualizations
of code bases of millions of LOC. Its design and evolution as a
product started from a loosely coupled set of tools containing ba-
sic functionalities, such as preprocessing, parsing, fact database
filtering, a query engine, and several software visualizations im-
plemented using a range of techniques and languages. During nu-
merous pilot projects, as early as [Telea 2004], we observed that
some of the greatest obstacles in the acceptance of the proposed
set of techniques were the high difficulty of setting up an analysis
project, the steep learning curve of a set of hybrid tools, and the
need to program (be it even only as scripting) in order to use a
toolset.

The relative high success of SOLIDFX in the several recent
projects we have used it is largely due to the high integration of its

functions, presented under a uniform interface, and the possibil-
ity to execute complex analyses with a minimal, or no, amount of
programming. Also, we noticed that using the IRE was not much
more effective than using scripted command-line tools for the ex-
traction phase, which is often performed in batch mode. However,
for the exploration phase, the IRE and its tight tool integration
were massively more productive than using the same tools stan-
dalone, connected by little scripts and data files.

However, besides the integration, the effectiveness of the pre-
sented solution relies heavily on the available query library. In
most cases, users do not have the time (or expertise) to write cus-
tom queries from scratch, so they rely upon such queries to be
readily available in the provided query libraries. To support this
goal, we started designing our query libraries bottom-up, i.e. from
simple, atomic, queries to more sophisticated, composite, ones.
In this process, we noticed, however, that the purely context-
independent, pattern-matching query engine that we initially de-
signed, is not sufficient in all cases. For example, to find vari-
ables which are used before initialization, a more complex query
mechanism involving state, as well as multiple traversals of the
parse trees, is needed. Although such a mechanism can be imple-
mented simply by coding the desired functionality in C++ atop of
our parser, we are currently investigating more modular ways to
integrate it within our open query API.

6 Conclusions

We have presented the design of an open query framework for
static C++ code analysis and its integration in SOLIDFX, an In-
tegrated Reverse Engineering environment for C and C++. The
presented integration offers engineers a simple, but powerful, way
to execute a number of code analyses pertaining to maintenance,
refactoring, and software understanding, in a visual manner, by
simple point-and-click operations on the code artifacts. Due to
the high integration of querying with parsing and visualization,
SOLIDFX enables users to conduct reverse-engineering sessions

visualization plug-in

 complex implementation class X

visualization core

STL classes

data model

LOC CYCLO most complex
method (CYCLO=40)

class X

Figure 7. Maintainability assessment. Model-View-Controller architecture view (top). Zoomed-in view
on the subsystem containing the most complex class (bottom)

with the same ease as software development is traditionally done
in IDEs. Several typical applications of the IRE are presented.

We are currently working in extending SOLIDFX in several di-
rections. Refined static information can be queried from the basic
facts, such as control flow and data dependency graphs, leading
to more complex and useful safety analyses. Secondly, we are
working to implement a number of predefined ready-to-use anal-
ysis packages atop of our query system, such as checking for the
MISRA C Standard [MISRA Association 2008], thereby making
the use of SOLIDFX even more productive and easy.

References

AT & T. 2007. GraphViz. www.graphviz.org.

BAXTER, I., PIDGEON, C., AND MEHLICH, M. 2004. DMS:
Program transformations for practical scalable software evolu-
tion. In Proc. ICSE, 625–634.

BOERBOOM, F., AND JANSSEN, A. 2006. Fact extraction, query-
ing and visualization of large c++ code bases. MSc thesis, Eind-
hoven Univ. of Technology.

COLLARD, M. L., KAGDI, H. H., AND MALETIC, J. I. 2003.
An XML-based lightweight C++ fact extractor. In Proc. IWPC,
IEEE Press, 134–143.

DIEHL, S. 2007. Software Visualization - Visualizing the Struc-
ture, Behaviour, and Evolution of Software. Springer.

EICK, S., STEFFEN, J., AND SUMNER, E. 1992. Seesoft - a tool
for visualizing line oriented software statistics. IEEE Trans.
Soft. Eng. 18, 11, 957–968.

FERENC, R., SIKET, I., , AND GYIM ÓTHY, T. 2004. Extracting
facts from open source software. In Proc. ICSM.

HOLTEN, D. 2006. Hierarchical edge bundles: Visualization of
adjacency relations in hierarchical data. In Proc. InfoVis, 741–
748.

KNAPEN, G., LAGUË, B., DAGENAIS, M., AND MERLO, E.
1999. Parsing C++ despite missing declarations. In Proc.
IWPC, 114–122.

LANZA, M., AND MARINESCU, R. 2006. Object-Oriented
Metrics in Practice - Using Software Metrics to Characterize,
Evaluate, and Improve the Design of Object-Oriented Systems.
Springer.

LANZA, M. 2004. CodeCrawler - polymetric views in action. In
Proc. ASE, 394–395.

LIN, Y., HOLT, R. C., AND MALTON, A. J. 2003. Completeness
of a fact extractor. In Proc. WCRE, 196–204.

LOMMERSE, G., NOSSIN, F., VOINEA, L., AND TELEA, A.
2005. The visual code navigator: An interactive toolset for
source code investigation. In Proc. InfoVis, 24–31.

MCPEAK, S. Elkhound: A fast, practical glr parser genera-
tor. Computer Science Division, Univ. of California, Berkeley.
Tech. report UCB/CSD-2-1214, Dec. 2002.

MIHANCEA, P., GANEA, G., VEREBI, I., MARINESCU, C., AND
MARINESCU, R. 2007. McC and Mc#: Unified C++ and C#
design facts extractors tools. In Proc. SYNASC, 101104.

MISRA ASSOCIATION. 2008. Guidelines for the use of the C
language in critical systems. www.misra-c2.com.

PARR, T., AND QUONG, R. 1995. ANTLR: A predicated-LL(k)
parser generator. Software - Practice and Experience 25, 7,
789–810.

SMART, J., HOCK, K., AND CSOMOR, S. 2005. Cross-Platform
GUI Programming with wxWidgets. Prentice Hall.

STOREY, M. A., WONG, K., AND MÜLLER, H. A. 2000. How
do program understanding tools affect how programmers un-
derstand programs? Science of Computer Programming 36, 2,
183207.

TELEA, A. 2004. An open architecture for visual reverse engi-
neering. In Managing Corporate Information Systems Evolu-
tion and Maintenance (ch. 9), Idea Group Inc., 211–227.

TELEA, A. 2006. Combining extended table lens and treemap
techniques for visualizing tabular data. In Proc. EuroVis, 5158.

TERMEER, M., LANGE, C., TELEA, A., AND CHAUDRON, M.
2005. Visual exploration of combined architectural and metric
information. In Proc. VISSOFT, 21–26.

VAN DEN BRAND, M., KLINT, P., AND VERHOEF, C. 1997.
Reengineering needs generic programming language technol-
ogy. ACM SIGPLAN Notices 32, 2, 54–61.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

