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INTRODUCTION 

* It is well-know that C -algebras can be defined in two different ways. At 
first it is defined abstractly as a Banach algebra ll such that for each 
element in ll there exists an "adjoint" element in ll which satisfies 
certain properties. Gelfand, Naimark and Segal proved that any such 

* abstract C - algebra is isomorphic to a norm- closed *- subalgebra of the 
algebra of bounded linear operators on some Hilbert space [9] . Hence a 
* C -algebra can be represented as a norm-closed *-subalgebra of the algebra 

of bounded linear operators on a Hilbert space. 

J van Neumann made a study of operator algebras and in 1930 for the first 
time defined this class of operator algebras, later known as von Neumann 
algebras, in terms of a representation on a Hilbert space. After the 
studies of Gelfand, Naimark and Segal (cf also [2]), von Neumann algebras 
were defined as *-subalgebras of bounded operators on a Hilbert space which 
are weak operator closed. 

A further concrete characterization of von Neumann algebras follows from 
von Neumann's well-known double commutant theorem [2] which characterizes 
van Neumann algebras in an algebraic way. Von Neumann tried to 
characterize these algebras in a more abstract or representation­
independent manner. It was only in the mid fifties that two mathematicians 
named Kadison and Sakai, almost simultaneously published two abstract 
characterizations of van Neumann algebras [4], [8]. In our paper we give a 
description and proof of these von Neumann algebra characterization 
results. 

In the first section of chapter one we state important results on 
projections and operators that are later needed to prove a few propositions 
and theorems. In the second section of the first chapter we state the 
important spectral theorem [7], [10] and a few results on Borel calculus. 
Ve prove a theorem of Baire in a unique way by using L-sets. Ve then use 
this theorem together with the spectral theorem to extend the Gelfand 
Naimark *-isomorphism to a *-homomorphism between all the bounded complex 
Borel functions on the spectrum u(T) of an operator T and the van 
Neumann algebra generated by T and I [10]. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

4 

In chapter 2 we discuss Kadison's characterization. During his studies it 

became clear to him that a von Neumann algebra A c B(H) satisfies two 

conditions, firstly each increasing net of self-adjoint operators that is 

bounded from above has a least upper bound and secondly the states 

(positive linear functionals of norm 1) in A which are normal, separate 

A. Ve prove that it is exactly these two conditions that characterize a 

von Neumann algebra. In the latter part of chapter two we construct 

Kadison's example which shows that both conditions are necessary [4]. Ve 
* construct a commutative C - algebra with the upper bound property, but 

without any normal states. Since all vector states in a von Neumann 

algebra are normal, this shows that this algebra can't be isomorphic to a 

von Neumann algebra. 

It is well-known that one of the basic features of von Neumann algebras is 

that for each von Neumann algebra Ac B(H) there exists a unique Banach 
* space A* such that A is the dual of A* [2]. Thus A is a C -algebra 

* with a predual. In chapter 3 we show that a C -algebra ll is isomorphic 

to a von Neumann algebra if and only if there exists a Banach space ll* 

* such that (ll*) = ll. This theorem was first proved by Sakai in 1956. Ve 

give Tomiyama:'s proof for this characterization. 
conditional expectations (projections of norm 

Tomiyama made a study of 
one) by generalising 

conditional expectations from commutative measure theory to non-commutative 

measure spaces. By using this technique and results on the well- known 

universal representation [6], Tomiyama gave an elegant proof of Sakai's 

result in 1957 [13]. The exposition hereof is contained in chapter 3. 

Ve conclude this thesis with an Appendix where we mention a few basic 

results on some useful locally convex topologies defined on A. As far as 

the references are concerned, the main sources used in this work are [2], 
[4], [5], [6], and [10]. More detailed references are given throughout the 

chapters. The notations and conversions used are also defined at the 

beginning of each section. 

The author could find no reference of a proof of Baire's theorem in chapter 

1, hence the proof given is his own. Another original piece of work is the 

proof of Lemma 1.1.12 using Borel calculus. The classical proof ( which 

depends on many other results) can be found in [6]. Apart from these there 
are a few interesting remarks (cf Remark 3.4). 
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CHAPTER 1 : PROJECTIONS A.ND OPERATORS 

I The lattice of projections 

* Let H be a Hilbert space and denote the C -algebra of all bounded 

linear operators on H by B(H). Ve denote by A a *-subalgebra of 

B(H), which is a von Neumann algebra. A von Neumann algebra is 

defined as a *- subalgebra of B(H) which is closed in the weak 

operator topology on B(H). Hence clearly B(H) itself is a von 

Neumann algebra. If F is a subset of B(H) then the commutant F' 

of F is the set F' ={TE B(H) : TS= ST for all SE F}. 

The well-known double commutant theorem of von Neumann ([2], Theorem 

3.5.2) states that a von Neumann algebra is a unital *-subalgebra A 

of B(H) such that A= A''. One of the most important classes of 

operators in a von Neumann algebra A is the class of so- called 

projections. It is well-known that there exists a one-to-one 

correspondence between closed subspaces of H and projections in 
* B(H) (P is a projection if P = P and P2 = P). The aim of this 

part is to study the properties of projections in a von Neumann 

algebra. The set of all projections in A is denoted by P(A). It 

is easy to see that the order relation 5, defined by E 5 F iff 

EF = E iff E(H) c F(H) gives a partial order on P(A). From these 

equivalences it follows that the partial ordering of projections 

corresponds to the partial ordering of closed subspaces by the 

inclusion relation (~). If we now consider a family of projections, 

say {E1-}1•er then n E.(H) and [u E.(H)] are closed subsets of H 
iEI 1 1EI 1 

where [u E. (H)] is the closed linear span of U E. (H) . Let E 
iEI 1 iEI 1 

and F be the projections in B(H) corresponding to n E.(H) and 
iEI l 

[U E. (H)] 
iEI 1 

inf E. = E, 
iEI l 

respectively. It is now clear that 

for if E. 5 G for each i 
l 

Hence [U E. (H)] c G (H) . I l lE 
which implies that 

sup E. = F and that . I 1 lE 

then U E. (H) c G(H). 
iEI l 

F 5 G. Thus since 

E. < F for each i EI it follows that 
1 

sup Ei = F. 
iEI 

The fact that 
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inf E. = E . I i 
follows from a similar argument. Our next lemma now 

IE 

shows that if {E
1
-}

1
•ei CA, then sup E. and inf E. are elements 

iEI 1 iEI 1 

of 7'(A). 

Lemma 1.1 ([12], V, Proposition 1.1) 

If A 

7'(A) 

is a von Neumann algebra, then the set of all projections 
is a complete lattice. 

Proof 
To prove that 7'(A) is a complete lattice we must show that sup E. . I 1 lE 

and ~nf
1 

Ei are in 7'(A) where {Ei}iEI is a family of projections 
lE 

in A. Let E be a projection of H onto the closed subspace 
0 

n E.(H) of H. Let U be unitary and U EA', then 
. I i lE 

U(Ei (H)) = Ei U(H) (U E A') 

= E. (H) 
1 

(a unitary operator is onto) 

Thus any unitary element in A' leaves each Ei (H) invariant. 

Hence any unitary element in A' leaves n Ei(H) invariant, which 
* implies that E UE = UE . A similar argument applied to U E A' 

0 0 0 
* * also implies that E U E = U E . If we take adjoints it follows 

0 0 0 

that E UE = EU. Thus 
0 0 0 

Since every element ln A' 
( [10] , Proposition 2.24), 

TE A'. Thus E EA''= A. 
0 

E U = UE for every unitary U E A'. 
0 0 

is a linear combination of four unitaries 
it follows that ET= TE for every 

0 0 

Since the mapping E-+ I - E reverses the ordering of projections 

we have sup E. = I - inf(I - E.) E 7'(A). The equality follows since 
ieI 1 iEI 1 

inf ( I - E. ) ~ I - E. . Thus I - inf ( I - E
1
.) ~ I - ( I - E

1
.) = E .. 

iEI 1 1 ieI 1 
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Now, if Ei ~ G for all i EI then inf (I - Ei) ~ I - G for all 
ieI 

i. Thus I - inf(I - E.) 5 I - (I - G) = G for all i . 
. I 1 lE 

Hence I - inf(I - E.) = sup E .• 
ieI 1 ieI 1 

The follm,ing result follows directly from the last part of our 

previous proof. Since we are going to use it in the chapters that 

follow, we state it as a corollary. 

Corollary 1.2 

If {E-} 
1 

is a family of projections in H, {E -} has a greatest 
1 

lower bound inf E. and a smallest upper bound sup E .. The mapping 
iEI 1 iEI 1 

E-+ I - E reverses the order of projections and 

sup ( I - E . ) = I - inf E . ; inf ( I - E . ) = I - sup E .. 
iEI 1 iEI 1 iEI 1 iEI 1 

Vi th each bounded linear operator T acting on a Hilbert space we 

associate a null space and a range space. The null space 

{x EH: Tx = O} and the range space (which is the closure [T(H)] 
of the range T (H) where T (H) = {Tx : x E H} of T) have 
corresponding projections namely the null projection, N(T) and the 

range projection, R(T). Then E is a projection, R(E) = E and 

N (E) = I - E. 

