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Abstract. We show how one can obtain a class of quadratic
Wasserstein metrics, that is to say, Wasserstein metrics of order
2, on the set of faithful normal states of a von Neumann algebra
A, via transport plans, rather than through a dynamical approach.
Two key points to make this work, are a suitable formulation of the
cost of transport arising from Tomita-Takesaki theory and relative
tensor products of bimodules (or correspondences in the sense of
Connes). The triangle inequality, symmetry and W2(µ, µ) = 0 all
work quite generally, but to show that W2(µ, ν) = 0 implies µ = ν,
we need to assume that A is finitely generated.

1. Introduction

In recent years, several papers have studied Wasserstein metrics of
order 2, or quadratic Wasserstein metrics, in a noncommutative context
using a dynamical approach inspired by the dynamical formulation of
Benamou and Brenier [5] in the classical case. These papers, often
involving finite dimensional algebras, include [12, 13, 14, 37, 38, 15,
16, 49]. The papers [37, 49] investigate this approach for W*-algebras,
i.e., von Neumann algebras, motivated by, among other goals, finding
a noncommutative analogue of Ricci curvature bounds. In turn, the
papers [7, 8] made use of these developments to obtain logarithmic
Sobolev inequalities for quantum Markov semigroups

Classically, however, there is also another approach, using transport
plans (i.e., couplings of probability measures). This approach has also
been followed in the literature on the noncommutative case, but it
typically seems to lead to a Wasserstein “distance” which is not zero
between a state and itself, while the triangle equality also has to be
adapted. In other words, so far in the literature on the noncommu-
tative transport plan approach, the Wasserstein distance on the state
space of the algebra concerned, is not actually a metric. Quadratic
Wasserstein distance functions obtained from transport plans have nev-
ertheless already had applications in the noncommutative case, specif-
ically in quantum physics, despite not being metrics. See in particular
[33, 34, 35, 11, 24]. This motivates a further study of the transport plan
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formulation, in particular finding an approach where they do deliver
metrics, which is exactly our aim in this paper.

In [2], difficulties in the noncommutative transport plan approach
were pointed out. They obtained simple Wasserstein-like metrics for
the states on the 2×2 matrices using noncommutative transport plans,
but by deviating somewhat from the standard conceptual framework
of optimal transport.

In the case of the space of tracial states on a C*-algebra, [6] did
obtain Wasserstein metrics (of any order) via a coupling approach,
through a somewhat different formulation of couplings (transport plans)
than in this paper. Furthermore, our setup involves bimodules for von
Neumann algebras in a central way, which is again different from the
approach in [6]. Nevertheless, there are some analogies between the
two approaches, which will be pointed out where relevant.

We can also mention the well-known work of Connes [21] on non-
commutative geometry, where a metric on the state space is obtained
as a Wasserstein distance of order 1. However, this is not based on
couplings, but rather extends the classical dual definition based on
Lipschitz seminorms.

There has been at least one other approach to a quantum Wasser-
stein distance, also of order 1, namely [23], based on the notion of
neighbouring states, where a metric was obtained.

In this paper we develop an approach to noncommutative quadratic
Wasserstein distances using transport plans, where the distance func-
tions on the space of faithful normal states of a von Neumann algebra
are indeed metrics. Below we outline our approach, starting with brief
remarks on the classical case.

We are interested in obtaining a non-commutative analogue of the
classical case where the cost function is taken as the usual distance
squared in R

n, giving the following cost of transport from one proba-
bility measure to another on some closed subset X of Rn:

(1) I(ω) =

∫

X×X

‖x− y‖2 dω(x, y)

where ω is a transport plan from the one probability measure µ to
the other ν, i.e. ω is a coupling of the two measures. The goal is to
find the minimum of I(ω), for a given pair (µ, ν), the square root of
which then defines the quadratic Wasserstein distance between µ and
ν, giving a metric on an appropriate set of probability measures. This
is a specific but important case of the optimal transport problem. A
clear discussion of the original motivation for optimal transport, as
well as its modern implications, can be found in the books by Villani
[47, 48].
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As we only consider the quadratic case in this paper, we henceforth
simply refer to Wasserstein distances (should they not yet be shown to
be metrics) and Wasserstein metrics.

Our noncommutative version will correspond to the case where X
is a bounded set, ensuring that the coordinate functions x 7→ xl, in
terms of x = (x1, ..., xn), are bounded. We replace these coordinate
functions by elements k1, ..., kn of a von Neumann algebra A. The kl
are then bounded operators, which is why this corresponds to bounded
X . In this approach the closest analogy to the classical coordinate
functions would be to assume that the kl are self-adjoint, but for our
development this is not actually needed, though we do ultimately need
a weaker assumption, as will be pointed out below.

A direct translation of the classical cost function c(x, y) := ‖x− y‖2

above, is then
n

∑

l=1

|kl ⊗ 1 − 1 ⊗ kl|
2

where 1 denotes the unit of A and |a|2 := a∗a for a in any ∗-algebra.
However, noncommutativity of A makes this direct translation unten-
able.

Instead, for the cost of transport between two faithful normal states
µ and ν on A, we, at least heuristically, propose to use

(2) c =
n

∑

l=1

|kl ⊗ 1 − 1 ⊗ (Sνk
∗

l Sν)|
2

where Sν is the conjugate linear (and typically unbounded) linear oper-
ator from Tomita-Takesaki theory associated with ν. As this c appears
to depend on one of the states, namely ν, it is immediately clear that
this is quite different from the classical case, where no such dependence
on the probability measures are present. However, even though c has
been “contextualized” in this sense for the states involved, the elements
kl of A do not depend on the states. Furthermore, it is not clear that
this can lead to a distance that is indeed symmetric, but the apparent
asymmetry between the two states µ and ν in c can be circumvented
using a condition involving the modular group. The first indication
that we should use (2), was that it leads to zero distance between a
state and itself (see Proposition 6.1).

