Mo Fischer carbene complexes: A DFT study on the prediction of redox potentials

Adebayo A. Adeniyi*^{a,b}, M. Landman^c, Jeanet Conradie^a

^a Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa

^b Department of Industrial Chemistry, Federal University Oye Ekiti, Nigeria

^c Department of Chemistry, University of Pretoria, 02 Lynnwood Road, Hatfield, Pretoria, 0002, South Africa.

Supporting Information

Table of Contents

Figures	53
Figur oxidi	re S1: Optimized geometry of the indicated molecules in their neutral (M), reduced (M^-), 1e ⁻ ized (M^+) and 2e ⁻ oxidized (M^{2+}) states
Figur oxidi	re S2: Optimized geometry of the indicated molecules, all containing a furyl group, in $2e^{-1}$ ized (M^{2+}) state
Figur (c) th	re S3: (a) The Mo-C _{carbene} bond distance (Å), (b) The HOMO and LUMO distance (in Å), he overlap between the HOMO and LUMO (in au) across the 23 derivatives
Figur their aceto	The plots of the (a) HOMO, (b) LUMO and (c) dipole moments of the molecules in reutral (M), reduced (M^-), 1e- oxidized (M^+) and 2e ⁻ oxidized (M^{2+}) calculated in onitrile medium
Figur M ⁺ , I funct	The correlation of the experimental and calculated reduction potential according to the M^{++} and M^{2+} calculated oxidation potential using (a) – (c) B3LYP and (d) - (f) M06 tional method.
Figur oxida and I indic	re S6: The correlation of the experimental oxidation potential (OP) with the calculated ation potential using the derivatives that best represent M ²⁺ (1d, 3d, 4a, 4b, 4c, 4d, 4e, 4g) M ⁺⁺ (1a, 1b, 1c, 2a, 2b, 2c, 2d, 3b, 3c, 4f, 4h, 5a, 5b and 5c) oxidation potentials as cated using the B3LYP and M06
Figur ioniz selec deriv	The correlation of the experimental oxidation potential (OP) with the calculated zation potential of (a) M^{++} using all derivatives except <i>fac</i> isomers of model 5 (b) M^{++} using cted derivatives (1a , 1b , 1c , 2a , 2b , 2c , 2d , 3b , 3c , 4f , 4h , 5a , 5b and 5c), (c) M^{2+} using all values (b) M^{2+} using selected derivatives (1d , 3d , 4a , 4b , 4c , 4d , 4e , 4g)
Figur atom 1e ⁻ o state prop	are S8: Relating the MESP minimum (V_{min}) , Mo atomic potential $(V(Mo))$, carbene C nic potential $(V(C))$, HOMO and LUMO energies and ionization potential (IP) calculated for oxidized molecules (1p) and related to the experimental OP and (a) calculated OP at M ⁺ e and (b) the clustering of derivatives, (c) calculated OP at M ⁺⁺ state with the computed perties at M ⁺ state and (d) the clustering of derivatives
Tables.	7
Table solva	e S1: The electron affinity (EA in eV), ionization potential (IP in eV) and change in ation energy from the neutral to reduced or oxidation state ($\Delta\Delta G_{sol}$) in eV) calculated using
D D D	I I

Table S2: The minimum MESP (V _{min}) and the maximum MESP (V _{max}) in the complexes (in	
kcal/mol)	8
Table S3: The atomic potential (V) of Mo and carbene carbon atom in the complexes in au	9

Figure S1: Optimized geometry of the indicated molecules in their neutral (M), reduced (M⁻), 1e⁻ oxidized (M⁺) and 2e⁻ oxidized (M²⁺) states.

Figure S2: Optimized geometry of the indicated molecules, all containing a furyl group, in $2e^{-}$ oxidized (M²⁺) state.

Figure S3: (a) The Mo-C_{carbene} bond distance (Å), (b) The HOMO and LUMO distance (in Å), (c) the overlap between the HOMO and LUMO (in au) across the 23 derivatives

Figure S4: The plots of the (a) HOMO, (b) LUMO and (c) dipole moments of the molecules in their neutral (M), reduced (M⁻), 1e₋ oxidized (M⁺) and 2e⁻ oxidized (M²⁺) calculated in acetonitrile medium

Figure S5: The correlation of the experimental and calculated reduction potential according to the M^+ , M^{++} and M^{2+} calculated oxidation potential using (a) – (c) B3LYP and (d) - (f) M06 functional method.

Figure S6: The correlation of the experimental oxidation potential (OP) with the calculated oxidation potential using the derivatives that best represent M²⁺ (**1d**, **3d**, **4a**, **4b**, **4c**, **4d**, **4e**, **4g**) and M⁺⁺ (**1a**, **1b**, **1c**, **2a**, **2b**, **2c**, **2d**, **3b**, **3c**, **4f**, **4h**, **5a**, **5b** and **5c**) oxidation potentials as indicated using the B3LYP and M06.