Lemma 1.3 ([5], Proposition 2.5.13) 

If T is a bounded linear operator acting on a Hilbert space H, 
* * * * then R(T) = I - N(T ), N(T) = I - R(T) and R(T T) = R(T ). 

Proof 
Since the set {x EH: Tx = O} 

= {x EH 
= {x EH: 

* = T (H) .1. 

* = [T (H)] .1. 

<Tx,y> = 0 for each y in H} 
* <x,T y> = 0 for each y in H} 
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* * it folloYs that N(T) = I - R(T ). If Ye replace T by T Ye get 
* * N(T) = I - R(T). NoY for each x in H, 11Txll 2 = <Tx,Tx> = <T Tx,x>. 

* * Thus Tx = 0 if and only if T Tx = 0. That is N(T) = N(T T) from 
* * Yhich it folloYs that R(T T) = I - N(T) = R(T) 

Lemma 1.4 ([5], Proposition 2.5.14] 

If E and F are projections acting on a Hilbert space H, then 

R(E + F) = sup {E,F}. Hence if EF = 0 ,then R(E + F) = E + F = 

sup {E,F}. 

Proof 
Since IIExll 2 + IIFxll 2 

= <Ex,x> + <Fx,x> (E and F are projections) 
= <(E + F)x,x> 

for each vector x it folloYs that (E + F)x = 0 iff Ex= Fx = 0. 

Thus N(E + F) = inf {N(E),N(F)} 
= inf { (I - R(E)), (I - R(F))} 
= inf { ( I - E) , ( I - F)} 

From Lemma 1.3 it folloYs that R(E + F) = I - N(E + F). 
Thus R(E + F) = I - inf {(I - E), (I - F)} and from Corollary 1.2 

inf {(I - E), (I - F)} = I - sup {E,F}. Hence 

R(E + F) = I - (I - sup {E,F}) 
= sup {E,F}. 

In chapter tYo Ye are going to state tyo conditions Yhich a 
* C - algebra 11 has to satisfy to be isomorphic to a von Neumann 

algebra. One of these conditions is that each increasing net of 
self-adjoint operators in 11 that is bounded above has a least upper 
bound in 11. In the folloYing proposition Ye prove that if A is a 
von Neumann algebra, then this condition is satisfied. Moreover Ye 
shoY that this least upper bound of the increasing net is also the 

strong operator limit. (Note that for T,S EA, T ~ S iff 
<Tx,x> ~ <Sx,x> for each x EH.) 
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Proposition 1.5 ([5], Lemma 5.1.4) 

If {Ti}iEI is a monotone increasing net of self-adjoint operators 

in A and Ti~ kl for all i EI and k a constant, then {Ti} 

is strong operator convergent to a self- adjoint operator T. Thus 

TE A and T is the least upper bound of {Ti}. 

Proof 

Since the convergence of {Ti} ieI 

equivalent we may assume that {T.} 
1 

and that of {Ti, i ~ \} 

is bounded below (by Ti) 
0 

are 

as 

well as above. Thus - IITi III ~ Ti ~ kl, 
0 

and so {T.} 
1 

is a bounded 

set of operators. Since a closed ball S in B(H) is weak operator 

{Tl} of {Ti} compact (Banach Aloaglu, [9]) there exists a subset 

which is weak operator convergent to a T in B(H). Since A is 
weak operator closed, T E A. As {T.} is monotone increasing 

1 

<Tlx,x> ~ <Ti
1
x,x> when l ~ i

1 
and x EH. Since <Tx,x> = 

lim<T 0x,x> ~ <T. x,x> for all x EH we have that T ~ T
1
.

1 
for all 

l {,· i1 

i (the order relation is to be interpreted in the operator sense). 
1 

If i ~ l then O ~ T - Ti~ T - Tl, 

ll(T - Ti) 1 hxll 2 ~ <(T - Tl)x,x>. Hence 

and O ~ <(T - Ti)x,x> = 

{(T - Ti) 1 /2} is strong 

operator convergent to zero. The strong operator continuity of 
multiplication on bounded sets of operators allows us to conclude 

that {T - Ti} is strong operator convergent to 0. Ve have noted 

that T is an upper bound for {Ti}. If S > T. for all i, then 
- 1 

i <Sx,x> ~ <Tix,x> -+ <Tx,x>. Hence <Sx,x> ~ <Tx,x> for all x E H 

so S > T. Therefore T is the least upper bound of {Ti}. 

Lemma 1.6 ([5], Lemma 5.1.5] 

If T is a bounded operator on the Hilbert space H and O ~ T ~ I 
then {Ti/n} is a monotone increasing sequence of operators whose 

strong operator limit is the projection R(T). 
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Proof 
* Let ll{T,I) be the commutative C -algebra generated by I and T. 

Then by the Gelfand Naimark theorem (which will be stated in Chapter 

1, II) ll{T ,I) is isometric isomorphic to C{t1{T)). (C{t1{T)) is 
the continuous functions on the spectrum t1{T) of T). This 

isomorphism is also an order isomorphism. Now let f E C(u(T)) be 

the function corresponding to T under this isomorphism. Then 

0 ~ f ~ 1 and (f 1 /n) is a monotone increasing sequence in C{t1(T)) 
bounded above by 1. Hence {T 1 /n} is a monotone increasing sequence 

bounded above by I. Thus {T 1 /n} has a strong operator limit E 
and this limit is the least upper bound of {T 1 /n} (cf Lemma 1.5). 
Since multiplication is jointly continuous on bounded parts with 

respect to the strong operator topology, {T2 /n} is strong operator 
convergt to E2 • {T 1 /n} = {T2 / 2 n} is a sub-sequence of {T2 /n} so 

that E = E2 • Thus E is a projection. 
If we apply the Stone-Veierstrass theorem ([9], p160) to the function 
algebra representing ll(T), we see that T1 fn is the norm limit of 

polynomials, without constant term in T. 
Thus T1 /nx = 0 if Tx = 0 and Ex= 0 
then .Q = <Ex,x> ~ <Tt/nx,x> = IIT 1 hnxll 2 • 

Tx = 0. Ve have now proved that E and 
space. From Lemma 1.3 we know that 

* 

when Tx = 0. If Ex= 0 
Thus T1 / 2 nx = 0 and 

T have the same null 

R(T) =I - N(T) = I - N(T) = I - N(E) = R(E) = E. 

Remark 

If TE A (A a von Neumann algebra) and O ~ T ~ I it follows from 

Proposition 1.5 and Lemma 1.6 that R(T) E A. Now let S E A be 
* arbitrary. Ve show that R(S) EA. Since R(S) = R(SS) (cf Lemma 

1.3) it suffices to show that R(S) EA for S positive, and since 
R(S) = R(aS) for each positive scalar a we may assume that 

0 < S ~ I. Hence from the argument above R(S) EA for an arbitrary 

Se A. 
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The f ollo-wing lemma -will be crucial in the proof of one of our 

characterization theorems. This lemma states that each projection is 

the union of an orthogonal family of cyclic projections. A 

projection E is said to be cyclic in a von Neumann algebra A if 

its range is [A'x] for some vector x. Ve call x the generating 
vector for E under A' (A' the commutant of A). 

Lemma 1.7 ([5], Proposition 5.5.9] 

If E is a cyclic projection in a von Neumann algebra A -with 
generating vector x and F is a projection in A such that 

F 5 E, then F is cyclic in A -with generating vector Fx. 
Moreover each projection in A is the union of an orthogonal family 

of cyclic projections in A. 

Proof 
Firstly -we must note that [T'Fx: T' EA'] = [FT'x: T' EA']. 

Since F is continuous and {T'x : T' E A'} is dense in E(H), 

{FT'x: T' EA'} is dense in FE(H) = F(H). Thus F is cyclic in 
A and Fx is a generating vector for F. Suppose E is an 
arbitrary projection in A. If E is O then E is cyclic in A 
-with generating vector O. If E f. 0 and x is some non- zero 

vector in its range then [A'x] is the range of a cyclic projection 
E. The following -with regard to the ranges of E and E are true. 

0 0 

If TE A' and x E E(H) then 

Tx = TEx = ETx (TE A') 
E E(H). 

Thus T (E (H)) c E (H) and the range of E is stable under A' . 

Similarly E is stable under A'. 
0 

No-w if x E E(H), choose any TE A' then since Tx E E(H) for any 
T -we have A'x c E(H), but since E(H) is a closed subspace of H, 

Hence E < E. To prove that 
0 -

it f ollo-ws that [A' x] ~ E (H) . 

E E A" = A -we must show that E T = TE for any T E A' . Let 
0 0 0 

y E H, then from the range stability -we know that TE y E E (H). 
0 0 

Thus E (TE y) = TE y for all 
0 0 0 

y E H for -which E TE = TE 
0 0 0 
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* * * follows. Similarly we can show 

If we take adjoints we have 

for T e A' that E T E = T E . 
0 0 0 

* E TE =ET 
0 0 0 

(E 
0 

= E ) . Thus 
0 

TE =ET for any Te A. 
0 0 

From the above arguments E has a non-zero cyclic subprojection if 
orthogonal families of non- zero cyclic 

is non- empty and the union of each totally 
E :/= 0 . The set of 
subproj ections of E 
ordered subset is an upper bound for that subset under inclusion 

ordering. Zorn's lemma guarantees the existence of a maximal 

orthogonal family {Ea} of non-zero cyclic subprojections of E. If 

E - S}iP Ea is not o, it contains by the argument above a non-zero 

cyclic subprojection E . Adjoining E to {Ea} contradicts the 
0 0 

maximality of {Ea}. Thus E is the union of the orthogonal family 

{Ea} of non-zero cyclic projections. 

