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Highlights 

 We show the presence of nonlinearity and regime changes in the relationship between 
gold and rare disaster risks. 

 We use a nonparametric quantile regression model to investigate gold's ability to hedge 
against such risks. 

 We find that gold can only hedge against these risks if it is in its bullish-state. 
 Gold is negatively impacted in its bearish-phase. 

 
Abstract 

Using annual data on real gold returns and measures of rare disaster risks over the period of 1280 
to 2016, we provide evidence of nonlinearity and regime changes in the relationship between the 
two variables of concern, over and above the existence of non-normality in the data. In light of 
these issues, we rely on a nonparametric quantile regression model to show that real gold returns 
can hedge against such risks, but only when the market is in its bullish-state, with it being 
negatively impacted in its bearish-phase. Understandably, our results have important implications 
for investors seeking refuge in the safe haven of gold during rare disaster events. In addition, our 
findings, would require theoreticians to develop new asset pricing models, which would 
incorporate the state-specific impact of rare disaster risks on gold. 
 
Keywords: Real gold returns; Rare disaster risks; Quantile regressions  
JEL Codes: C22, Q02 

1. Introduction 

Following the early works of Baur and Lucey (2010), and Baur and McDermott (2010), a large 
literature has emerged that has investigated the role of gold as a “safe haven” in times of extreme 
jitters and disruptions in financial (bonds, (crypto-)currencies, and equities) markets (see, 
Boubaker et al. (2020) for a detailed review). In general, these studies find that investors are often 
attracted to this precious metal due to its ability to offer portfolio diversification and/or hedging 
benefits during periods of turmoil in (traditional) financial markets. At the same time, there is also 
a corresponding literature (see for example, Reitz (1988), Barro (2006, 2009), Watcher (2013), 
Berkman et al. (2011, 2017), Gabaix (2012), Farhi and Gabaix (2016), Gupta et al. (2019a, b)) 
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which tends to provide theoretical and empirical support to the fact that financial market downturns 
are a result of risks emanating from rare disaster events, which in turn, in this line of work, is 
identified as involving a cumulative decline in output of at least 10% over one or more years. In 
light of this, and given gold’s relatively well-established safe haven characteristic, one can 
hypothesize that rare disaster risks would lead to an increase in (real) gold price and or returns, as 
also observed, in particular, during the early stages of the ongoing COVID-19 pandemic (Ji et al., 
2020; Lahiani et al., 2021), before the financial markets started to settle down (in the wake of 
vaccinations). 

Against this backdrop, the objective of our paper is to try and empirically validate the hypothesis 
that there exists a positive and statistically significant relationship between real gold returns and 
rare disaster risks over the year period of 1280 to 2016. In this regard, we apply linear and 
nonparametric quantile regressions, besides the benchmark linear model. We argue that, due to 
non-linearity and non-normality patterns, which we show to exist in an overwhelming fashion in 
our dataset based on formal statistical tests, a linear regression approach might not be adequate for 
exploring the ability of rare disaster events in predicting real gold returns. In fact quantiles-based 
approaches, as originally developed by Koenker and Bassett (1978), enables us to have a more 
complete characterization of the entire conditional distribution of real gold returns through a set of 
conditional quantiles, rather than only its conditional mean, as is the case with the standard linear 
regression approach. Looking at just the conditional mean of real gold returns is likely to “hide” 
interesting characteristics, and can lead us to conclude that a covariate, in our case rare disaster 
events, has poor explanatory power, while it actually contains valuable information for certain 
parts of the conditional distribution of real gold returns. Furthermore in terms of modelling non-
linearity, unlike the Markov-switching and the smooth threshold models, we do not need to specify 
number of regimes of real gold returns (for instance, bear and bull) in an ad hoc fashion with the 
quantiles-based approach. This is because, weak periods in the gold market will correspond to the 
low quantiles or the left tail of the returns distribution, while the strong periods will be captured 
via the high quantiles or right tail of the same. Note that, since the quantile regression studies the 
entire conditional distribution, which captures various states of the gold market, it adds an inherent 
time-varying component to the estimation process. Having said this, when shapes of quantile 
curves are nonlinear, and also possibly depend on the quantile parameter, the linear quantile 
regression model does not always suffice to adequately express the relationship between covariates 
(rare disaster risks) and quantile functions of the response variable, i.e., real gold returns. Hence, 
we also resort to a nonparametric quantile model, which is expected to provide more reliable and 
robust inferences.   

To the best of our knowledge, this is the first paper to study formally the empirical relationship 
between real gold returns and rare disaster events using quantiles-based econometric methods 
spanning the longest possible available history of these two variables, and hence in the process 
avoiding any sample selection bias, while providing a complete picture of the evolution of the gold 
market in the wake of large economic crises. Since silver is also considered as a possible safe 
haven (Salisu et al., forthcoming), we also conduct a comparative analysis involving historical real 
silver returns and rare disaster risks over 1688-2016. 