The fact that Sν is typically unbounded and Sνk
∗

l Sν not an element of
A (in standard form) nor of its commutant A′, is a complication which
we can sidestep by rewriting the cost for a noncommutative transport
plan in a more convenient form which will give us a rigorous definition
of the cost of transportation form µ to ν. We then do not refer to
c above directly, but only to the cost of transport from one state to
another in terms of the kl. A detailed discussion of this appears in
Section 3.
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This approach turns out to fit perfectly with bimodules, or corre-
spondences in the sense of Connes, and the relative tensor product of
bimodules provides the ideal structure to prove the triangle inequality
for the Wasserstein distance W2 which we are going to define along the
lines above.

An important point is the following: To complete the proof that our
W2 is a metric, we assume that A is finitely generated, in analogy to
R
n being finite dimensional. More precisely, that A is generated by

k1, ..., kn above, with {k∗1, ..., k
∗

n} = {k1, ..., kn}; note that k∗l = kl is not
required. This is needed to show that W2(µ, ν) = 0 for faithful normal
states on A, implies that µ = ν. However, the triangle inequality,
symmetry and W2(µ, µ) = 0 all work without this assumption.

We note that our use of generators parallels the approach of [6]. In
particular, they also assume their C*-algebra to be finitely generated
to obtain Wasserstein metrics on the space of tracial states.

Transport plans and related cyclic representations are discussed in
Section 2, setting up the basic framework and much notation for the
rest of the paper. Our basic definitions related to the cost of transport
and Wasserstein distances follow in Section 3. The subsequent three
sections then prove the various properties of a metric in turn. After
that, the last section gives an indication of how the setting we use may
be expanded.

2. Transport plans and cyclic representations

This section sets up the framework to be used in the rest of the paper,
in particular the formulation of transport plans. Transport plans lead
to cyclic representation which play a central role in this paper. These
representations and the bimodule structure on their Hilbert spaces, are
also discussed in this section. The notation introduced here will be used
throughout the sequel.

Although our focus is eventually on the faithful normal states of one
von Neumann algebra at a time, a number of aspects of our approach
are clarified by starting off with three von Neumann algebra. This is
ultimately related to the three elements of a metric space appearing in
the formulation of the triangle inequality.

We consider three (necessarily σ-finite) von Neumann algebras A, B
and C with faithful normal states µ, ν and ξ respectively. We assume
that they are all in standard form, meaning that A is a von Neumann
algebra on a Hilbert space Gµ with a cyclic and separating vector Λµ

for A such that

µ(a) = 〈Λµ, aΛµ〉

for all a ∈ A, which allows us to define a state µ′ on the commutant A′

by

µ′(a′) = 〈Λµ, a
′Λµ〉
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for all a′ ∈ A′. The corresponding notation will be used for (B, ν) and
(C, ξ) as well.

The starting point of our development is the definition of transport
plans, also known as couplings.

Definition 2.1. A transport plan from µ to ν is a state ω on the
algebraic tensor product A⊙ B′ such that

ω(a⊗ 1) = µ(a) and ω(1 ⊗ b′) = ν ′(b′)

for all a ∈ A and b′ ∈ B′. Denote the set of all transport plans from µ

to ν by T (µ, ν).

A transport plan from ν to ξ will be denoted by ψ, and from µ to ξ
by ϕ.

To obtain symmetry of a Wasserstein distance on the faithful normal
states, we are going to use a restricted set of transport plans. To define
them, we use a property which was called balance between dynamical
systems in [28]:

Definition 2.2. Given dynamical systems A = (A, α, µ) and B =
(B, β, ν), where α and β are unital completely positive (u.c.p.) maps
α : A → A and β : B → B such that µ ◦ α = µ and ν ◦ β = ν, we say
that A and B (in this order) are in balance with respect to a transport
plan ω from µ to ν, written as

AωB,

if

ω(α(a) ⊗ b′) = ω(a⊗ β ′(b′))

for all a ∈ A and b′ ∈ B′, where β ′ : B′ → B′ is the dual of β defined
by

〈Λν , bβ
′(b′)Λν〉 = 〈Λν , β(b)b′Λν〉

for all b ∈ B and b′ = B′ (see [1] for the theory behind such duals and
[28, Section 2] for a summary).

Our restricted set of transport plans are then defined as follows:

Definition 2.3. The set of modular transport plans from µ to ν is

Tσ(µ, ν) := {ω ∈ T (µ, ν) : (A, σµt , µ)ω (B, σνt , ν) for all t ∈ R}

where σµ and σν are the modular groups associated with µ and ν

respectively.

Note that Tσ(µ, ν) is not empty, as it contains µ⊙ ν ′.
In the remainder of this section we consider general transport plans,

but from the next section modular transport plans will become the
focus.

Transport plans lead to cyclic representations and we need to keep
track how the various cyclic representations relate to one another. Let
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(Hω, πω,Ω) be a cyclic representation of (A ⊙ B′, ω), i.e. Ω ∈ Hω is
cyclic for A⊙ B′ and

ω = 〈Ω, πω(·)Ω〉ω ,

where for emphasis we write the inner product of Hω as 〈·, ·〉ω. This
induces cyclic representations (Hω