II The spectral theory and Borel calculus 

In this part we' re going to take a look at some of the important 

theorems needed to prove some of the characterization theorems of 

van Neumann algebras. The well-known and important spectral theorem 

for self-adjoint operators is used throughout this writing. In [2], 

[5], [12], etc proofs are stated for the spectral theorem, we'll give 
the proof sketched by Stratila and Zsido ([10], paragraph 2.19). To 

enable us to do this we need some preliminaries on elementary 
* * C -algebra theory. An important class of elements in a C -algebra is 

the so- called positive elements. An element T E 11 is called 

positive if T is self-adjoint and t1(T) c [O,m), where t1(T) is 
the spectrum of T. If lJ = B(H) it can easily be seen ( [7] , 
Theorem 9.2-1 and Theorem 9.2-3) that this definition coincides with 

the classical definition for positive operators (i.e. T ~ 0 iff 
* <Tx,x> ~ 0 for every x e H). In a general C - algebra ll, the 

following condition is equivalent to the above-mentioned: 
* T ~ 0 iff T = S S for some Se 11. 

The fallowing important lemma that gives a *- isomorphism between 
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C({T,I}) and C(u(T)) vhere C(u(T)) 
functions in the spectrum and C({T,I}) 

is all the continuous complex 
* is the C -algebra generated 

by T and the identity I. Ve state the lemma vithout proof. 

Lemma 1.8 (Gelfand-Naimark; [10], Theorem 2.6) 

Let TE B(H) 
unique mapping 
mapping it onto 

be a self- adjoint operator. Then there exists a 

r : C(u(T)) -+ B(H) taking a f E C(u(T)) and 

f(T) E B(H) and 

(i) if f is a polynomial, f(A) = a + a A+ ••• + a An, then 
O 1 n 

f(T) = a I+ a T + 
0 1 

• • • + a T11. 
n 

(ii) r is isometric. 

It is further true that this mapping is a *- isomorphism of the 
* * C - algebra C ( u (T)) onto the C - algebra C ( {T, I}) and this 

isomorphism is an order isomorphism (i.e. f ~ g iff r(f) ~ r(g)). 

In the latter part of this section ve extend this *-isomorphism to a 

*-homomorphism betveen all the bounded complex Borel functions in the 
spectrum u(T) and the van Neumann algebra generated by T and I. 

To prove this extension we need a theorem of Baire which we' 11 

discuss after the spectral theorem. Before ve discuss and prove the 
very important spectral theorem, we need the following lemma. 

Lemma 1.9 ([10], Lemma 2.18) 

Let T E B(H) be a self- adjoint operator and let {fn} and {~} 

be two bounded increasing sequences of positive functions from 

C(u(T)), such that s~p fn(,\) ~ s~p gn(,\), A E u(T). Then 

s~p fn(T) 5 s~p ~(T). 
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Proof 
Since {fn} (respectively {~}) is an increasing sequence Yhich is 

bounded it folloYs from the fact that the Gelfand-isomorphism is an 

order isomorphism that {fn(T)} (respectively {~(T)}) is 

increasing and bounded above. The existence of the elements 

sup f (T) and sup g (T) follows then from Lemma 1.5. 
n n n 

Let n be a natural number and E > 0. For any A E q(T) we have 

fn(A) - E < fn(A) 5 s~p fm(A) 5 sup gm(A). 

Consequently there exists a neighbourhood VA of A and a natural 

number mA, such that fn(µ) - E < gmA(µ), µEVA. 

Clearly the set {VA : A E u(T)} is an open covering for u(T) and 

since u(T) is compact there exist A , ••• ,A E u(T) such that 
t n 

{VAi : 1 5 i < n} covers u(T). Now for each Ai there is a 

natural number mAi such that fn(µ) - E < gmAi(µ) (µ E VAi). Let 

then it fallows that f - E < e: n - UUln 
in 

C(u(T)). Since there exists an order isomorphism between the 
* * C -algebra C(u(T)) and the C -algebra C({T,I}) it follows that 

fn(T) - E 5 gmn(T) 5 s~p gm(T). 

Since E was chosen arbitrarily greater than zero, we have 

fn(T) 5 s~p gm(T) 

and since n was arbitrary it follows that 
sup f (T) 5 sup g (T). 

n n m m 

Let TE B(H) be a self-adjoint operator with 

m(T) = inf {A : A E u(T)} and M(T) = sup {A : A E q(T)}. 
Since u(T) is compact : m(T) and M(T) will also be in u(T). 
For any A E IR we shall consider the continuous functions 

1 if t E 
1 (-(I),A-n:] 

£/(t) n(A - t) if t E 
1 

= P-n:,A] 

0 if t E (A,(I)). 
Ve then have fnA(t) nT(I) X(-Cil,A)(t) for all t E IR. 
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Since the Gelfand isomorphism is also an order isomorphism we have 
from Lemma 1. 8 that { f n ;\ (T)} is an increasing sequence which is 

bounded above, hence from Lemma 1. 5 there exists a self- adjoint 

E;\ E B(H) such that 

fn \T) T EA. 

Moreover { f n A (T)} converges in the strong operator limit to EA. 

Ve now show that EA is a projection. 

Since multiplication of operators is strong operator continuous on 
bounded parts it is clear that 

fn;\(T) 2 -+ EA 2 in the strong operator limit. 

On the other hand it also follows that 

fnA(t) 2 j X(-m,A)(t) for t E ~-

Using the same argument as above and Lemma 1.8 

fnA(T)2-+ EA. 

Thus EA 2 = EA and EA is a projection in B(H). 

For a self-adjoint operator T the spectral theory consists of the 

following properties. (EA) is known as the spectral family. 

Theorem 1.10 ([10], Paragraph 2.19) 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

Proof 
(i) 

EA e A({T,I}), the von Neumann algebra generated by T and 

I. 

If A < ;\ then E, < E, . 
1 - 2 Al - A2 

If ;\n TA then EAn TEA. 

If A~ m(T) then EA= 0 and if A> M(T) then EA= I. 

TE;\~ ;\E;\ and T(I - E;\) ~ ;\(I - E;\). 

J
m JM(T)+O 

T = ;\dEA = AdEA. 
- m m(T) 

Since there exists an *-isomorphism between C(u(T)) and 
* the C - algebra C( {T ,I}), we have from the facts that 

f A (T) e C ( {T, I}) and A( {T, I}) is the weak operator 
n 
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closure of C({T,I}) that EA e A({T,I}) and in particular 

EA commutes Yith any operator commuting Yith T. 

For any n if A < A Ye have 
1 - 2 

fnAt 5 fnA 2 in C(u(T)). 

Thus fnA 1 (T) ~ fnA 2 (T) and it folloYs from Lemma 1.9 that 

sup fnA 1 (T) ~ sup fnA 2 (T), hence EA
1 

~ EA
2

• 

It is clear that pointYise as An T A. 

Since An ~ A for each n it folloYs from (ii) that 

E,n $ E,. Since sup f An~ sup f An pointYise it folloYs 
" " m m n n 

from Lemma 1.9 that E, = sup f An(T) ~ sup f An(T) = E,. 
"n m m n n " 

Hence EA~ EAn ~ fnA 0 (T) TEA. Therefore EAn TEA. 

If A ~ m(T), then u(T) C [A,CD); therefore fnA(t) = 0 

for all t E u(T). Thus EA = 0. If A> M(T), then 
1 for sufficiently great, therefore u(T) c (-CD,A-n:J n 

fn(t) = 1 for all t E u(T). Thus E,\ = 1. 

To prove (v) Ye must first shay that 
tfnA(t) $ ,\fnA(t) for t Em and 

t(1 - f/(t)) ~ {A - ¼)(1 - fn\t)) : t E m. 
1 A If t E (-CD,A - n:J then tfn (t) = t-1 = t < A 

and since fnA(t) = 1, tfnA(t) < AfnA(t). 

If t E [A - !,A] then n 

tfnA(t) = tn(A - t) ~ An(A - t) = AfnA(t). 

If t E [A,CD) then tfnA(t) = 0 but AfnA(t) = 0 as Yell. 

Thus tfnA(t) ~ AfnA(t) for all t Em. 

Similarly Ye can show that 
t(1 - fnA(t)) ~ (A - ¼)(1 - fnA(t)) for all t Em. 
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From tfnA(t) ~ AfnA(t) for all t ER 

we have TfnA(T) ~ AfnA(T). Thus TEA~ AEA. 

Since t(1 - fnA(t) ~ (A - ¾)(1 - fnA(t)), t e R 

we have T(I - fnA(T)) ~ (A - ¾)(I - fnA(T)). 