Understandably, our findings should be of immense value to portfolio allocation decision of not 
only investors, but should carry lot of academic value. The latter is particularly the case in the 
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context of the work done by Barro and Mishra (2016), which is perhaps the only available related 
paper to our study. These authors, based on correlation and covariance analyses, found that 
changes in real gold prices co-vary negligibly with growth rates of Gross Domestic Product (GDP), 
as well as consumption, of the United States (US) over the period of 1836 to 2011. More 
importantly, they also found that gold’s mean real rate of price change for 14 Organisation of 
Economic Cooperation and Development (OECD) countries during 56 identified macroeconomic 
disasters (based on 10% or more decline in GDP growth data of 19 countries) was not statistically 
significantly different from the overall mean over 1880-2011.1 Next, Barro and Misra (2016) 
develops an asset-pricing model with rare disasters and a high elasticity of substitution between 
gold services and ordinary consumption to explain these observations. Naturally, if we are able to 
detect quantiles-based significant correlation between gold returns and rare disaster risks, based 
on relatively more sophisticated econometric methods and an elaborate data set, then one would 
need to build state-specific models as part of future academic research to understand better the 
nexus between gold returns and rare disaster events. The remainder of the paper is organized as 
follows: Section 2 outlines the data and the methodologies, while Section 3 presents the empirical 
results, with Section 4 concluding the paper. 

2. Data and Methodologies 
2.1. Data 

As far as measuring rare disaster risks are concerned, we use the dataset created by Ćorić (2021), 
which extends the work of Barro and Ursúa (2008, 2012) to include a larger sample of countries 
(compared to 42 over 1870-2009). In particular, the maximum number of countries for which data 
can be used is 77 before from 1820 to the end of World War II, and 169 after it. Ćorić (2021) uses 
the National Bureau of Economic Research (NBER)-style of measuring peak-to-trough of 
macroeconomic contractions to identify economic disasters. More specifically, he uses cumulative 
declines of output of at least 10% over one or more years. He obtains the underlying data from the 
Maddison Project Database 2018 (MPD) and the Penn World Table (PWT) 9.0. Ćorić (2021) then 
creates four datasets, as the output data from the MPD and the PWT do not entirely overlap, with 
the first one (DS1) created using per capita real GDP (in 2011 US dollars), the second dataset 
(DS2) includes population data to construct overall real GDP (in 2011 dollars). These first two 
datasets are created using the MDP, while the third (DS3) and fourth (DS4) datasets are based on 
data from the PWT. DS3 uses real GDP data (in 2011 national prices), and DS4 uses population 
from PWT to calculate per capita real GDP (in 2011 national prices). DS1 is available from 1280, 
DS2 from 1820 (limited by the data availability of population), while DS3 and DS4 start from 
1950, with the end date for all the datasets being 2016. 

We use DS1 to create RDR1, which is the number economic disasters in a specific year as 
experienced by the countries for a particular year weighted by the inverse of the total number of 
countries for which data is available (given that the sample size is not constant over time), and 
RDR11 is just the number of economic disasters, i.e., the total number of countries in disaster in a 
particular year. We then create RDR2 and RDR22, which has the same definition as RDR1 and 
RDR11 but using DS2 as the underlying dataset. The sum of the number of rare disasters identified 

                                                       
1 The calculated average annual real rate of price change for gold in each country during a disaster was based on the 
time paths of the world dollar price of gold, the nominal exchange rate between the home currency and the US dollar 
and the consumer price index for the home country. 
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involving RDR1 (over 1280-2016) and RDR2 (covering 1820-2016) is 2227 and 977 respectively.2 
Since RDR1 and RDR2 are weighted by the inverse of the number of countries for which data is 
available for real GDP and per capita real GDP, these two measures basically capture the 
worldwide probability of a rare disaster event taking place in a certain year. With quantile 
regressions requiring relatively large number of observations to draw appropriate inference, we do 
not use DS3 and DS4 for our analyses. 
 
For the price of gold, we use annual data of nominal prices (in British pounds) of gold starting in 
1279, and is retrieved from MeasuringWorth.3 The nominal price of gold is transformed into its 
real counterpart by deflating with the Consumer Price Index (CPI) of the UK derived from a 
database maintained by the Bank of England called: “A Millenium of Macroeconomic Data for 
the UK”.4 We then compute the log-returns of real gold prices over the period of 1280 to 2016, to 
match our longest possible rare disaster risk metrics of RDR11 and RDR1. As a robustness check, 
we also analyze the impact of rare disaster risks on real silver returns (with underlying data 
obtained from the same sources involving real gold prices), with the sample period covering 1688 
to 2016. 
 
The variables have been plotted in Figure A1 in the Appendix of the paper, while Table A1 in the 
Appendix summarizes the data, and highlights the existence of non-normality of the variables – a 
preliminary motivation to use a quantiles-based approach for our question in hand. 
 

2.2. Methodologies 

In a linear model specification, rare disasters only impact conditional real returns of gold (or 
silver). Such a model can be specified as follows: 

𝑦௧ ൌ 𝛽଴ ൅ 𝛽ଵ𝑥௧ ൅ 𝜀௧ ൌ 𝛽ᇱ𝑧௧ ൅ 𝜀௧ ሺ1ሻ 
 

where 𝑡 ൌ 1,2, … , 𝑇 is the time index in months, 𝑦௧ is the real gold (or silver) returns, 𝑥௧ is the rare 
the indicator of rare disaster risk, the vector 𝑧௧ is defined as  𝑧௧ ൌ ሺ1, 𝑥௧ሻ′, and 𝜀௧ is an 
independently and identically distributed error term with zero mean and constant variance 𝜎ଶ, 
𝜀௧~𝑖𝑖𝑑ሺ0, 𝜎ଶ). The model in equation (1) can be usually estimated using ordinary least squares 
(OLS), and statistical inference is made by making a parametric distributional assumption for 𝜀௧. 
Frequently, one appeals to a normal distribution assumption for 𝜀௧.   