µ , π
ω
µ ,Ω) and (Hω

ν , π
ω
ν′ ,Ω) of (A, µ)

and (B′, ν ′) respectively, by setting

Hω
µ := πω(A⊗ 1)Ω and πωµ (a) := πω(a⊗ 1)|Hω

µ

for all a ∈ A, and

Hω
ν := πω(1 ⊗ B′)Ω and πων′(b

′) := πω(1 ⊗ b′)|Hω
ν

for all b′ ∈ B′. A unitary equivalence

(3) uν : Gν → Hω
ν

from (Gν ,idB′ ,Λν) to (Hω
ν , πν′,Ω) is given by

uνb
′Λν := πων′(b

′)Ω

for all b′ ∈ B′. Then
πων′(b

′) = uνb
′u∗ν

for all b′ ∈ B′. By setting

πων (b) := uνbu
∗

ν

for all b ∈ B, we also obtain a cyclic representation (Hω
ν , π

ω
ν ,Ω) of

(B, ν).
Denoting the modular conjugation for B associated to Λν by Jν ,

while the modular conjugation for B associated to Ω is denoted by Jων ,
one finds that

Jων uν = uνJν

from which it follows that

πων = jων ◦ πων′ ◦ jν

where jων := Jων (·)∗Jων and jν := Jν(·)
∗Jν on B(Hω

ν ) and B(Gν) respec-
tively. Here B(Gν) is the von Neumann algebra of all bounded linear
operators Gν → Gν .

A key structure that emerges from the transport plan ω, is that Hω

is an A-B-bimodule via

axb := πω(a⊗ jν(b))x

for all a ∈ A, b ∈ B and x ∈ Hω. The required normality conditions
follow from [4, Theorem 3.3].

The forgoing discussion of course also holds for ψ and ϕ, using cor-
responding notation for the induced representations, and in particular
denoting the cyclic vectors by

Ψ and Φ

respectively.
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A central fact which will be of great importance to us, is that trans-
port plans from µ to ν are in a one-to-one correspondence with u.c.p.
maps E : A→ B such that ν ◦ E = µ. Let

̟B : B ⊙ B′ → B(Gν)

be the unital ∗-homomorphism defined by extending ̟B(b ⊗ b′) = bb′

using the universal property of tensor products. Then set

δν = 〈Λν , ̟B(·)Λν〉 .

Note that δν is a transport plan from ν to itself. It now follows that
there is a unique map

Eω : A→ B

such that

(4) ω(a⊗ b′) = δν(Eω(a) ⊗ b′)

for all a ∈ A and b′ ∈ B′. This map Eω is linear, normal (i.e. σ-weakly
continuous), u.c.p. (unital and completely positive) and satisfies

ν ◦ Eω = µ.

Conversely, given a u.c.p. map E : A → B such that ν ◦ E = µ, it
defines a transport plan ωE from µ to ν by

ωE(a⊗ b′) = δν(E(a) ⊗ b′)

which satisfies E = EωE
. Technical details can be found in [28, Section

3]. This correspondence is well-known and widely used in various forms
and degrees of generality, for example in finite dimensions in quantum
information theory, where it is known as the Choi-Jamio lkowski duality
(see [18, 25, 39] for the origins and [40] for an overview), and has also
found application in the theory of noncommutative joinings [4]. In
effect we can now view u.c.p. maps as transport plans, as was done in
[24], however, we reserve the term “transport plan” for how it is used
in Definition 2.1. In classical probability theory the correspondence
between couplings and Markov operators was studied for couplings of
a measure with itself in [10], and more generally in [41], though it seems
not to be widely used in classical optimal transport.

By [28, Theorem 4.1] we can then express AωB in Definition 2.2 as

Eω ◦ α = β ◦ Eω

which is often a convenient way to check if a transport plan is modular.
As in [28, Section 5], this correspondence allows us to compose trans-

port plans ω ∈ T (µ, ν) and ψ ∈ T (ν, ξ) to obtain a transport plan
ω ◦ ψ ∈ T (µ, ξ) defined via

Eω◦ψ = Eψ ◦ Eω.
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In the remainder of this section we are particularly interested in this
transport plan, and how it relates to the relative tensor product of the
bimodules Hω and Hψ. So we set

ϕ = ω ◦ ψ

and consider the relative tensor product

H := Hω ⊗ν Hψ.

An extended discussion of these products can be found in [46, Section
IX.3], but also see [30] and the early work [44]. The original source
is Connes’ work on correspondences, which has not been published in
full, but see [22, Appendix V.B] for a partial exposition.

The relative tensor product H is itself an A-C-bimodule, and con-
tains the vector

Φ := Ω ⊗ν Ψ

which can indeed be taken as the cyclic vector in the cyclic represen-
tation (Hϕ, πϕ,Φ) of (A ⊙ C ′, ϕ). This is because the representation
can be obtained from the bimodule H using the not necessarily cyclic
representation π of A⊙ C ′ defined through

π(a⊗ c′)z := azjξ(c
′)

for all z ∈ H , by restriction:

Hϕ := π(A⊙ C ′)Φ and πϕ(t) := π(t)|Hϕ

for all t ∈ A⊙C ′. That this indeed provides a cyclic representation for
ϕ, follows from [28, Corollary 5.7].

3. Cost of transport and the distance W2

Here we introduce the cost of transport as will be used in this paper,
followed by the paper’s central definition, namely that of Wasserstein
distance W2.

An important formula related to cost of transport, expressed in terms
of the setup and notation from the previous section and norm ‖·‖ω of
the Hilbert space Hω, is the following:

(5)
∥

∥πωµ (a)Ω − πων (b)Ω
∥

∥

2

ω
= µ(a∗a)+ν(b∗b)−ν(Eω(a)∗b)−ν(b∗Eω(a))

for all a ∈ A and b ∈ B. This is derived by a straightforward sequence
of manipulations, in particular making use of the projection Pν of Hω

onto Hω
ν , in terms of which one has

〈

πωµ (a)Ω, πων (b)Ω
〉

ω
= 〈πω(a⊗ 1)Ω, Pνπ

ω
ν (b)Ω〉ω

= 〈u∗νPνπω(a⊗ 1)uνΛν , bΛν〉

= 〈Eω(a)Λν , bΛν〉

= ν(Eω(a)∗b)

by [28, Proposition 3.1].
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Now set
A = B = C.