If we take the strong operator limits on both sides we 

obtain T(I - EA) ~ (I - EA). 

(vi) If µ~A we know from (ii) that Eµ ~ EA but from (v) we 

further know that TE < µE and also TE,< AE,. µ - µ A - A 

Further T(I - Eµ) ~ µ(I - Eµ) and T(I - EA) ~ A(I - EA). 

Ve' 11 now use the following fact, if S, T and R are 
bounded, self-adjoint linear operators on a complex Hilbert 
space H and R ~ 0 and commutes with S and T then if 
S ~ T one has SR ~ TR ( [cf [7], Theorem 9.3-1 for a 
proof). 
Now since EA ~ 0 and EA commutes with T(I - Eµ) and 

with µ(I - Eµ), we have T(I - Eµ)EA ~ µ(I - Eµ)EA. 

Thus since EµEA = Eµ (Eµ ~ EA) we have 

T(EA - Eµ) ~ µ(EA - Eµ). 

Since (I - Eµ) commutes with TEA and AEA, we have 

TEA (I - Eµ) ~ AEA (I - Eµ) from which it follows that 

T(EA - Eµ) ~ A(EA - Eµ)· 

Thus µ(EA - Eµ) ~ T(EA - Eµ) ~ A(EA - Eµ)· 

Let o > 0 and E > 0 be given and let 

6 = {m(T) = A < A < A < ... <A = M(T) + o} 
o 1 2 n 

be a partition of the interval [m(T), M(T) + o] whose norm 

is ll611 = sup Pi - Ai-l' i = 1,2, ... ,n} < e. 

Ve shall now consider the following sums 
n 

ss(6) =_}; Ai-1 (EH - EH-1) 
1=1 
n 

S(6) =EA· (E,. - E,._ 1). • l 1 Al Al 
1= 
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Since Ai-l ~ Ai it follows from the inequality proved above 

Ai-1 (E,u - E,u_ 1) ~ T(E,u - EAi- 1) 5 Ai (E,u - E,u_ 1) · 
n n 

But since E T(E,. -
, l Al EAi-1) = T_E (EAi - EAi-1) 
l= 1=1 

= T(EAn - EAo) 

= T(l - 0) = T 
n 

it follows that ss(6) = E Ai-l (EAi - EAi-l) 5 T. 
i=1 

n 
Ve also have S(6) = E A, (E,. - E,. 1) ~ T. Further 

, l 1 Al Al-
l= 

n 
IIS(6) - ss(6)ll = ~~1 Ai (E,u - E,u_ 1) 

n 

- i~l ,\i-1 (E,\i - EAi-1)11 

n 
= IIE (,\. - ,\. 1)(E,. - E,. 1)11 

· 1 l 1- Al Al-
l= 

< S1!P { (,\ i - ,\ i- l) , i = 1, ... , n} 
1 

< e. 
Now if one has O ~ S ~ T then 11S11 ~ IITII. 
Thus O 5 T - ss(6) 5 S(6) - ss(6) which implies that 

IIT - ss(6) II 5 IIS(6) - ss(6) II < E. 

These enable us to approximate T with a Riemann sum. 

J
rn JM(T)+O 

Thus T = AdEA = AdE,\ 
- rn m(T) 

where the integral is to be considered as a 
Lebesgue-Stieltjes integral which converges with respect to 
its norm. 

Before we can extend the *-isomorphism which we had in Lemma 1.8 by 
means of a theorem on operational calculus with Borel functions, we 
are now going to take a good look at a theorem of Baire. Let B(m) 
be the class of all bounded real- valued Borel functions on m and 
C(m) the class of all bounded continuous functions. 

Definition 1.11 

A set F(m) of bounded functions is called an L-set if 
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F (IR) is a bounded sequence (i.e. 

s~p llfnll < m) such that f = l*m f n pointvise, then 

f E F (IR) . 

Since the collection of all functions contains the bounded continuous 

functions it is clear that the collection of all functions is an 
L-set. Let Q = n F . Obviously Q itself is now an L-set and 

FeL- sets 
Q is contained in every L-set. 

Lemma 1.12 

The following is true 1n Q. 
(i) If f,g E Q then f + g, fg, 

lfl are all elements of Q. 
(ii) If (fn) c Q and the 

sup {f,g}, 

sup f = lim sup {f ,f , ... ,f} E Q. 
n n n 1 2 n 

Proof 

inf {f,g} and 

< m then 

(i) If f E C(IR) then the set of all functions g: IR-+ IR for 
which f + g E Q is clearly an L-set, hence contains Q (Q 
is contained.in every other L-set). Thus if f E C(IR) and 
g E Q then f + g E Q. Further if g E Q, the set of all 
functions f : IR -+ IR for which f + g E Q is an L- set 
which contains Q. Thus if f E Q and g E Q then 
f + g E Q. If f ,g E Q we can in a similar manner show 
that fg E Q. Ve conclude (i) by shoving that f E Q 

implies lfl E Q. 
Let X = {f : IR-+ IR: lfl E Q}. It is clear that C(IR) c X 

and if (fn) c X, s~p llfnll < m with f = l*m fn then 

If I = 1~m I fn I and sup 111 fn 111 < m, hence If I E Q. Thus 

we've shown that X is an L- set containing Q (Q the 
smallest L- set) , thus if f E Q then f E X, implying 

If I E Q. 
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Since sup {f,g} = (f + g; If - gj) 

and inf {f,g} = (f + g 2 If - gj) 

the rest of (i) folloYs. 

( [9] , p 159) 

(ii) This part folloys directly from (i) and the definition of an 
L- set. 

Proposition 1.13 

Let n = 

(i) 
(ii) 

(iii) 

(iv) 

Proof 

(i) 

{E c ~ I XE E Q}, then the folloYing properties hold: 

~en, ~en 
If A,B En, then AU B, Ac, B/A En 

CD 

If {A.}~_1 c n, then u A. 
1 1- . 1 1 

1= 

n contains all open sets. 

Since C(~) C Q and 

CD 

and n A. en 
. 1 1 1= 

are the zero and identity 

functions respectively, (i) is trivial. 

(ii) Since xA U B = sup {XA, xB} it folloYs from Lemma 1.12 (i) 

that A U B E n. From the same lemma and the f olloYing 

rel at ions X~\A = X~ - X A, XB\A = XB - X A it f olloYs that 

Ac and B\A En. 

CD 

(iii) If {Ai}i=l C n, let A =i~1Ai. 

Since XA = lim sup {XA ,XA , ••• ,XA } it folloYs from the 
n-+m 1 2 n 

second part of Lemma 1.12 that XA E Q. Hence A En. 
CD CD 

Since n A. = u (~\A.), (iii) folloYs . 
. 1 1 . 1 1 1= 1= 

(iv) Since any open set is a countable union of open intervals it 
is enough to prove the result for open intervals. Let 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

21 

(a,b) be any open interval. Ve are now going to show that 

X(a,b) E Q. 
0 on ( - oo , a) U (b , oo) 

1 1 1 on [a+- b--] n' n 
Define fn(x) = 

[ a, a+½J n(x- a) on 

n(b- x) 1 on [b- n' b] 

I 

1 I 

0: / ____ \ ___ _ 
----- 1 1 

Then clearly 

a a+- b-- b n n 

C Q, 

Proposition 1.14 ([14], Theorem 16.7) 

sup llf II = 1 n < (J) 

Let f .: ~-+ ~- The following conditions are equivalent: 

(i) f E Q 
(ii) For all a e ~, {x: f(x) ~ a} en. 

Proof 
Suppose f e Q, then let 
M = {f : ~-+ ~: {x: f(x) ~ a} en for all a}. 

and 

From Proposition 1.13 (iii) and (iv) it is clear that C(~) c M. 

Suppose (~) c M, sup llgnll < oo and g = 1~m ~. 
(J) (J) 1 

Since {x e ~: g(x) ~ a} = n U {x: g.(x) ~ a - ii}, 
n=1 j=n J 

it is clear from Proposition 1.13 (iii) that {x E ~: g(x) ~ a} En. 

Hence g EM. Thus M is an L-set containing Q. Ve've now show 

that (i) implies {ii). 
Conversely, suppose f EM, for a e ~ let A(a): = {x: f(x) ~ a}. 

Then xA(a) e Q and x~\A(a) e Q (Proposition 1.13). 
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a•1 if x E A(a) 
= { 0 if xi A(a) 

_ { a if f(x) ~ a 
- 0 if f(x) < a 

sup axA( )(x) = { f(x) 
a~O a 0 
aE~ 

if f (x) ~ 0 

if f(x) < 0 

= sup {f,O}(x). 

Similarly sup {-f,O} = !~b axlR\A(-a)· 

ae~ 
Since f = sup { f , 0} - sup {- f , 0} and sup { f , 0} , sup {- f , 0} E Q 

ye knoY from Lemma 1.12 that f E Q. 

Theorem 1.15 (Baire's Theorem) 

If B(IR) 
B(IR) = Q 

is the bounded Borel measurable functions on IR, then 

i.e. B(IR) is the smallest class of bounded functions 

Yhich contains the bounded continuous functions and Yhich is closed 

Yith regard to pointYise convergence of bounded sequences of 

functions. 