Under OLS, equation (1) can be specified in the normal fashion, where the rare disaster risk only 
effects the conditional mean 𝐸ሺ𝑦௧|𝑥௧ሻ ൌ 𝛽ᇱ𝑧௧ ൌ 𝜉ሺ𝛽, 𝑧௧ሻ of the returns. However, modeling the 
conditional mean, as is done with OLS, could obscure other features in the data. Precious metal 
returns display large variations in level and variance (as seen from Figure A1), due to effect of 

                                                       
2 If we count only the beginning year of a crises, and not its duration, then the corresponding numbers of rare disaster 
risks are 621 and 330, which is way more than the 183 identified by Barro and Ursúa (2008, 2012). 
3 https://www.measuringworth.com/. 
4 https://www.bankofengland.co.uk/statistics/research-datasets. 
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important economic events such as, rare disasters. These events can change both the central 
tendency (mean) and the variance of returns. Central tendency changes imply variation in the 
intercept 𝛽଴ (‘location model’) while changes in the variance imply variations in the slope 
parameter 𝛽ଵ (‘scale model’). Even the shape of the distribution of returns could change over time, 
implying changes in both 𝛽଴ and 𝛽ଵ (‘location-scale model’). The changes in 𝛽଴ and 𝛽ଵ over 
support of the distribution of the returns implies different values of these parameters at different 
quantiles of the distribution of returns. Let the cumulative distribution of a random variable 𝑦 be 
given by: 𝐹ሺ𝑦௧ሻ ൌ 𝑃ሺ𝑦 ൑ 𝑦௧) for any value 𝑦௧. Then, for any 𝜏 ∈ ሺ0,1ሻ, 𝑄ఛሺ𝑦௧ሻ ൌ 𝐹ିଵሺ𝜏ሻ ൌ
infሼ𝑦௧: 𝐹ሺ𝑦௧ሻ ൒ 𝜏ሽ is called the 𝜏-th quantile of 𝑦. When an additional random variable 𝑥 is 
informative of 𝑦, we can define the conditional quantile of 𝑦 given 𝑥 ൌ 𝑥௧ as 𝑄ఛሺ𝑦௧|𝑥௧ሻ ൌ
𝐹ିଵሺ𝜏|𝑥௧ሻ ൌ infሼ𝑦௧: 𝐹ሺ𝑦௧|𝑥௧ሻ ൒ 𝜏ሽ. When 𝑦௧ displays location-scale effect, this can be 
represented by a model with parameters displaying change at different quantiles of 𝑦௧. In this case, 
we can estimate the conditional quantile of 𝑦௧ 𝑄ఛሺ𝑦௧|𝑥௧ሻ instead of the conditional mean 𝐸ሺ𝑦௧|𝑥௧ሻ, 
which leads to following quantile regression model of Koenker and Bassett (1978):  

𝑦௧ ൌ 𝛽଴ሺ𝜏ሻ ൅ 𝛽ଵሺ𝜏ሻ𝑥௧ ൅ 𝜀௧ሺ𝜏ሻ ൌ 𝛽ሺ𝜏ሻ′𝑧௧ ൅ 𝜀௧ሺ𝜏ሻ ሺ2ሻ 

where the quantile-specific linear effects are enforced by the parameters 𝛽ሺ𝜏ሻ ൌ ሺ𝛽଴ሺ𝜏ሻ, 𝛽ଵሺ𝜏ሻሻ′. 
In a time series context, the model in equation (2) can be viewed as time-varying parameter model 
(Koenker and Xiao, 2006). The conditional quantiles of 𝑦௧ are, then, given by 

𝑄ఛሺ𝑦௧|𝑥௧ሻ ൌ 𝛽଴ሺ𝜏ሻ ൅ 𝛽ଵሺ𝜏ሻ𝑥௧ ൌ 𝜉൫𝑥௧, 𝛽ሺ𝜏ሻ൯ ሺ3ሻ 

with the parametric function 𝜉 denoting the quantile regression predictor. 

Quantile regression, which models the outcome variable’s conditional quantile, may be more 
useful than the OLS. It enables variation in the effects of an explanatory variable (on the dependent 
variable) across quantiles of the distribution. As an alternative to standard least squares regression, 
it provides a more thorough framework for examining how covariates affect not just the location 
but also the entire conditional distribution (Koenker, 2005). The basic objective of quantile 
regressions is to build a regression function that reveals the relationship between the 𝜏-th quantile 
of the response 𝑦௧ and the covariate 𝑥௧. Often, a parametric version of the regression function is 
assumed for ease of comprehension and computational efficiency. In general, quantile regression 
is favorable when the form of the response variable’s distribution is dependent on other variables, 
i.e., when the error terms are not 𝑖𝑖𝑑, or when the response does not follow a well-known 
distribution, for example, when it is asymmetric or has heavy tails or outliers. 
 