By the theory of standard forms [3, 20, 36] (also see [9, Theorem 2.5.31])
we can consequently take G = Gµ = Gν = Gξ and represent the faithful
normal states µ, ν and ξ on A by three cyclic and separating vectors
Λµ,Λν ,Λξ ∈ G for A. As usual in Tomita-Takesaki theory, we define a
closed conjugate linear operator Sν in G through

SνaΛν = a∗Λν

for all a ∈ A. Following the idea (2) in the introduction, we use the
form of the cyclic representation to formally manipulate the expression

(6) ω
(

|a⊗ 1 − 1 ⊗ (Sνb
∗Sν)|

2)

for a transport plan ω from µ to ν and a, b ∈ A as if Sνb
∗Sν lies in A′

(it is actually only affiliated with A′), to obtain

(7)
∥

∥πωµ (a)Ω − πων (b)Ω
∥

∥

2

ω
.

Alternatively, one can obtain the right hand side of (5) from (6) by a
different sequence of formal manipulations using (4). The expression
(7) will be used as the basis for rigorously defining the cost of transport,
as each term in the heuristic expression ω(c) for the cost of transport
is of the form (6). Note that ω(c) is a noncommutative translation of
the integral in (1).

Definition 3.1. Given k1, ..., kn ∈ A and writing k = (k1, ..., kn), the
associated transport cost function I, which gives the cost of transport
I(ω) from µ to ν for the transport plan ω ∈ T (µ, ν) and faithful normal
states µ and ν on A, is defined to be

I(ω) =
∥

∥πωµ (k)Ω − πων (k)Ω
∥

∥

2

⊕ω

where we have written

πωµ (k)Ω ≡
(

πωµ (k1)Ω, ..., π
ω
µ (kn)Ω

)

∈
n

⊕

l=1

Hω

and ‖·‖
⊕ω denotes the norm on

⊕n
l=1Hω. I.e.,

(8) I(ω) =
n

∑

l=1

∥

∥πωµ (kl)Ω − πων (kl)Ω
∥

∥

2

ω
.

This realizes the idea outlined in the introduction, and parallels the
use of generators in [6]’s definition of Wasserstein metrics. It can be
written in a second equivalent form in terms of the u.c.p. map Eω
corresponding to ω, using (5), which is more convenient for certain
purposes:

(9) I(ω) =
n

∑

l=1

[µ(k∗l kl) + ν(k∗l kl) − ν(Eω(kl)
∗kl) − ν(k∗l Eω(kl))] .
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A more complete notation for I would be Ik, but no confusion will
arise.

We are now in a position to define the distance function W2 on the
faithful normal states, which we aim to prove is a metric. By a distance

function we simply mean a function d : X × X → R on some set X ,
which is potentially a metric on X , in order to distinguish it from a
verified metric.

If we directly generalize the classical case, one would define the dis-
tance function as the infimum of the square root of the cost over all
transport plans ω from µ to ν. However, in our noncommutative setup,
this causes problems with symmetry of the distance function. We solve
this problem by only allowing the modular transport plans Tσ(µ, ν)
from Definition 2.3. This is a natural restriction on the allowed trans-
port plans which becomes trivial when µ and ν are traces. Similar
restrictions have been used in a related context in the theory of non-
commutative joinings, also involving couplings (not viewed as transport
plans in that case). See in particular [4, 27]. Modular transport plans
are exactly what we need to obtain symmetry in a natural way, as will
be seen in the next section.

Thus we present the main definition of this paper:

Definition 3.2. Denote the set of faithful normal states on a σ-finite
von Neumann algebra A by F(A). Given k1, ..., kn ∈ A, we define the
associated Wasserstein distance W2 on F(A) by

W2(µ, ν) := inf
ω∈Tσ(µ,ν)

I(ω)1/2

for all µ, ν ∈ F(A), in terms of Definition 3.1.

More completely W2 can be called a Wasserstein distance of order 2,
or a quadratic Wasserstein distance.

Having defined our candidate W2, we have to investigate if it is indeed
a metric. This is done in the next three sections.

4. The triangle inequality

In this section we intend to show that W2 satisfies the triangle in-
equality. To do this we use the bimodule structure and relative tensor
product discussed in Section 2. This is analogous to [6]’s use of free
products with amalgamation to prove the triangle inequality in their
approach.

The main technical point in this regard is the following lemma, which
is a key (and we presume well-known) feature of the quotient construc-
tion of the relative tensor product, essentially telling us that the imbed-
dings of Hν into Hω and Hψ respectively, are identified in the relative
tensor product H = Hω ⊗ν Hψ. This is precisely the reason that the
relative tensor product is the natural setting to prove the triangle in-
equality. Please refer to [46, Section IX.3] for further background on
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relative tensor products and detail on related operators used in the
lemma’s proof.

Lemma 4.1. In terms of the setup and notation from Section 2 and

the imbeddings

ιω : Hω → H : x 7→ x⊗ν Ψ

and

ιψ : Hψ → H : y 7→ Ω ⊗ν y

one has

ιω(πων (b)Ω) = ιψ(πψν (b)Ψ)

for all b ∈ B.