Proof 

Since n as defined in Proposition 1.13 contains all open sets and 

is a u-algebra it is clear that the u-algebra 

,p = {E E IR : XE E B(IR)} is contained in n. Hence if f E B(IR) 

then for all a E IR, {x f(x) ~ a} E ¢ c n. 
Thus f E Q (cf Proposition 1.14 (i)), so B(IR) ~ Q. Conversely it 

is Yell- know from the properties of bounded Borel functions that 

B(IR) is an L-set, thus Q ~ B(IR) and Ye have proved that B(IR) = Q. 

This theorem can now easily be extended to complex valued bounded 

Borel functions which we denote by B(() where B(() = B(IR) + iB(IR). 

Theorem 1.16 

B(C) is the smallest class of complex valued functions containing 
the continuous functions and which is closed Yith regard to pointYise 

convergence of bounded sequences of functions. 
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Proof 
Clearly B(C) is an L- set or such a class. The existence of the 
smallest class is easily verified, let Q = ~ + i£ be the smallest 
class. Let 1 now denote all those functions where £ is zero, 

thus the imaginary part is zero. Since Q ~ B(C) it follows that 

1 n Q ~ 1 n B(() and thus 1 ~ B(ffi). Ve know that Q contains all 
real valued continuous functions, thus ~ also contains them and 

since Q is closed with respect to point-wise convergence so is ~­

Thus ~ is an L-set and then B(ffi) c ~ (B(ffi) is the smallest such 

class (cf Theorem 1.15)), hence B(ffi) = ~-

It is easily verified that -iQ contains all continuous functions if 

Q contains them and also if Q is closed with regard to point-wise 

convergence, so is -iQ. Since Q ~ B(C), -iQ ~ -iB(C). Hence from 
B(IR) + iB(IR) = B(C) it is clear that - iQ ~ B(C). If we now use 
exactly the same argument as before, it follows that £ = B(IR) and 

hence Q = B(C). 

In our previous theorem the boundedness of functions can also be 

dropped. In fact we can prove the following result which is a 

corollary of Theorem 1.16. Let ~ be the smallest class of all 
complex valued Borel functions. 

Corollary 1.17 

~ is the smallest class of complex valued functions which contains 

the continuous functions and which is closed with regard to point-wise 

convergence. 

Proof 
Clearly ~ is such a class. If we take the intersection of all such 

classes it can easily be verified that this will be the smallest 

class, let it be Q. Thus Q ~ ~- From the fact that Q contains 
bounded continuous functions as well as the fact that Q is closed 
with regard to point-wise convergence of bounded sequences, it follows 

that B(C) ~ Q since B(C) is the smallest such class (cf Theorem 
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1.16). Any f e ~ is the pointYise limit of a sequence (fn) in 

B(C) ~ Q (this folloYs from the fact that any positive measurable 
function is a pointYise limit of simple functions). Thus since Q 
is an L-set f e Q. Thus ~ ~ Q and it folloYs that ~ = Q. 

Ve now state and prove the main theorem of this section. 

Theorem 1.18 ([10], Theorem 2.20) 

Let T e B(H) be a self- adjoint operator. 

mapping ft--+ f(T) from B(u(T)) to B(H) 

(i) if f is a polynomial and 

then f(T) = a I+ a T + ... +a T11 
o 1 n 

There exists a unique 
such that: 

' a ,n a + a A+ ... + A 
o 1 n 

(ii) if f ,fn e B(u(T)), sup llfnll ~ CD and fn --+ f pointYise 

then f n (T) --+ f (T) in the strong operator topology in 

B(H). 

* Moreover this mapping is a *-homomorphism of the C -algebra B(u(T)) 

into the von Neumann algebra A{(T,I)} and it is an extension of the 
mapping r mentioned in Lemma 1.8. 

Proof 

If rp is a mapping satisfying (i) and (ii), rp coincides with r 

Yhen rp is restricted to C(u(T)). Then 
rp: B(u(T))--+ B(H) and rp(p) = r(p) Yhere p is a polynomial. 

If f e C(u(T)) it folloYs from the Stone-Veierstrass theorem ([9], 

p 161) that there exists a sequence (pn) of polynomials converging 

uniformly to f on 
that rp(pn) --+ rp(f) 

u(T) and hence pointYise. It folloys from (ii) 
in the strong operator topology. On the other 

hand r(pn) --+ r(f) uniformly (r is an isometry), and hence 

strongly. 

Since r(pn) = rp(p) for each n, 
n it folloYs that r(f) = rp(f). 
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Ve now show that a mapping ~ satisfying (i) and (ii) is unique (if 
it exists): Suppose -, : B(t1(T))--+ B(H) is another such mapping. 

Then ~1C(t1(T)) = ¢lc(t1(T))· 

Since any bounded Borel function on t1(T) is a pointwise limit of a 
bounded sequence of simple functions which is Borel measurable and 
the open sets of u(T) generate the t1- algebra of Borel measurable 

sets it suffices to show that ~(x0) = ¢(x0) by using properties (i) 

and (ii). By x0 we denote the characteristic function of an open 

subset O of t1{T). 
To prove this let O be any open subset of t1(T). Then O = B n t1(T) 

where B is open in IR. Since B is a countable union of open 
CD 

intervals, say B = U I. one has that O is a countable union of 
. 1 1 l= 

sets of the form Ii n t1(T). 

Since Xo = l*m sup (x11 n t1(T), Xr 2 n t1(T), · · ·, 

sufficient from property (ii) to show that 

Xrn n t1(T)) it is 

~(xr n t1(T)) = 

¢(x1 n t1(T)) where I is an open interval in IR. If we let 

I= (a,b) and define fn as in the proof of Proposition 1.13 (iv), 

then fn --+ Xr pointwise. Let gn = fnl t1(T), then gn E C(t1(T)) 

and gn --+ x1 n u(T) pointwise. Since ~(~) = ¢(~) the result 

follows from property (ii). 
Ve now prove the existence of such a mapping as well as the other 

properties of the mapping described in the theorem: 

Consider the spectral family of projections (E,\) ,\, for any 

e,TJ EH we shall consider the function E e, 1/ 
defined by the 

relation Ee (,\) = <E,\e,11> 
'1/ 

with ,\ E IR. Ve show that the function 

E e, 1/ 
is of bounded variation. If we choose any partition of 

n 
[- IITll ,IITII] say {,\ , ... ,A } then E I <E,. e ,TJ> - <E,l. -1e ,1/> I 

0 n i=1 Al A 

n 
=i~11<(E,\i - E,\i-1){,TJ>I 

n 

=i~1l<(E,\i - E,\i-1)2e,11>I 
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n 

= i~1 I <(EH - EH- 1H' (EH - E,u-1) 11> I 

n 
\~

1
ll(EH - EH-1HII ll(EH - EH_ 1)11II 

n 2 ~ n 2 ~ 
< f~

1
ll(EH - E,u_ 1HII ) f~

1
ll(E,u - E,u_ 1)11II ) 

n ~ n ; 
= 1!/(EH - EH-1H,e>) i~/(E,u - Eu-1)1/,1/>) 

= (<(E,\n - E,\oH,e>); (<(E,\n - E,\0)1/,1/>); 

= <e,e>; <11,rJ>; = 11e11 111111 

If we take the supremum over all possible partitions we have 

sup (Ee' 1]) ~ II ell II 1111, where sup (EC 1]) is the total variation of 

Et . 
', '1/ 

Hence E e, 1/ 
is of bounded variation. Et now defines a 

', '1] 
measure (called the Lebesgue-Stieltjes measure) on the u-algebra of 

Borel sets on ~- For every f e B(u(T)) we define 

Ff(e,~l = J £(AldEe,q(Al 
"(T) 

= J00 

f(A)dEe,q(A) . 
-m 

(To get the second equality, we extend f to a Borel function on ~­

Notice that if ,\ ¢ "(T) we can find through the construction of the 

projection E,\ an open interval (,\-6,,\+6) on which E,\ = Eµ for 

each µ e {A- 8 ,,\+8). Thus the support of the measure 

contained in "(T) ([7], Theorem 9.11-2).) 

Ff(e,11) is bounded and of sesquilinear form, because 

IFf(e,q)I = 1J
00 

f(A)dEe,q(A)I 
-m 

-CD 

E e, 1/ 
is 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

-m 

= llfll sup (E{,17) 

~ llfll 11!11 1111II 

27 

thus Ff is bounded and since for inner products <x,ay> = a <x,y> 

is of sesquilinear form defined on H x H. From the 

representation theorem of Riesz it folloYs that there exists a unique 

operator f(T) E B(H) such that 

<f(T){,q> = J00 

f(A)dE{,q(A), {,q EH. 

Ve've noY defined the mapping f i---+ f(T) from B(u(T)) ~ B(H). 
If f,g E B(u(T)) and {,q EH, the linearity folloYs 

since <(f(T) + g(T)){,17> 
= <f(T){,q> + <g(T){,17> 

= f f(A)dE{,q(A) + f g(A)dE{,q(A) 
- (l) 

= <(f + g)(T){,17> 
thus f(T) + g(T) = (f + g)(T). 
Our next step is to shoY that f(T) = 

<f(T){,q> = r f(A)dE{,q(A) 

-m 

= <f (T)e, 11> 

= <{,f(T)17> 
* 

= < ( f (T)) C 11> 
- * Thus f(T) = (f(T)) . 