For modelling the impact of rare disaster risks, quantile regression can be useful to account for the 
reality that gold (and silver) commodity markets are segregated into bad (receding returns) and 
good (rising returns). Rare disaster risks might change when markets are in a crash or when 
markets are experiencing positive growth. The bad periods correspond to the low quantiles or the 
left tail of the returns distribution, while the good periods are captured by the high quantiles or 
right tail of the same. The effect might be different in these periods since market participants react 
differently in bad and good times, and these are separated from each other since the market cannot 
be in both bad and good states at the same time. Thus, market segregation is implicit in a quantile 
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model. Clearly, if the coefficients are constant across quantiles, the normal linear representation is 
appropriate. 
 
In equation (2), 𝛽ሺ𝜏ሻ denotes the vector of quantile regression coefficients and is interpreted as the 
marginal change in the conditional quantile 𝜏 caused by a marginal change in the vector 
coefficients on 𝑧௧. The conditional quantile of the unobserved error is supposed to vanish in 
quantile regression. Thus, 𝑄ఛሺ𝜀௧ሺ𝜏ሻ|𝑧௧ሻ ൌ 0; nevertheless, the error terms’ distribution is not 
specified. 
 
Following Koenker and Bassett (1978), we can estimate the conditional quantiles using the 
parametric function 𝜉in equation (3) by minimizing the weighted sum of absolute deviances: 
 

min
ఉ∈ℝమ

∑ 𝜌ఛሾ𝑦௧ െ 𝜉ሺ𝛽, 𝑧௧ሻሿ்
௧ୀଵ ሺ4ሻ  

 
where 𝜌ఛ  is the check function defined as 𝜌ఛሺ𝑢ሻ ൌ ሺ𝜏 െ 𝐼ሺ𝑢 ൏ 0ሻሻ with 𝐼 denoting the indicator 
function. Koenker and Basset (1978) propose minimizing the asymmetrically weighted absolute 
sum of the errors in order to solve the minimization problem in equation (4). As a result, the 𝜏-th  
ሺ0 ൏ 𝜏 ൏ 1ሻ regression quantile solves the following: 
 

min
ఉ∈ℝమ

൛∑ 𝜏 |𝑦௧ െ 𝛽ᇱ𝑧௧| ൅ ∑ ሺ1 െ 𝜏ሻ|𝑦௧ െ 𝛽ᇱ𝑧௧|௧: ௬೟ ழఉᇲ௭೟௧: ௬೟ ஹ ఉᇲ௭೟
ൟ ሺ5ሻ  

 
The minimization problem in equation (5) involves a linear objective function on a polyhedral 
constraint set. This constrained minimization problem can be solved using linear programming 
(Koenker and Basset, 1978; Koenker, 2005). The solution yields the “regression quantiles”, which 
are determined by the solution parameters: 𝛽ሺ𝜏ሻ. The properties of 𝛽ሺ𝜏ሻ follow immediately from 
the well-known properties of solutions of linear programs. However, the estimated standard errors 
are potentially heteroskedastic, so the wild bootstrap method of Feng et al. (2011) is used to avoid 
understating the standard errors. 
 
When the shapes of quantile curves are nonlinear, and even depend on the quantile parameter, the 
linear quantile regression model in equation (2) does not always suffice to adequately express the 
relationship between covariates and quantile functions of the response variable. While parametric 
assumptions lead to a simple model structure and low implementation cost, it is not flexible enough 
for complex problems, and thus runs the risk of model misspecification. Nonparametric quantile 
regression has emerged as a viable alternative to parametric assumptions that are too restrictive. 
Koenker et al. (1994) pioneered nonparametric quantile regression in spline models for single 
predictor models, in which the quantile function is found by solving the minimization problem.  
 
Nonparametric quantile regression involves estimating the presumably smooth function 𝑔ሺ𝑥௧ሻ, 
defined as the conditional 𝜏-th quantile of 𝑦௧ conditional on 𝑥௧ , given a value 𝜏 ∈ ሺ0,1ሻ. As in 
the standard quantile regression, a common approach involves obtaining an estimate 𝑔ሺ𝑥ሻ  ൌ
𝑔ොఛ,ఒሺ𝑥ሻ by solving the following minimization: 
 

min
௚∈𝒢

∑ 𝜌ఛሾ𝑦௧ െ 𝑔ሺ𝑥௧ሻሿ ൅ 𝜆𝐻ሺ𝑔ሻ்
௧ୀଵ ሺ6ሻ  
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over a suitable function space 𝒢. Here, 𝐻ሺ𝑔ሻ is a roughness functional, and 𝜆 is a smoothness 
tuning parameter that determines how much roughness is penalized. Various alternatives are 
proposed for the specific form of 𝐻ሺ𝑔ሻ. Koenker et al. (1994) take 𝐻ሺ𝑔ሻ ൌ 𝑉ሺ𝑔ᇱሺ𝑥ሻሻ, with 𝑉ሺ𝑔ᇱሻ 
denoting the total variation penalty on the derivative 𝑔′, for which linear programming can be used 
to find the minimizer of equation (6) over an appropriately chosen function. Some subsequent 
work has retained the objective function in the form equation (6), but differed from Koenker et al. 
(1994) in one or both of the penalty function or function space for 𝑔. Koenker et al. (1994) show 
that when 𝐻ሺ𝑔ሻ ൌ 𝑉ሺ𝑔ᇱሻ,  the minimizer is a linear spline with knots at design points 𝑥௧, 𝑡 ൌ
 1, 2, . . . , 𝑇. Bloomfield and Steiger (1983) and Nachka et al. (1995) consider a problem similar to 