Proof. Given any b ∈ B, write x = πων (b)Ω and y = πψν (b)Ψ. In setting
up the relative tensor product, one considers an operator Lν(x) : Gν →
Hω which in our setup can be written as Lν(x) = πων (b)uν in terms of
(3). From the bilinear form used in the quotient construction of the
relative tensor product (see [46, Proposition IX.3.15 and Definition
IX.3.16]) one finds

‖ιω(x) − ιψ(y)‖2 = 〈Ψ, Lν(x)∗Lν(x)Ψ〉ψ − 〈y, Lν(Ω)∗Lν(x)Ψ〉ψ

− 〈Ψ, Lν(x)∗Lν(Ω)Ψ〉ψ + 〈y, Lν(Ω)∗Lν(Ω)Ψ〉ψ
= 0,

since one has Lν(x)∗Lν(x) = u∗νπ
ω
ν (b∗b)uν = b∗b etc., and where we

are using the left B-module structure of Hψ. (Here 〈·, ·〉ψ is the inner

product of Hψ.) �

The second fact we need is the following:

Lemma 4.2. In terms of the setup and notation from Section 2, with

ϕ = ω ◦ ψ, we have

ιω(πωµ (a)Ω) = πϕµ (a)Φ

and

ιψ(πψξ (c)Ψ) = π
ϕ
ξ (c)Φ

for all a ∈ A and c ∈ C.

Proof. The first is easy to verify, while the second follows by first show-
ing that

J
ϕ
ξ (Ω ⊗ν y) = Ω ⊗ν J

ψ
ξ y

for all y ∈ H
ψ
ξ . �

The triangle inequality for W2 given in Definition 3.2 can now be
proven.

Proposition 4.3. Consider any k1, ..., kn ∈ A, and let W2 be the as-

sociated Wasserstein distance on F(A). Then

W2(µ, ξ) ≤W2(µ, ν) +W2(ν, ξ)

for all µ, ν, ξ ∈ F(A).
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Proof. For ω ∈ Tσ(µ, ν) and ψ ∈ Tσ(ν, ξ) in terms of Definition 2.3, we
set ϕ = ω ◦ ψ. Note that ϕ ∈ Tσ(µ, ξ), since

Eϕ ◦ σ
µ
t = Eψ ◦ Eω ◦ σ

µ
t = Eψ ◦ σνt ◦ Eω = σ

ξ
t ◦ Eψ ◦ Eω = σ

ξ
t ◦ Eϕ,

hence (A, σµ, µ)ϕ
(

A, σξ, ξ
)

by [28, Theorem 4.1]. According to Defini-
tion 3.1, and applying ιω and ιψ componentwise to elements of direct
sums, we have

I(ϕ)1/2 =
∥

∥πϕµ (k)Φ − π
ϕ
ξ (k)Φ

∥

∥

⊕ϕ

=
∥

∥

∥
ιω(πωµ (k)Ω) − ιψ(πψξ (k)Ψ)

∥

∥

∥

⊕H

≤
∥

∥ιω(πωµ (k)Ω) − ιω(πων (k)Ω)
∥

∥

⊕H

+
∥

∥ιω(πων (k)Ω) − ιψ(πψν (k)Ψ)
∥

∥

⊕H

+
∥

∥

∥
ιψ(πψν (k)Ψ) − ιψ(πψξ (k)Ψ)

∥

∥

∥

⊕H

=
∥

∥πωµ (k)Ω − πων (k)Ω
∥

∥

⊕ω
+
∥

∥

∥
πψν (k)Ψ − π

ψ
ξ (k)Ψ

∥

∥

∥

⊕ψ

= I(ω)1/2 + I(ψ)1/2

where we employed the triangle inequality in
(
⊕n

l=1H, ‖·‖⊕H
)

, applied
Lemmas 4.1 and 4.2, and used the fact that ιω and ιψ preserve the inner
products. Now take the infimum on the left over all of Tσ(µ, ξ), which
includes the compositions ω ◦ ψ for all ω ∈ Tσ(µ, ν) and ψ ∈ Tσ(ν, ψ),
followed in turn by the infima over all ω ∈ Tσ(µ, ν) and ψ ∈ Tσ(ν, ψ)
on the right. �

Note that the middle term in the application of triangle inequality
in

⊕n
l=1H above is zero because we use the relative tensor product

H = Hω ⊗ν Hψ containing Hϕ. Exactly this point of the triangle
inequality tends to run astray in other transport plan based approaches
to the Wasserstein distance. See in particular [24], which in turn built
on [33]; also see [35, Footnote 4].

The triangle inequality actually still works if one were to use all trans-
port plans, rather than just modular transport plans, a point which we
come back to in the final section.

5. Symmetry

We now proceed to prove that W2 is symmetric. This is where the
modular property of our allowed transport plans (Definition 2.3) be-
comes important.

For clarity, in this section we initially work with two von Neumann
algebras A and B with faithful normal states µ and ν respectively, again
using the notation and conventions from Section 2. After setting up
some general facts in this setting, we return to a single von Neumann
algebra when proving that W2 is symmetric.
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A suitable path to symmetry is provided by KMS-duals. Such duals
and KMS-symmetry were studied and applied in [43, 42, 31, 32, 19, 29,
28]. As in Section 2 we define jµ := Jµ(·)∗Jµ on B(Gµ) in terms of the
modular conjugation Jµ for A associated to Λµ ∈ Gµ.

Definition 5.1. Given a u.c.p. map E : A → B such that ν ◦ E = µ,
we define its KMS-dual (w.r.t. µ and ν) as

Eσ := jµ ◦ E
′ ◦ jν : B → A

in terms of the dual E ′ : B′ → A′ of E defined by

〈Λµ, aE
′(b′)Λµ〉 = 〈Λν , E(a)b′Λν〉

for all a ∈ A and b′ = B′. (Regarding E ′, see [1], and [28, Section 2]
for a summary).

The basic properties of the KMS-dual needed here are set out in the
next lemma.

Lemma 5.2. In Definition 5.1, Eσ is u.c.p. and µ ◦ Eσ = ν. Fur-

thermore, (Eσ)σ = E. The map E has a Hilbert space representa-

tion as a contraction K : Gµ → Gν defined through KaΛµ = E(a)Λν

for all a ∈ A, and Eσ is similarly represented by the contraction

JµK
∗Jν : Gν → Gµ. Consequently, the following equivalence holds:

µ(aEσ(b)) = ν(E(a)b)

for all a ∈ A and b ∈ B, if and only if

JνK = KJµ.