* ( f (T)) . 
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For f e B(u(T)) we have 
* 

Ee,(f(T))*q(A) = <EA!, (f(T)) q> with e,q e H 

= <f(T)EAe,q> 

= r f(µ)dEEA(,q(µ) 

If µ>A it is true for the spectral family of projections (EA)A 

that EAEµ = EµEA = EA 

Hence if µ ,µ > A, 
1 2 

EEAe,q(µl) - EEAe,q(µ2) 

= <E E,e,q> - <E E,e,q> µ1 A µ2 A 

= <EAe,q> - <EAe,q> = 0 

A 
Thus E(,(f(T))*q(A) = J f(µ)dE(,q(µ). 

-m 

Suppose g = X[a,b] then J00 

X[a,b] d JA f(µ)dE(,q(µ) 
-m -m 

Jb JA 
= d f(µ)dEe,q(µ) 

a -m 

= Jb d JA f(µ)dE(,q(µ) - Ja d JA f(µ)dE(,q(µ) 
-m -m -m -m 

b 
= J f(µ)dE(,q(µ) 

a 

= J00 

X[a,b]f(µ)dE(,q(µ) 

* Thus <f(T)g(T)e,q> = <g(T)e, (f(T)) q> 

= Jm g(µ)dE(,(f(T))*q(µ) 
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By means of the Lebesgue's Monotone Convergence Theorem ( [1] , 5, 
Theorem 15), the above-mentioned relation can be extended to a 
positive g E B(u(T)) and thus for any g e B(u(T)). Hence 
f(T)g(T) = (fg)(T) with f,g e B(u(T)). 

* Consequently f t-+ f (T) is a *- homomorphism of the C - algebra 
B(u(T)) into B(H). 
If f (A)= 1 and A e u(T) then from 

0 

<f (T)!,q> = Jrn f (A)dE, (A) 
0 0 ~, q 

= <!,q> we have f (T) = I. 
0 

If f (A)= A and A e u(T) then 
1 

<f (T)!,q> = Jrn f (A)dE, (A) 
1 1 ~ , q 

= <T!,~> therefore f (T) = T. 
1 

Since ft-+ f(T) is a multiplicative mapping, we've proved that if 
f(A) = a + a A1 + a A2 + ••• + a An 

o 1 2 n 

then f(T) = a I+ a T + a T2 + ... + a fl. 
o 1 2 n 

For any f E B(u(T)) and any ! EH 
* <f(T)!, f(T)!> = <(f(T)) f(T)!,!> 

= <t(T). f(T)!,!> 
= <lfl2(T)e,!> 

thus Jlf (T)eJl 2 = r Jf(.l) I 2dEe ,e(,I) • 
-rn 
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If fn E B( tr(T)), sup llfnll < CD and fn -+ f pointwise, 

ll(fn(T) - f(T))ell 2 = r lfn(,\) - f(A)l 2 dEe,e(,\) 
-CD 

by Lebesgue's Dominated Convergence Theorem ([1], Theorem 5.21) this 

integral tends to zero. 

Thus fn(T)-+ f(T) in the strong operator topology. 

Finally, since the set {f E B(tr(T)): f(T) E A({T,I})} contains the 

polynomials and is closed with regard to pointwise convergence, our 

theorem of Baire (cf Theorem 1.15) applies; consequently the 

above- mentioned set is equal to B( tr(T)). Hence the mapping is a 
* *-homomorphism of the C - algebra B( tr(T)) into the von Neumann 

algebra A({T,I}). 

Our next lemma will be used in the proof of our dual-space 

characterization. A proof can be found in [6] (Theorem 6.8.8), but 

we provide an alternative proof using Borel calculus. 

Lemma 1.19 

If K is a weak operator closed left (or right) 

von Neumann algebra A then X = .AE ( or X = EA) 

projection E 1n A. If r is a two-sided ideal E 
projection in A. 

Proof 

ideal in a 
for some 

is a central 

Let T be a positive operator in r and let {EA} be the spectral 

resolution for T. Let SA = fll ! dE . 
µ µ Then it fallows that 

,\ 

I - EA= TSA EK. Since I - EA= Xp,CD)(T) (where Xp,CD)(T) is 

to be understood in the sense of the Borel calculus) it is clear via 

Theorem 1.12 that · I - E / converges strongly to R(T) 
1 n 

(= X(o,CD/T)' cf the proof of Theorem 2.4 (ii)). Hence R(T) EK. 
* Now if we let s be any operator in K. Then S S is a positive 

element of K 
* * 

and from the argument above it follows that 

R(S) = R(S S) e X. 
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Since sup (E,F) = R(E+F) (cf Lemma 1.4) for E,F E 7'(A), the 
union of a finite family of projections in X is in X. Since X 

* is Yeak operator closed it follows that E: = sup R(T) E !. 
Te! 

* * * * * * Since ET = T, (ET) = (T) 
thus TE= T for each Tin K and X = AE. 

* If X is a right ideal, K is a left ideal. Ve've just show that 
* for some projection F in A, K = AF, thus K = FA. If K is a 

tYo-sided ideal K =FA= AE, thus E =FE= F it noY folloYs that 

EAE = AE and the range of E is invariant under A ( [5] , p121) . 
Since A is a self- adjoint family, E commutes Yith all the 
operators in A and E is a central projection. 

Ve conclude this chapter Yith a few examples of von Neumann algebras 
to Yhich we Yill refer in the chapters to folloY. 

Example 1.20 

1. If A= B(H) then clearly A is a von Neumann algebra. 

2. Associate Yith each x E £00 the operator T l 2 --+ l 2 defined 
X 

by Txy = xy. Then clearly Tx E B( l 2
) and IITxll = llxll. 

Moreover its trivial to show that under this representation £00 

* and A: = {Tx: x E £00
} are isomorphic as C -algebras. Ve show 

that A'' = A. This will imply that A is a von Neumann 

algebra. Let en= (0,0,0, ... ,0,1n,O,O, ... ). Then 

sup e = (1,1,1, ... ). 
n n 

Then clearly is a projection in A for each n e ™ and 
w 

the strong operator sum E T = I. 
n=1 en 

NoY if T E A' = {S E B(l2
) : STX = TxS for all x E £00

} and 

T(en) = fn = (f~) E £2 C £00 then 

TT (y) = T(ye) = T T(e) = f y = Tf y for all ye £2 
•••• (I) 

en n y n n n 
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Hence TTen = Tfn· Further from (1) it follows that 

fn = T(en) = T(en•en) = T(Tenen) = fnen for all n e ~-
k Define the sequence x by xk = fk for k = 1,2,3, ... 

Since 11fn11CD = IITfnll = IITTenll ~ IITII for all n E ~, it is clear 

that x E lCD. 

Also TT = T = Tf T = TT for each n E ~-x en xen n en en 
CD 

Since t T = I it follows that 
n=1 en 

CD 

T = T I = T t T 
X X Xn=1 en 

CD 
= t T T 
n=i X en 

CD 
= t TT 

n=1 en 
CD 

= T t T 
n=1 en 

= T. 
Thus T E A. This shows that A' c A. 

* 
Since A is a 

commutative C -algebra it is clear that Ac A'. Hence A= A' 
which implies that A''= (A')'= (A)'= A. Hence A is a von 
Neumann algebra. 
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CHAPTER 2 IADISON'S CHA.B.!CTERIZATION 

I Iadison's characterization of von Neumann algebras 

* In Chapter 1 we defined von Neumann algebras among C - algebras as 
* those C -algebras that are weak operator closed in their action on 

some Hilbert space H. In the same chapter Ye' ve also seen that 

von Neumann algebras satisfy the following order property, namely 

that each increasing net of operators in A that is bounded above 
has its supremum in A. One significant structural difference 

* between C - algebras and von Neumann algebras is that the weak 

operator closed algebras contain many projections, while in general 
* * C - algebras this is not the case. C - algebras with the above-

mentioned order property contain many projections and possess similar 

· properties than von Neumann algebras. It is thus natural to ask 
* whether a C -algebra satisfying the order property mentioned above is 

isomorphic to a von Neumann algebra. The answer to this question is 
* negative. In the mid fifties Kadison proved that a C -algebra 

satisfying this order property together with a separating condition 

is isomorphic to a von Neumann algebra. 

* In the latter part of this chapter we construct a C -algebra 

satisfying the order property, but not the separating condition. By 
* proving that this C - algebra has no normal states we show that it 

can't be isomorphic to any von Neumann algebra. Ve now define a 
* C -algebra satisfying these conditions. 

Definition 2.1 

* AC -algebra A that satisfies the following two conditions is said 
* to be a V - algebra: 

( i) Any increasing net of self- adjoint operators with an upper 

bound, has a least upper bound. 

(ii) The normal states of A separate A (i.e. if 

T j O then there exists a normal state tp 

tp(T) j 0.) 