equation (6), but with the roughness penalty 𝐻ሺ𝑔ሻ ൌ ׬ ሾ𝑔ᇱᇱሺ𝑥ሻሿଶ𝑑𝑥
ଵ

଴ , which may impose a more 
visually appealing form of  “smoothness” than alternative functionals. We use regression smooth 
splines for ሺ𝑥௧ሻ , are matching curve processes, as recommended by Koenker et al. (1994).  
 
The nonparametric quantile regression model requires the selection of the smoothness parameter 
𝜆. We choose the smoothing parameter 𝜆 using 𝑘-fold CV algorithm of Lin et al. (2013).   
   

3. Empirical findings 

3.1. Main results 
 

Though our main focus are the results from the quantiles-based models, we also first investigated 
the effects of the rare disaster risks variables on the conditional mean of real gold returns based on 
standard OLS regressions (with Newey and West (1987) Heteroskedasticity and Autocorrelation 
corrected (HAC) standard errors) involving RDR1, RDR2, RDR11, and RDR22 as the covariates. 
The corresponding estimates of β1 in equation (1) are respectively (with p-values in parenthesis): 
-3.366 (0.130), -19.987 (0.369), -0.058 (0.417), and -0.187 (0.166), i.e., we find negative and 
statistically insignificant effects (see also Figures 1 and 2) – a finding in line with Barro and Misra 
(2016). 
 
Given the statistically insignificant results of the effects of the rare disaster risks covariates under 
the linear model, we wanted to check if this is because of the fact being misspecified. In this regard, 
we conducted the Brock et al. (1996, BDS) test of nonlinearity, as well as the powerful UDMax 
and WDMax tests of multiple structural breaks of Bai and Perron (2003). As can be seen from 
Table A2 in the Appendix, the null hypothesis of iid residuals of equation (1) is overwhelmingly 
rejected across various dimensions considered, and is indicative of uncaptured nonlinearity. While 
structural breaks could not be detected under RDR1, a minimum of 4 breaks were obtained 
between the relationship of real gold returns with RDR2, RDR11 and RDR22, as reported in Table 
A3 in the Appendix. Over and above the non-normal distributions of the variables involved, these 
results from the nonlinearity and structural instability analyses, highlight, on the one hand, the 
inappropriateness of the linear predictive regression model and, on the other hand, indicate the 
necessity to employ a quantiles-based approach.     
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Figure 1. Slope parameter estimates from linear quantile regression: real gold returns vs. rare disasters 

 
Note: The figure plots the slope estimates  𝛽መଵ at the 91 equally spaced quantiles from the 0.05-th quantile to 0.95-th quantile. The 
parameter estimates are plotted against the quantiles with a dotted bold line. A point-wise 95% confidence interval is indicated 
(gray shaded regions) around the quantile regression parameter estimates. The confidence intervals are obtained using the wild 
bootstrap method of Feng et al. (2011) with 2000 bootstrap draws. Superimposed on the graphs are the OLS parameter estimates 
(solid horizontal line) and their 95% confidence intervals (two dashed horizontal lines). A horizontal line is drawn at zero (thin 
light line) to indicate  𝛽ଵ ൌ  0, the null effect. 
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Figure 2. Slope parameter estimates from nonparametric quantile regression: real gold returns vs. rare disasters 

 
Note: The figure plots the nonparametric slope estimates  𝛽መଵ at the 91 equally spaced quantiles from the 0.05-th quantile to 0.95-
th quantile. The nonparametric quantile regressions are estimated using the method of Koenker et al. (1994). The reported slope 
estimates are obtained at the median value of the independent variable. The slope estimates are plotted against the quantiles with a 
dotted bold line. A point-wise 95% confidence interval is indicated (gray shaded regions) around the quantile regression parameter 
estimates. Superimposed on the graphs are the OLS parameter estimates (solid horizontal line) and their 95% confidence intervals 
(two dashed horizontal lines). A horizontal line is drawn at zero (thin light line) to indicate  𝛽ଵ ൌ  0, the null effect. 

 
Given the issue of misspecification of the linear model, we turn next to effects of RDR1, RDR2, 
RDR11 and RDR22 on real gold returns under linear and nonparametric quantile regressions 
reported in Figures 1 and 2 respectively. Concentrating first on the results from the linear quantile 
regressions in Figure 1, we find that the four rare disaster risks related variables tend to produce 
significant negative effects on real gold returns at extreme-low to moderate-low quantiles under 
the global probabilities of the occurrence of rare disaster events: RDR1 and RDR2, but the effect 
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stretches to the median under RDR11 and RDR22, i.e., for the cases involving number of countries 
facing rare disaster events. Comparatively, at times intermittent significant positive effects are only 
detected at extreme upper quantiles of gold returns, particularly under RDR22, and to some extent 
for RDR1 and RDR11 as well. Overall, rare disaster events seem to affect real gold returns 
negatively, except when the market is characterized by an exceptional bullish-phase. Alternatively 
put, evidence in favor of gold serving as a hedge against rare disaster risks is, at best, weak, and is 
associated when gold returns are extremely high. 
 