Proof. Note that E ′ is u.c.p. and satisfies µ′ ◦ E ′ = ν ′ according to
[1, Proposition 3.1]. The corresponding properties for Eσ then follow
easily, while (Eσ)σ = E results from (E ′)′ = E. That K is well-
defined, follows from ν ◦ E = µ (which implies that ν(E(a)∗E(a)) ≤
ν(E(a∗a)) = µ(a∗a) by Kadison’s inequality). This implies that E ′ is
represented by K∗, since

〈E ′(b′)Λµ, aΛµ〉 = 〈K∗b′Λν, aΛµ〉

by the definition of E ′, which in turn means that Eσ is represented by
JµK

∗Jν by Definition 5.1. The mentioned equivalence now follows by
routine manipulations. �

This allows us to prove the following lemma in terms of the mod-
ular transport plans from Definition 2.3, which subsequently leads to
symmetry of W2.

Lemma 5.3. For faithful normal states µ and ν on von Neumann

algebras A and B respectively, we have
∥

∥πωµ (a)Ωω − πων (b)Ωω

∥

∥

ω
=

∥

∥πω
σ

ν (b)Ωωσ − πω
σ

µ (a)Ωωσ

∥

∥

ωσ
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for every ω ∈ Tσ(µ, ν), where ωσ ∈ Tσ(ν, µ) is determined by Eωσ = Eσ
ω .

For emphasis we have written Ωω for the cyclic vector appearing in a

cyclic representation associated to ω, and similarly for ωσ.

Proof. Since ω is modular, for the Hilbert space representation Kω of
Eω we have ∆it

νKω = Kω∆it
µ by [28, Theorem 4.1], ∆µ and ∆ν being the

modular operators associated to Λµ and Λν respectively. Consequently
JνKω = KωJµ. From (5) and Lemma 5.2, it then follows that
∥

∥πωµ (a)Ωω − πων (b)Ωω

∥

∥

2

ω
= µ(a∗a) + ν(b∗b) − ν(Eω(a)∗b) − ν(b∗Eω(a))

= ν(b∗b) + µ(a∗a) − µ(Eσ
ω(b)∗a) − µ(a∗Eσ

ω(b))

=
∥

∥πω
σ

ν (b)Ωωσ − πω
σ

µ (a)Ωωσ

∥

∥

2

ωσ

where ωσ ∈ T (ν, µ) is determined by Eωσ = Eσ
ω according to [28,

Section 4]. Note that ωσ ∈ Tσ(ν, µ) by [28, Theorem 4.1], since (σµt )σ =
σ
µ
−t, so Eωσ ◦ σνt = (σν

−t ◦ Eω)σ = (Eω ◦ σ
µ
−t)

σ = σ
µ
t ◦ Eωσ . �

In particular we have symmetry of W2:

Proposition 5.4. Consider any k1, ..., kn ∈ A, and let W2 be the as-

sociated Wasserstein distance on F(A). Then

W2(µ, ν) = W2(ν, µ)

for all µ, ν ∈ F(A).

Proof. This follows from Definition 3.2 of W2 and Lemma 5.3, since for
each ω, every term in I(ω) (see (8)) is equal to the corresponding term
in I(ωσ), while (ωσ)σ = ω because of (Eσ

ω)σ = Eω, giving a one-to-one
correspondence between Tσ(µ, ν) and Tσ(ν, µ), which means we retain
equality in the infima over Tσ(µ, ν) and Tσ(ν, µ) respectively on the
two sides. �

6. W2 is a metric

So far in our proof that W2 is a metric, we have not assumed that A
is finitely generated. This will shortly become necessary. However, we
postpone making this assumption until it becomes essential.

One of the remaining properties of a metric is the following:

Proposition 6.1. For W2 in Definition 3.2, we have

W2(µ, µ) = 0

for all µ ∈ F(A).

Proof. This follows directly from (9) by setting ω = δµ ∈ Tσ(µ, µ), i.e.
Eω = idA, which is obviously a modular transport plan, since trivially
Eω ◦ σ

µ
t = σ

µ
t ◦ Eω. �
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Aiming to achieve this simple result, was in fact the initial hint to ap-
proach the cost I heuristically through (2) and consequently rigorously
by Definition 3.1.

All that remains, is to show that W2(µ, ν) = 0 implies µ = ν. The
first of two lemmas towards this, is the following:

Lemma 6.2. Consider any k1, ..., kn ∈ A, and let W2 be the associated

Wasserstein distance on F(A). For any µ, ν ∈ F(A), there then exists

a modular transport plan ω ∈ Tσ(µ, ν) such that

W2(µ, ν) = I(ω)1/2.

Proof. It is a routine exercise to show that Tσ(µ, ν) in Definition 2.3
is weakly* compact, since without loss we can view each element of
Tσ(µ, ν) as a state on the maximal C*-tensor product A ⊗max B

′ (see
for example [26, Proposition 4.1]). By the definition of W2 there is
a sequence ωq ∈ Tσ(µ, ν) such that I(ωq)

1/2 → W2(µ, ν), which then
must have a weak* cluster point ω ∈ Tσ(µ, ν). The lemma now follows
by the following approximation:

Given ε > 0, there is a q0 such that

∣

∣I(ωq) −W2(µ, ν)2
∣

∣ < ε

for all q > q0. There exist a′1, ..., a
′

n ∈ A′ such that

‖klΛν − a′∗l Λν‖ < ε

for l = 1, ..., n. Furthermore, there is a q > q0 such that

|ωq(kl ⊗ a′l) − ω(kl ⊗ a′l)| < ε
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for l = 1, ..., n. Using (9) we then find

|I(ω) − I(ωq)| ≤ 2

n
∑

l=1

∣

∣ν(k∗l Eωq
(kl)) − ν(k∗l Eω(kl))