T E A and 
such that 
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Remember a state ~ is a positive linear functional of norm one and 

~ is normal if it folloYs from Ta TT that ~(Ta) T ~(T). Since 

the vector states (~ is a vector state of A if ~(T) = <Tx,x> for 
some unit vector x E H) separate A it f olloYs from Proposition 

* 1.5 that von Neumann algebras are definitely V -algebras. 

Theorem 2.2 ([4], Lemma 4.1) 

* Let ll be a C -algebra acting on a Hilbert space H. Suppose that 

each increasing net of operators in ll that is bounded has its 
strong operator limit in ll, then: 

(i) Each decreasing net of operators in ll that is bounded from 

beloY has its strong operator limit in ll. 

(ii) If S is an arbitrary projection in ll, then R(S) Ell. 

(iii) The union and intersection of each finite set of projections 
in ll lie in ll. 

(iv) The union and intersection of an arbitrary set of 

projections 1n ll lie in ll. 

(v) E E ll, Yhere E is 
generating vector X 

(I - E) (H) there is a 

T X = X and T y = 0 y y 
of ll) . 

a cyclic projection in li/JJ-O Yith 

provided that for each vector y in 

self- adjoint T in ll such that 
y 

(11
-(JJ- 0 is the Yeak operator closure 

(vi) li/JJ-O = 11 if each cyclic projection in li/JJ-O lies in ll. 

Proof 
(i) If {T} is a decreasing net in ll that is bounded beloY 

n 

Yith strong operator limit T, then is an 

increasing net in 11 and -T is its strong operator limit 

in ll that bounds it from above (cf also Proposition 1.5). 
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(ii) This follows directly from the remark after Lemma 1.6 by 

noting that the only property of the von Neumann algebra A 

that was used in the remark, is the order property possessed 

by 11. 

(iii) From Lemma 1.4 we know that sup {E,F} = R(E + F) and from 
(ii) we know that R(E + F) e 11. Thus sup {E,F} e 11 when 
E and F are projections in 11. By induction we can 

easily show that the union of a finite family of projections 

is in 11. 
Since we have I - sup (I - Ea) = inf E from Corollary 

a a a 

1.2, the intersection of a finite family of projections in 

11 is also in 11. 

(iv) Let {Ea: a e 7J} be any collection of projections in 11. 

(v) 

Let 1 be the class of all finite subsets of 1J. For 

FE 1 let EF = sup Ea. Clearly EF e 11 (cf (iii)). The 
aeF 

family {EF : F E 1} together with the order relation 

EF 
1 

~ EF
2 

if and only if F 
1 

~ F 
2

, is an increasing net 

with sup EF = sup (sup Ea)= sup Ea. 
Fe1 Fe1 aeF ae1J 

From Lemma 1. 5 it is clear that {EF, F E 1} is strong 

operator convergent to the projection sup Ea. Hence by our 
ae1J 

assumption sup Ea e 11. Since inf E = I - sup (I - Ea) 
ae1J aE1J a aE1J 

(cf Corollary 1.2) it follows that inf E e 11. 
aE1J a 

R(Ty)(H) = Ty(H) 

R(Ty)x = R(Ty)(Ty)x 

=TX= x. 
y 
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* Since TY = TY and ye N{Ty) one has 
* R(Ty)Y = (I - N(Ty ))y 

* = y - N(Ty )y 

= y - y 

= o. 
Thus Gx = x and Gy = 0 for each y E (I - E)H 

where G = inf R(T ). 
ye(I-E)H Y 

V~ know that the range projection of an operator lies in lJ 

from part (ii) of this theorem. From part (iv) we know that 
any intersection of an arbitrary set of projections lies in 

ll, thus Ge lJ. 
As E is cyclic under lJ' with generating vector x 

[ll'x] = E(H) with x E G(H), 
ll'x c lJ'G(H) 

= Gll'(H) 

~ G(H). 
Thus E(H) = [ll'x] ~ G(H) and E ~ G. 
To get the other inequality we choose any y' e H and let 

y = (I - E)y'. Hence Gy = 0. Consequently G(I - E)y' = 0 
and Gly' - G Ey' = 0 for all y' EH. It now follows that 
G = GE and we have G ~ E. Thus E =GE lJ. 

(vi) From Lemma 1.7 each projection is the union of an orthogonal 

family of cyclic projections and from part (iv) each union 

of an arbitrary set of projections in l1 lies in lJ. It 
now follows that each projection in lllJ-O lies in lJ. From 

the spectral theorem ( cf Theorem 1.10) we know that each 
self- adjoint operator ( which is the norm limit of 
projections) in llw-o, lies in lJ. 

Since lllJ- 0 is a self- adjoint algebra containing lJ, 
ll(,J- o = l1. 
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Remark 

* This theorem shows that a C -algebra is isomorphic to a von Neumann 
algebra iff (i) of Definiton 2.1 is satisfied and if each cyclic 
projection in ow-o lies in ll. 

* If l1 is a C -algebra we denote by llh the self- adjoint operators 
* in ll (i.e. TE llh if T = T ). By ll (resp (llh)

1
) we denote 

1 

the unit ball ln ll (resp llh). For any TE llh it is easy to show 

that T can be written as the difference of two positive operators 
in llh (i.e. T = T+ - T-). 

Lemma 2.3 

If Te llh there exist two positive operators T+ and T- in llh 

such that T = T+ - T- + -and TT = 0. 

Proof 
* If A('r, I) is a commutative C - algebra generated by T and I, 

then A(T, I) ~ C ( o- (T)) ( cf Lemma 1. 8 (Gelfand- Naimark)) . Let 
f e C(o-(T)) now be the function corresponding to T. Since 

f = f+ - f- with f+ = max {f,O} E C(o-(T)) 
and f- = -min {O,f} E C(o-(T)) 

there exist positive operators T+ and T- associated with f+ and 
f- such that T = T+ - T- and T+T- = 0. 

Lemma 2.4 ([4], Lemma 4.2) 

* Let l1 be a C -algebra acting on a Hilbert space H, such that each 
increasing net of operators in ll that is bounded has its strong 
operator limit in ll. Suppose E is a cyclic projection in ow-o 
and x is a generating vector for E(H) under ll' with norm one. 
If y is a unit vector in (I - E)(H) the following holds: 
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There is a sequence {An} in (llh\ such that A X --+ X n 
and A y --+ 0 n 

II (An - An-1txll < 21-n and 

II (A - An- 1) + YII < 21-n -where A = o. n 0 

n - 1 
If T = [I + ~ (Ak - Ak- 1tJ ' then {Tn} is a bounded n k=1 
monotone decreasing sequence of positive elements of l1 and 

T; (i (A - A t)T; ~ I for each n, -where T is the 
k=l k k-1 

strong operator limit of {Tn} in 11. 

For each j in { 1 , 2 , ... , n} , 

monotone increasing -with n, bounded above by I and if 

Cj is its strong operator limit then O ~ Cj ~ I and {Cj} 

is decreasing; it also follo-ws that 
; n + ; 

T (~ (Ak - Ak 1) )T + C 1 = C 
k=1 - n+ t 

and T;A T; + C 1 = T~(i - (Ak- Ak+if)T~ + C
1

• 
n n+ k=1 

(iv) {T; AnT; + Cn+i} is monotone decreasing and bounded and 

T;AT; E l1 -where A is a -weak operator limit of {An}. 

(v) R(T) E 11, R(T)x = x and R(T)y = y. 

(vi) Each maximal abelian (self-adjoint) subalgebra of l1 is 

-weak operator closed. 

Proof 
(i) From the Kaplansky density theorem ([2], Theorem 3.6.1) -we 

kno-w that (llh)
1 

= (llh)
1 

-where the closure is taken in the 
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strong operator topology. It follm1s that there exists a 

sequence {An} in (llh) 
1 

such that Anx -+ x and 

Any-+ O, since 

EE (llh)
1 

= {llh)
1

, Ex= x and Ey = O. 

Ve consider convergent subsequences {Anx} and {Any} such 

that ll(An - An_ 1)xll < E = 21-n and ll(An - An_ 1)yll < 21-n. 

For each self-adjoint T it follows from Lemma 2.3 that T+ 
and T- have orthogonal ranges, hence 

IITzll 2 = IIT+ zll 2 + 11r zll 2 

thus IIT+ zll ~ IITzll -
It now follows for all n E ™ that 

ll(An - An-1txll < 21-n and ll(An - An-1tYII < 21-n_ 

(ii) If R is positive it is clear from the spectral mapping 

theorem ([12], Proposition 2.8) that ~(I+ R) ~ [1,rn), 

hence (I+ R)- 1 exists in ll. Thus Tn exists in l1 as 

it is defined in (ii). 
If A is invertible and 0 5 A 5 B we 
Proposition 4.2.8) that B is invertible and 

Since 
n 

I ~ I + ~ (Ak - Ak-1t 
k=1 
n+1 

<I+~ (Ak - Ak-1)+ 
k=1 

we now have O 5 Tn+i ~ Tn ~ I with 
n -1 

Tn = (I +k~l (Ak - Ak-1)+) . 

know (cf [5] ' 
B-1 < A - i • 

Since {Tn} is decreasing and bounded below it follows from 

Theorem 2.2 (i) that {Tn} converges strongly to a TE ll. 