Figure S7: The correlation of the experimental oxidation potential (OP) with the calculated ionization potential of (a) M⁺⁺ using all derivatives except *fac* isomers of model 5 (b) M⁺⁺ using selected derivatives (**1a, 1b, 1c, 2a, 2b, 2c, 2d, 3b, 3c, 4f, 4h, 5a, 5b** and **5c**), (c) M²⁺ using all derivatives (b) M²⁺ using selected derivatives (**1d, 3d, 4a, 4b, 4c, 4d, 4e, 4g**).

Figure S8: Relating the MESP minimum (V_{min}), Mo atomic potential (V(Mo)), carbene C atomic potential (V(C)), HOMO and LUMO energies and ionization potential (IP) calculated for 1e⁻ oxidized molecules (1p) and related to the experimental OP and (a) calculated OP at M⁺ state and (b) the clustering of derivatives, (c) calculated OP at M⁺⁺ state with the computed properties at M⁺ state and (d) the clustering of derivatives

Tables

Table S1: The electron affinity (EA in eV), ionization potential (IP in eV) and change in solvation energy from the neutral to reduced or oxidation state ($\Delta\Delta G_{sol}$) in eV) calculated using B3LYP

Molecules	M	M^+	M ⁺⁺	M^{2+}	M	M^+	M ⁺⁺	M ²⁺
	EA(M ⁻)	$IP(M^+)$	IP(M ⁺⁺)	$IP(M^{2+})$	$\Delta\Delta G_{sol}(M^{-})$	$\Delta\Delta G_{sol}(M^{\scriptscriptstyle +})$	$\Delta\Delta G_{sol}(M^{\text{++}})$	$\Delta\Delta G_{sol}(M^{2+})$
1a	-1.849	7.340	10.792	18.132	-1.290	1.878	5.042	6.920
1b	-1.620	6.423	9.624	16.047	-1.329	1.509	4.437	5.946
1c	-1.631	6.506	9.554	16.061	-1.321	1.631	4.431	6.062
1d	-1.738	6.598	9.510	16.107	-1.244	1.628	4.032	5.659
2a	-1.369	7.159	10.473	17.632	-1.286	1.750	5.215	6.965
2b	-1.189	6.250	9.368	15.618	-1.296	1.453	4.400	5.853
2c	-1.213	6.222	9.656	15.878	-1.228	1.538	4.619	6.157
2d	-1.301	6.416	9.264	15.681	-1.193	1.546	4.333	5.880
3a	-2.116	7.121	10.768	17.888	-1.176	1.602	4.453	6.055
3 b	-1.896	6.278	9.263	15.541	-1.223	1.400	3.965	5.365
3c	-1.917	6.282	9.456	15.739	-1.176	1.464	4.400	5.864
3d	-1.996	6.450	9.142	15.592	-1.153	1.481	3.925	5.406
4 a	-1.711	7.275	11.415	18.690	-1.304	1.812	5.559	7.371
4 b	-1.499	6.371	9.692	16.063	-1.347	1.405	4.267	5.672
4e	-1.266	6.164	9.464	15.627	-1.419	1.434	4.061	5.495
4 c	-1.531	6.413	9.713	16.127	-1.308	1.508	4.333	5.841
4d	-1.622	6.484	9.654	16.139	-1.256	1.474	4.289	5.763
4e	-1.414	7.319	11.036	18.355	-1.238	1.908	5.428	7.336
4 f	-1.263	7.131	10.494	17.625	-1.242	1.760	5.114	6.874
4g	-1.220	6.311	9.666	15.977	-1.296	1.407	4.151	5.558
4h	-1.140	6.176	9.384	15.560	-1.242	1.395	4.401	5.796
5a	-1.074	5.633	8.869	14.501	-1.397	1.268	3.970	5.238
5b	-0.890	5.480	8.890	14.369	-1.396	1.354	4.068	5.421
5c	-0.834	5.353	8.468	13.821	-1.331	1.304	3.911	5.216