∣

∣

= 2

n
∑

l=1

∣

∣

〈

klΛν , (Eωq
(kl) − Eω(kl))Λν

〉
∣

∣

≤ 2
n

∑

l=1

∣

∣

〈

klΛν − a′∗l Λν , (Eωq
(kl) − Eω(kl))Λν

〉
∣

∣

+ 2
n

∑

l=1

∣

∣

〈

Λν , (Eωq
(kl) − Eω(kl))a

′

lΛν

〉
∣

∣

≤ 4
n

∑

l=1

‖klΛν − a′∗l Λν‖ ‖kl‖

+ 2
n

∑

l=1

|ωq(kl ⊗ a′l) − ω(kl ⊗ a′l)|

< 4ε
n

∑

l=1

‖kl‖ + 2nε.

Consequently,

∣

∣I(ω) −W2(µ, ν)2
∣

∣ < 4ε
n

∑

l=1

‖kl‖ + 2nε+ ε

for all ε > 0. �

This lemma is of some independent interest, since it says that the
distance W2(µ, ν) is always reached by some modular transport plan.
To prove that W2 is a metric, it will be applied to the special case
W2(µ, ν) = 0.

The second lemma is where we see why A is eventually taken to be
finitely generated, as is to be expected given the analogy to R

n in the
Introduction.

Lemma 6.3. Consider any k1, ..., kn ∈ A such that {k∗1, ..., k
∗

n} =
{k1, ..., kn} and let I be the associated transport cost function. Let

R be the von Neumann subalgebra of A generated by {k1, ..., kn}. Let

µ, ν ∈ F(A). If I(ω) = 0 for some transport plan ω ∈ T (µ, ν), then the

restriction of Eω to R is the identity map:

Eω|R = id R

and consequently µ|R = ν|R.
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Proof. Note that due to (5) and (9)

ν
(

|kl − Eω(kl)|
2) + ν

(

Eω(|kl|
2) − |Eω(kl)|

2
)

= µ(k∗l kl) + ν(k∗l kl) − ν(Eω(kl)
∗kl) − ν(k∗l Eω(kl))

= 0

where Eω(|kl|
2) − |Eω(kl)|

2 ≥ 0 by Kadison’s inequality, hence

ν
(

|kl − Eω(kl)|
2) = 0 and ν

(

Eω(|kl|
2) − |Eω(kl)|

2
)

= 0

for l = 1, ..., n. Since ν is faithful, the former implies

(10) Eω(kl) = kl

while the latter implies

Eω(k∗l kl) = Eω(kl)
∗Eω(kl)

for l = 1, ..., n.
Setting

Aω := {a ∈ A : Eω(a∗a) = Eω(a)∗Eω(a)} ,

it follows from [17, Theorem 3.1] that Aω is a (norm closed) subalgebra
of A and that

(11) Aω = {a ∈ A : Eω(ba) = Eω(b)Eω(a) for all b ∈ A} .

Since {k∗1, ..., k
∗

n} = {k1, ..., kn}, we have k1, ..., kn, k
∗

1, ..., k
∗

n ∈ Aω, so Aω
contains the ∗-algebra R0 generated by {1, k1, ..., kn}. Moreover, since
Eω is positive and therefore preserves the involution, we see from (11)
that Eω|R0

is a unital ∗-homomorphism, thus Eω|R0
= idR0

because of
(10). As Eω is normal, it follows that Eω|R = idR, which implies that
µ(r) = ν ◦ Eω(r) = ν(r) for all r ∈ R. �

The following corollary of this lemma is what we need to complete
the proof that W2 is a metric:

Corollary 6.4. If A is generated by {k1, ..., kn} in Lemma 6.3 and

I(ω) = 0 for some ω ∈ T (µ, ν), then Eω = idA, ω = δµ and µ = ν.

Proof. This follows from Lemma 6.3, since R = A, and ω = δν ◦
(Eω ⊙ idA′) = δµ. �

In particular, this tells us that δµ is the unique transport plan from
µ to itself attaining zero transport cost, but only the µ = ν result is
needed next.

Finally, we reach this paper’s main result:

Theorem 6.5. Let A be a σ-finite von Neumann algebra. Assume that

A is generated by k1, ..., kn ∈ A such that {k∗1, ..., k
∗

n} = {k1, ..., kn}.
Let W2 be the Wasserstein distance on F(A) associated to k1, ..., kn in

Definition 3.2. Then W2 is a metric.
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Proof. By its definition, W2 is real-valued and never negative. Accord-
ing to Propositions 4.3 and 5.4 we know that W2 satisfies the triangle
inequality and is symmetric. Proposition 6.1 tells us that W2(µ, µ) = 0.
If W2(µ, ν) = 0, it follows from Lemma 6.2 followed by Corollary 6.4
that µ = ν. �

If A is not generated by {k1, ..., kn} in Lemma 6.3, then µ 6= ν is
possible, as we now show, in which case W2 is then only a pseudometric.

Suppose we have a von Neumann subalgebra F of A such that
σ
µ
t (F ) = F for all t and R ⊂ F . Then, by [45], there is a unique

conditional expectation E from A onto F such that µ◦E = µ. Assum-
ing that

µ|F = ν|F ,

this gives a transport plan ω = δν ◦(E⊙idA′) from µ to ν. (This ω is an
example of a relatively independent coupling, which comes up in the
theory of noncommutative joinings; see [27, Section 3].) Then I(ω) = 0
by (9), since Eω = E restricted to F is the identity map. In particular
W2(µ, ν) = 0.