In Figure 2, we now focus our attention on the results from the relatively robust nonparametric 
quantile regression in light of the evidence of nonlinearity and regime changes. While the 
significant negative impact below the median is still observable as in Figure 1 under the linear 
quantile regressions, but now, we also detect significant increases in gold returns under all four 
measures of rare disasters beyond the quantile of 0.75. In other words, we obtain evidence 
supporting our hypothesis that gold acts as a hedge against risks associated with rare disaster 
events, but for this to happen the market must be at its moderately-high to extremely-high 
conditional quantiles, i.e., in its bullish-state. 
 
At this stage, our finding that gold can act as a hedge against rare disaster risks when its returns 
are in a good-state, warrants a bit of discussion. Our result tend to suggest that, while negative 
output effects can indeed increase real gold returns, but for that to happen the market must be 
soaring already, i.e., financial markets are possibly already in turmoil. This is likely to happen if 
gold prices and or returns are also affected by relatively faster moving behavioral variables, such 
as economic sentiment, evidence of which can be found in Balcilar et al. (2017) and Bonato et al. 
(2018), before a rare disaster event fully manifests. In other words, as output starts declining, and 
that period can be categorized as a rare disaster, negative sentiments are likely to have already set-
in to adversely impact the conventional asset markets (see, Da et al. (2015) for a detailed discussion 
on the link between sentiment and asset prices), and drive gold prices and or returns higher.         

3.2. Additional results 

Just like real gold returns, we also consider the impact of our rare disaster risks variables on real 
silver returns using the linear and nonparametric quantile regressions, with results reported in 
Figures 3 and 4. As with gold, the four rare disaster risk variables have a significantly negative 
impact at the lower conditional quantiles of real silver returns, while the effect is positive and 
significant at the upper end, with this effect particularly noticeable under the relatively robust 
nonparametric quantile regression.5 In other words, just like gold, silver too seems to act as a hedge 
against risks associated with rare disaster events during its bullish phase wherein real silver returns 
increases following rise in the global probability and number of countries facing such risks, but 
not so during its bearish-state, at which real silver returns is negatively impacted. 
 
 
  

                                                       
5 The estimates of β1 in equation (1) are respectively (with p-values in parenthesis): -18.067 (0.001), -20.962 (0.122), 
-0.150 (0.115), and -0.208 (0.204), i.e., negative and statistically insignificant effects, barring the case of RDR1 (see 
also Figures 3 and 4) – an observation, in general, again in line with Barro and Misra (2016). 
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Figure 3. Slope parameter estimates from linear quantile regression: real silver returns vs. rare disasters 

 
Note: The figure plots the slope estimates  𝛽መଵ at the 91 equally spaced quantiles from the 0.05-th quantile to 0.95-th quantile. The 
parameter estimates are plotted against the quantiles with a dotted bold line. A point-wise 95% confidence interval is indicated 
(gray shaded regions) around the quantile regression parameter estimates. The confidence intervals are obtained using the wild 
bootstrap method of Feng et al. (2011) with 2000 bootstrap draws. Superimposed on the graphs are the OLS parameter estimates 
(solid horizontal line) and their 95% confidence intervals (two dashed horizontal lines). A horizontal line is drawn at zero (thin 
light line) to indicate  𝛽ଵ ൌ  0, the null effect. 
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Figure 4. Slope parameter estimates from nonparametric quantile regression: real silver returns vs. rare disasters 

 
Note: The figure plots the nonparametric slope estimates  𝛽መଵ at the 91 equally spaced quantiles from the 0.05-th quantile to 0.95-
th quantile. The nonparametric quantile regressions are estimated using the method of Koenker et al. (1994). The reported slope 
estimates are obtained at the median value of the independent variable. The slope estimates are plotted against the quantiles with a 
dotted bold line. A point-wise 95% confidence interval is indicated (gray shaded regions) around the quantile regression parameter 
estimates. Superimposed on the graphs are the OLS parameter estimates (solid horizontal line) and their 95% confidence intervals 
(two dashed horizontal lines). A horizontal line is drawn at zero (thin light line) to indicate  𝛽ଵ ൌ  0, the null effect. 
 
As a further analysis, we used the quantile-on-quantile regression approach of Sim and Zhou 
(2015), with the technical details provided in Appendix B, to investigate if the quantile-specific 
impact on real gold and real silver returns are dependent on the size of the rare disaster risks 
variables, i.e., its quantiles. These results for real gold and real silver returns have been presented 
in Figures 5 and 6 respectively. As can be seen, that the size of the global probability of rare 
disaster events, or increase in the number of countries facing rare disaster risks does not tend to 
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alter our existing results obtained from the nonparametric quantile regressions in particular. That 
is, the hedging strength of gold and silver at their respective upper conditional quantiles is 
unaffected by the magnitude of the covariates. This is possibly an indication that, once certain 
major global economies, which are also the main players in the gold and silver markets, face rare 
disaster risks, spillover of such risks to other economies does not necessarily have an impact on 
the gold and silver markets.    
 