	\mathbf{V}_{min}				V _{max}				
	М	M	M^+	M^{2+}	М	M	M^+	M^{2+}	
1a	-26.14	-92.84	50.10	108.16	34.66	-16.23	126.19	216.42	
1b	-39.71	-104.47	36.07	89.09	31.39	-16.64	100.63	193.95	
1c	-34.56	-101.08	37.14	85.38	34.97	-15.53	110.45	196.44	
1d	-23.76	-93.73	28.72	75.19	32.58	-15.03	113.57	223.65	
2a	-35.16	-100.33	41.01	108.93	47.47	-8.55	117.46	214.34	
2b	-41.30	-106.27	27.96	86.74	31.21	-15.52	92.41	190.44	
2c	-40.87	-104.54	29.58	80.17	41.02	-12.91	97.74	194.70	
2d	-31.66	-112.67	24.45	71.53	43.25	2.21	113.99	219.90	
3a	-27.18	-90.51	39.57	101.08	32.65	-3.18	106.97	194.23	
3 b	-37.69	-101.41	32.06	81.72	28.28	-8.07	96.37	182.27	
3c	-35.97	-96.05	25.53	78.35	50.37	-10.23	104.39	191.78	
3d	-24.53	-91.69	27.13	70.66	32.31	-2.57	110.13	214.58	
4 a	-27.34	-96.92	48.35	113.54	32.98	-16.36	121.85	235.36	
4b	-41.41	-103.90	35.23	83.02	29.65	-17.43	96.30	208.63	
4 c	-36.64	-102.48	36.67	80.46	42.26	-17.63	104.60	210.28	
4d	-25.51	-97.30	28.12	71.47	29.62	-17.76	115.42	210.43	
4 e	-34.57	-103.96	42.81	111.83	69.76	-3.67	154.04	216.54	
4f	-39.07	-107.72	39.80	85.96	69.07	-4.01	124.93	215.87	
4 g	-41.17	-108.52	29.35	90.88	51.99	-15.69	118.37	214.43	
4h	-38.36	-104.95	26.10	84.99	53.81	-12.34	113.85	160.52	
5a	-36.16	-117.33	29.12	81.13	35.74	-15.37	98.34	162.81	
5b	-39.67	-118.24	25.77	78.32	35.35	-16.09	102.38	178.29	
5c	-41.30	-111.70	24.10	76.02	33.20	-17.26	100.11	176.67	

Table S2: The minimum MESP (V_{min}) and the maximum MESP (V_{max}) in the complexes (in kcal/mol).

	Мо				C(carbene)				
	V(Mo,M)	V(Mo,M ⁻)	V(Mo,M ⁺)	V(Mo,M ²⁺)	V(C,M)	V(C,M ⁻)	$V(C,M^+)$	V(C,M ²⁺)	
1a	-46.618	-46.828	-46.468	-46.344	-14.586	-14.787	-14.457	-14.322	
1b	-46.680	-46.858	-46.523	-46.367	-14.651	-14.820	-14.490	-14.349	
1c	-46.675	-46.837	-46.500	-46.346	-14.627	-14.816	-14.489	-14.346	
1d	-46.679	-46.835	-46.490	-46.352	-14.619	-14.787	-14.459	-14.324	
2a	-46.640	-46.835	-46.489	-46.348	-14.586	-14.787	-14.462	-14.324	
2b	-46.698	-46.876	-46.543	-46.389	-14.655	-14.817	-14.493	-14.355	
2c	-46.693	-46.862	-46.522	-46.356	-14.637	-14.814	-14.490	-14.350	
2d	-46.692	-46.822	-46.510	-46.364	-14.618	-14.748	-14.462	-14.323	
3a	-46.620	-46.823	-46.476	-46.350	-14.588	-14.784	-14.452	-14.326	
3 b	-46.680	-46.848	-46.531	-46.397	-14.654	-14.815	-14.498	-14.374	
3c	-46.667	-46.825	-46.504	-46.360	-14.644	-14.810	-14.497	-14.360	
3d	-46.682	-46.833	-46.502	-46.375	-14.622	-14.786	-14.472	-14.343	
4 a	-46.626	-46.841	-46.480	-46.282	-14.593	-14.790	-14.461	-14.331	
4 b	-46.691	-46.871	-46.541	-46.399	-14.661	-14.829	-14.498	-14.356	
4c	-46.679	-46.856	-46.519	-46.383	-14.651	-14.820	-14.493	-14.353	
4d	-46.690	-46.847	-46.508	-46.385	-14.626	-14.792	-14.465	-14.315	
4 e	-46.623	-46.843	-46.468	-46.350	-14.586	-14.786	-14.456	-14.321	
4f	-46.642	-46.858	-46.487	-46.360	-14.590	-14.792	-14.472	-14.334	
4g	-46.702	-46.858	-46.535	-46.403	-14.651	-14.834	-14.497	-14.349	
4h	-46.723	-46.879	-46.543	-46.459	-14.656	-14.831	-14.506	-14.432	
5a	-46.733	-46.891	-46.569	-46.447	-14.693	-14.857	-14.534	-14.403	
5b	-46.724	-46.883	-46.559	-46.453	-14.686	-14.858	-14.545	-14.416	
5c	-46.743	-46.896	-46.581	-46.461	-14.688	-14.855	-14.532	-14.409	

Table S3: The atomic potential (V) of Mo and carbene carbon atom in the complexes in au.