In this setup there are cases with µ 6= ν, for example: Consider
A = M⊗̄N for von Neumann algebras M and N , and set µ = λ⊗̄ζ and
ν = λ⊗̄η for faithful normal states λ on M , and ζ and η on N . Taking
F = M ⊗ 1 and k1, ..., kn ∈ F , we satisfy all the requirements of the
previous paragraph, but µ 6= ν if ζ 6= η.

7. Expanding the setting

To conclude the paper, we briefly outline two ways of expanding the
setting above, to obtain somewhat weaker results, which emphasize the
role our assumptions play in proving that W2 is a metric, and as an
indication of possible further avenues to explore. This is followed by
questions regarding further generalization.

First, we can allow all transport plans in Definition 3.2 of the dis-
tance. Given k1, ..., kn ∈ A, we define an associated distance function
d on F(A) by

d(µ, ν) := inf
ω∈T (µ,ν)

I(ω)1/2

in terms of Definition 3.1.
With minor modifications to the foregoing work, one then obtains

the following variation on our main result:

Proposition 7.1. Let A be a σ-finite von Neumann algebra. Assume

that A is generated by k1, ..., kn ∈ A such that {k∗1, ..., k
∗

n} = {k1, ..., kn}.
Let d be the distance function above associated to k1, ..., kn. Then d is

an asymmetric metric, that is to say, d satisfies all the requirements of

a metric, except that it may not be symmetric.
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That d may not be symmetric, could be very natural, as we have a
direction of transport involved, which now appears to be reflected in
the distance function.

On the other hand, we have not shown that the modular property of
transport plans is the weakest condition ensuring symmetry, nor have
we explicitly shown d not to be symmetric. The modular condition is
very natural, but the possibility of symmetry more generally is an open
question.

The second variation is to drop the assumption that the states we
work with are faithful. That is to say, we define a distance function on
the set S(M) of all normal states on a von Neumann algebra M . To
do this, let pζ be the support projection of ζ ∈ S(M). Restrict to the
von Neumann algebra A = pζMpζ and replace ζ by its restriction µ to
A, which is a faithful normal state. Similarly for η ∈ S(M) to obtain
the von Neumann algebra B and faithful normal state ν.

For k1, ..., kn ∈M , we consider

k
ζ
l := pζklpζ ∈ A

and write kζ = (kζ1, ..., k
ζ
n). Similarly for η. Then apply the represen-

tation machinery from Section 2 to (A, µ) and (B, ν), strictly speaking
after setting up a cyclic representation for both, to define

I(ω)1/2 =
∥

∥πωµ (kζ)Ω − πων (kη)Ω
∥

∥

⊕ω

for ω ∈ Tσ(µ, ν), in place of Definition 3.1.
Now we define a distance function ρ on S(M) associated to k1, ..., kn,

by

ρ(ζ, η) = inf
ω∈Tσ(µ,ν)

I(ω)1/2

which leads to the next result, again by minor modifications to our
previous work:

Proposition 7.2. Let M be a von Neumann algebra and consider

any k1, ..., kn ∈ M . Let ρ be the distance function above associated

to k1, ..., kn. Then ρ is an pseudometric on S(M), that is to say,

ρ satisfies all the requirements of a metric, except that we may have

ρ(ζ, η) = 0 with ζ 6= η.

There are some natural further questions:
We focussed on a finite set {k1, ..., kn} of bounded operators to define

cost, in analogy to the coordinate functions on a bounded closed set in
R
n. Can one expand on this and use appropriate infinite sets of kl as

well? Or can the kl be unbounded, but affiliated to the von Neumann
algebra in question?

Lastly, what would be the best way of adapting the approach of this
paper to Wasserstein metrics of order other than 2?
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[20] A. Connes, Caractérisation des espaces vectoriels ordonnés sous-jacents aux
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Ann. Henri Poincaré 19(2018), 1747–1786.

[29] F. Fagnola, R. Rebolledo, Entropy production for quantum Markov semi-
groups, Comm. Math. Phys. 335(2015), 547–570.

[30] T. Falcone, L2-von Neumann modules, their relative tensor products and
the spatial derivative, Illinois J. Math. 44(2000), 407–437.

[31] S. Goldstein, J.M. Lindsay, Beurling-Deny conditions for KMS-symmetric
dynamical semigroups, C. R. Acad. Sci. Paris Sér. I Math. 317(1993), 1053–
1057.

[32] S. Goldstein, J.M. Lindsay, KMS-symmetric Markov semigroups, Math.
Z. 219(1995), 591–608.

[33] F. Golse, C. Mouhot, T. Paul, On the mean field and classical limits of
quantum mechanics, Comm. Math. Phys. 343(2016), 165–205.

[34] F. Golse, T. Paul, The Schrödinger equation in the mean-field and semi-
classical regime, Arch. Ration. Mech. Anal. 223(2017), 57–94.

[35] F. Golse, T. Paul, Wave packets and the quadratic Monge-Kantorovich
distance in quantum mechanics, C. R. Math. Acad. Sci. Paris 356(2018),
177–197.

[36] U. Haagerup, The standard form of von Neumann algebras, Math. Scand.
37(1975), 271–283.

[37] D.F. Hornshaw, L2-Wasserstein distances of tracial W*-algebras and their
disintegration problem, arXiv:1806.01073.

[38] D.F. Hornshaw, Quantum optimal transport for AF-C*-algebras,
arXiv:1910.03312.

[39] A. Jamio lkowski, Linear transformations which preserve trace and positive
semidefiniteness of operators, Rep. Mathematical Phys. 3(1972), 275–278.

[40] M. Jiang, S. Luo, S. Fu, Channel-state duality, Phys. Rev. A, 87(2013)
022310.
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