Figure 5. Slope parameter estimates from quantile-on-quantile regression: real gold returns vs. rare disasters 
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Figure 6. Slope parameter estimates from quantile-on-quantile regression: real silver returns vs. rare disasters 

 
 

4. Conclusion 
 
In this paper, we analyze the effects of rare disaster risks on real gold returns over the period of 
1280 to 2016, based on linear and parametric quantile regressions. Rare disaster events are 
identified as the percentage of countries relative to the total number of countries for which data on 
output is available (i.e., global probability of the occurrence of a rare disaster event), as well as the 
number of countries, facing a cumulative decline of more than 10% in per capita real GDP and 
real GDP growth rates for a specific year. While, in line with the study of Barro and Misra (2016), 
standard linear (conditional mean) regressions fail to show any significant effect of the rare disaster 
risks variables on real gold returns, quantile regressions, and in particular nonparametric versions 
of the same, depict evidence of a significant negative impact at lower conditional quantiles and 



15 
 

significant positive effect at upper conditional quantiles. Due to the existence of non-normality, 
nonlinearity and structural breaks in our data and relationships, quantile regression results are 
understandably more reliable than the non-results derived from a misspecified linear model. Our 
finding tends to suggest that, irrespective of the definition of rare disasters, gold serves as a hedge 
against associated risks of rare disaster events during its bullish-state.  As a comparative analysis, 
real silver returns over 1688 to 2016 also provides similar observations. Furthermore, using a 
quantile-on-quantile approach reveals that, our results are unaffected by the size of the global 
probability of a rare disaster event or the number of countries facing the same. 
 
Our findings have important implications for investors and academics. Understandably, in the 
wake of rare disaster events, gold traders must be aware that the safe haven property of gold is 
only likely to hold if the market is already performing well, since then only can gold hedge against 
such risks via increased real returns. But for this information to be available to the investors, they 
must be aware that one needs to rely on an underlying nonparametric quantiles-based econometric 
model. From an academic perspective, the existing rare disaster risks model involving gold of 
Barro and Misra (2016), which is derived to match the conditional mean-based empirical 
observation of insignificant statistical relationship between gold returns and rare disaster risks, 
needs to be modified. In particular, this asset pricing framework would require to theoretically 
model regime-specific movement of precious metals, such as gold and silver, to match the 
quantile-specific negative and positive impact of rare disasters on the returns of these commodities, 
as originally existing in the data.   
 
As far as future research is concerned, besides the theoretical extension discussed above, it would 
be interesting to extend our analysis to a forecasting exercise for not only gold returns, but also its 
volatility, given that the market is not only characterized by leverage (Asai et al., 2019, 2020), i.e., 
good and bad news related to returns emanating from rare disasters is also likely to impact its 
variability.6       
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Appendixes: 
Appendix A:  
 
Table A1. Summary statistics 

 Variable

Statistic 
Real Gold 
Returns 

Real 
Silver 

Returns RDR1 RDR2 RDR11 RDR22 

Mean -0.354 -0.583 0.171 0.067 3.022 4.959 

Median -0.440 -1.004 0.125 0.047 1.000 2.000 

Maximum 137.960 50.566 1.000 0.463 63.000 45.000 

Minimum -41.580 -65.188 0.000 0.000 0.000 0.000 

Std. Dev. 11.596 13.180 0.178 0.081 7.053 7.708 

Skewness 2.242 0.370 1.167 2.236 5.043 2.934 

Kurtosis 31.478 7.470 4.210 9.237 32.958 13.256 

Jarque-Bera 25521.05*** 281.38*** 212.286*** 483.37*** 30684.42*** 1146.00*** 

Observations 737 329 737 197 737 197 
Note: *** indicates rejection of the null-hypothesis of normality at the 1% level of significance. 

 
Table A2. BDS test 

 Real Gold Returns Real Silver Returns 

Dimension RDR1 RDR2 RDR11 RDR22 RDR1 RDR2 RDR11 RDR22

2 8.287*** 7.862*** 8.503*** 7.252*** 6.105*** 5.727*** 6.484*** 4.403***

3 9.921*** 9.610*** 10.061*** 8.865*** 9.527*** 7.826*** 9.308*** 7.023***

4 11.108*** 10.191*** 11.227*** 9.639*** 10.685*** 8.373*** 10.540*** 8.406***

5 11.915*** 10.378*** 12.029*** 9.876*** 12.145*** 9.607*** 12.013*** 9.946***

6 12.902*** 11.334*** 13.038*** 10.906*** 13.294*** 10.563*** 13.199*** 11.127***

Note: See Notes to Table 1; The test is applied on the residuals recovered from the linear regression of real gold or real silver 
returns as the dependent variable and a specific rare disaster risks measure (RDR1, RDR2, RDR11, RDR22) as the independent 
variable. 

 
Table A3. Multiple breaks test 

Dependent 
Variable 

Independent 
Variable UDmax test statsitic WDmax test statsitic

Real Gold 
Returns 

RDR1 

RDR2 1879, 1919, 1952, 1981 1850, 1879, 1919, 1952, 1981 

RDR11 1423, 1595, 1706, 1817 

RDR22 1852, 1883, 1921, 1952, 1981 1852, 1883, 1921, 1952, 1981 

Real 
Silver 

Returns 

RDR1 

RDR2 1884, 1916, 1949, 1981 

RDR11 

RDR22 1916, 1950, 1986 1884, 1916, 1950, 1986 
Note: The test is applied on the linear regression of real gold or real silver returns as the dependent variable and a specific rare 
disaster risks measure (RDR1, RDR2, RDR11, RDR22) as the independent variable. 
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Figure A1. Data plots 
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APPENDIX B: 
Technical details of the quantile-on-quantile (QQ) regression methodology: 
 
The linear quantile regression model in equation (2) allows the effect of rare disaster risk to vary 
across the different quantiles of real gold (or silver) returns. However, the response of returns may 
also depend on the magnitude of rare disaster risks. The standard quantile regression is unable to 
capture the dependence on the covariate 𝑥௧. In order to get a comprehensive insight, we focus on 
the relationship between the 𝜏-th quantile of real gold (or silver) returns and the 𝜃-th quantile of 
the rare disaster risk 𝑥௧, denoted by 𝑥ఏ, 𝜃 ∈ ሺ0,1ሻ. Sim and Zhou (2015) consider a non-parametric 
specification 𝑦௧ ൌ 𝛽ሺ𝜏, 𝑥௧ሻ ൅ 𝜀௧ሺ𝜏ሻ and a first order Taylor expansion of 𝛽ሺ𝜏, 𝑥௧ሻ around a quantile 
𝑥ఏ to obtain the following quantile-on-quantile (QQ) regression model: 
 

𝑦௧ ൌ 𝛽଴ሺ𝜏, 𝜃ሻ ൅ 𝛽ଵሺ𝜏, 𝜃ሻሺ𝑥௧ െ 𝑥ఏሻ ൅ 𝜀௧ሺ𝜏ሻ ሺB1ሻ 
 

where the term 𝛽଴ሺ𝜏, 𝜃ሻ ൅ 𝛽ଵሺ𝜏, 𝜃ሻሺ𝑥௧ െ 𝑥ఏሻ is the 𝜏-th conditional quantile of the real gold (or 
silver) returns. Indeed, this specification obtains a linear model in doubly indexed parameter, but 
allows us to examine whether marginal effect of rare disaster risk varies with its magnitude within 
a linear specification.  Unlike the standard conditional quantile function, equation (B1) captures 
the overall dependence structure between the θ-th quantile of rare disaster risk and the τ-th quantile 
of real gold (or silver) returns as the parameters 𝛽଴ and 𝛽ଵ are doubly indexed in 𝜏 and 𝜃. Sim and 
Zhou (2015) propose a local linear regression to estimate the parameters of the QQ model by 
solving the following minimization:  
 

min
ఉ∈ℝమ

∑ 𝜌ఛሾ𝑦௧ െ 𝛽଴  െ 𝛽ଵሺ𝑥௧ െ 𝑥ఏሻሿ்
௧ୀଵ 𝐾 ቀி೅ሺ௫೟ሻିఏ

௛
ቁ ሺB2ሻ  

 

where 𝐹்ሺ𝑥௧ሻ ൌ ଵ

்
∑ 𝐼ሺ𝑥௞ ൏ 𝑥௧

்
௞ୀଵ ሻ, 𝑡 ൌ 1,2, … , 𝑇, is the empirical distribution function of 𝑥௧, 𝐾ሺ∙ሻ 

denotes the kernel function and ℎ is the bandwidth parameter of the kernel. The linear program in 
equation (B2) is solved analogous to the standard quantile regression in equation (5) to get the QQ 
estimates of parameters: 𝛽ሺ𝜏, 𝜃ሻ ൌ ሺ𝛽଴ሺ𝜏, 𝜃ሻ, 𝛽଴ሺ𝜏, 𝜃ሻሻ′. Note that the kernel weights are inversely 
related to the distance between the empirical distribution function 𝐹்ሺ𝑥௧ሻ of 𝑥௧ and the 𝜃.  
 
The QQ regression model requires selections for the kernel function 𝐾ሺ⋅ሻ and bandwidth ℎ. 
Because of its computational simplicity and efficiency, the Gaussian kernel is used to weight the 
observations in the neighborhood of 𝑥ఏ for the QQ regression. The bandwidth parameter ℎ is 
selected using the least-squares cross validation (CV) regression approach with a local linear 
regression based on the method of Li and Racine (2004). 
 
At this stage, we must highlight an important issue, as indicated in the main text, when the shapes 
of quantile curves are nonlinear, and even depend on the quantile parameter, the linear quantile 
regression does not always suffice to adequately express the relationship between covariates and 
quantile functions of the response variable. While the QQ model is a solution to a linear model, 
but it too makes parametric assumptions, which in turn may not be rich enough to capture arbitrary 
nonlinearities. In light of this, the importance of nonparametric quantile regressions cannot be 
overlooked. 