Vi th u a given unit vector in H and m large enough, 

T ~u is close to T~u since the mapping A -+ A~ is 
m. 

strong operator continuous on the unit ball of B(H)+ 

[cf Appendix, Lemma 2]. 
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Now if n 5 m, 
~ n ! 

<T (E (Ak - Ak 1)+) T u,u> 
m k - m =1 
n + ; ; 

= <(E (Ak - Ak 1) ) T u, T u> 
k - m m =1 

m ~ ; 
5 <(E (Ak - Ak 1)+)T u, T u> 

k - m m =1 
! m + ! 

= <T (E (Ak - Ak 1) )T u,u> 
m k - m =1 

m 
Since k~l (Ak - Ak_ 1)+ = T;1 

- I it follovs that Tm and 

m 
E (Ak - Ak_ 1)+ commute, hence 

k=1 
commute. Thus 

~ m 2 
<T ( E (Ak - Ak_ 1)+)Tm u,u> 

m k=1 
m 

~ <Tm(k~l (Ak - Ak-l)+)u,u> 

= <T (T - 1 - I)u,u> m m 

= <(I - Tm)u,u> 

5 <Iu,u>. 

T 2 
m 

Hence lim <Tm;( E (Ak - Ak_ 1)+)Tm;u,u> 
m-+ai k=1 

2 n + ~ = <T ( E (Ak - Ak_ 1) )T u,u> 
k=l 

~ <lu,u> 

and T;( E (A - A )+)T2 ~ I for each n e ~-
k=l k k-1 

(iii) From (ii) it follows that 

T;( E (A - A )+)T2 ~ T2( E (A - A )+)T; ~ 1 
k=j k k-1 k=l k k-1 

for each j in {1,2, ... ,n}. 

Thus {T2 ( E (A - A tT2} is an increasing sequence 
k . k k-1 

(over 
C. E lJ 
J 

=J 
n) of operators in lJ bounded above by I. Let 

be the strong operator limit of this sequence. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

41 

Since a strong operator convergent sequence is -weak operator 
convergent one can easily sho-w that O ~ <Cjx,x> ~ <Ix,x> 

for each x e H. Hence O < C. < I. - J -

For each j and all n; 
n + n 
~ (Ak - Ak-1) ~ E (Ak - Ak-1)+ 

k=J+l k=j 
thus {Cj} is a decreasing sequence. 

Further for each n and m such that n < m 
~ n + ~ ~ m + ~ 

T ( E (Ak - Ak_ 1) )T + T ( E (Ak - Ak_ 1) )T 
k=1 k=n+1 

n m 
= T( E (Ak - Ak_ 1)+) + T( E (Ak - Ak_ 1)+) 

k=1 k=n+1 
m + 

= T( E (Ak - Ak_ 1) ) 
k=1 
~ m + ~ ~ = T ( ~ (Ak - Ak- 1) )T (Note that since T and 

k=1 m 

E (Ak - Ak_ 1)+ commute, so do Tl and 
k=1 

~ n + ~ Thus T ( ~ (Ak - Ak 1) )T + C 1 = C. 
k=1 - n+ t 

From Lemma 2 .3 An - An- l = (An -An- 1t - (An - An- 1r and 
n 

A = O is given. Hence E (Ak - Ak_ 1) = An and 
o k=l 

T~A T~ + C = T~( E (A - A ))T~ + C 1 n n+1 k=l k k-1 n+ 

= T1(E [(Ak - Ak_ 1t - (Ak - Ak_ 1rnT1 
k=1 

= C + Tl( E ~ (Ak - Ak-1)-])TI 
1 k=l 

(iv) Let x EH and n E ~ be given, then 

<(T~AnT~ + Cn+l - (T~An+lT~ + Cn+2))x,x> 

= <-T~(- (An+l - An)-)T~x,x> 

= <T~(An+l - An)-T~x,x> ~ 0 

(from part (iii)) 

+ C 1 n+ 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

42 

and {T;AnT; + Cn+l} is monotone decreasing. 

Moreover IIT;AnT; + Cn+ill 

< IITII IIAnll + 11cn+1 II 

< 1 + 1 = 2. 

It is well-known that for a self-adjoint operator S 

11S11 = supl<Sx,x>I, hence {T;A T; + C 1} is bounded below 
llxll=1 n n+ 

by -2I and via Theorem 2.2 has a strong operator limit B 

in ll. At the same time T; AT; + C is the weak operator 

limit of {T;A T; + cn+1} n where C is the strong operator 

limit of {Cj}. Thus T;AT; + C = B which implies 

T;AT; = B - C and hence T;AT; Ell. 

(v) Since TE ll, R(T) E lJ (Theorem 2.2 (ii)). Ve show that 
R(T)x = x. To show that R(T)y = y is exactly the same. 

Since ll(Ak - Ak_ 1txll ~ 21-k it is clear that 
CD 

~ (Ak - Ak_ 1)+x converges to some vector in H. If u is 
k=1 
any vector in H, then 

CD 

<T(x + h (Ak - Ak_ 1)+x),u> 
k=1 

CD + 
= <x + h (Ak - Ak_ 1) x,Tu>. 

k=1 
This can now closely be approximated by: 

n n -1 

<x + ~ (Ak - Ak_ 1)+x, [I+ t (Ak - Ak_ 1)+] u> 
k=1 k=1 

= <x,u> for large n with u in H. 
CD + 

Thus T(x + h (Ak - Ak_ 1) x) = x 
k=1 

and x E R(T)(H). 
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(vi) Suppose A is a maximal abelian self-adjoint subalgebra of 

ll. If {Aa} is a bounded increasing net in A, its strong 

operator limit S lies in ll and commutes with 1. Hence 

that limit lies in A, for if not, the algebra generated by 

{A, S} will be an abelian self- adjoint sub- algebra of ll 

containing A. This is contrary to the fact that 1 is a 

maximal such algebra. Ve've now shown that 1 satisfies 

the same conditions as ll, hence it follows that everything 

we've proved for ll is applicable to A. Thus for this 

part of the proof we may now assume that ll is abelian. 

Thus it follows from (iv) that AT= T;AT~ Ell. Since Ax= 

x and x E R(T), x E R(AT). In addition AT= TA, hence 

AT is self-adjoint. Since Ay = O, TAy = 0. Thus 

R(TA) Ell, R(TA)x = x and R(TA)y = 0. From Theorem 2.2 

part ( v) and (vi) it now fallows that ll = U./JJ- 0
• 

Hence A= Aw-o and A is consequently weak operator closed. 

Theorem 2.5 ([4], Lemma 4.3) 

Vith the notations and assumptions of Lemma 2.4 it follows that: 

(i) MAN lies in ll where M and N are spectral projections 

for T corresponding to bounded intervals with positive 

left endpoints. 

(ii) 

(iii) 

(iv) 

(v) 

M AF and FAM are in ll where F = R(T) and {Mm} is a m m 

sequence of spectral projections for 

bounded intervals with positive 

~Mm= F. 
m 

FAFAF Ell. 

FAFAFx = x; FAFAFy = 0. 

-w-o ll = ll . 

T corresponding to 
endpoints such that 
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Proof 
(i) Let S be a bounded interval with positive left endpoint 

and let g(t) be t- 1 for t in S and O for t in 

IR\S, so 
t- 1 t E S 

g(t) = { 0 t E ~\S 

From Lemma 2.4 (vi) a maximal abelian subalgebra 1 of ll 

containing T is weak operator closed in B(H) and 

therefore contains g(T). (g(T) makes sense via Theorem 

1.18.) If M is the spectral projection for - T 

corresponding to S it fallows from Theorem 1.18 that 

M = Xs(T) since we know that Xs E B(IR). From 

__ { ½•t if t ES 
g(t)(t) 

0-t if t t S 

1 if t ES 

= { 0 if t ! S 

it follows that g(T)(T) = Xs(T) = M. 

Since TATE ll (Lemma 2.4 (iv)) 

MAT= g(T)TAT. 

MAT E ll because 

Similarly MANE ll where N is another spectral projection 

for T corresponding to a bounded interval with positive 

left endpoint. 

(ii) It is clear that there exists a sequence of projections 

{Mn} as required: Since T is positive, T is 

self-adjoint and we can apply Theorem 1.18. 

Ml = x(1,m)(T), Mn= x(~ _l_](T) for n ~ 2. 
n'n-1 

m 

Choose 

Then clearly ~ M = x( ) (T) = R(T). Ve show the last 
n=i n o,m 

equality: Since A•X( ) = .,\ o,m if .,\ E (O,m) it follows 

that T • X ( 
0 

,m) (T) = T and this implies that R(T) is 

lesser or equal to x ( 
0 

,m) (T) . On the other hand from 

TR(T) = T it follows that f(T)R(T) = f(T), first for f 
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a polynomial without constant term and then by tending to 

the limit for any f e B(u(T)). Thus f(O) = 0 and we have 

X(o,oo)(T)R(T) = X(o,oo)(T). 

Therefore X(o,oo)(T) ~ R(T). 

Hence X(o,oo)(T) = R(T). 

Consider now (MmAMn + Mn)(MnAMm + Mn) 

=MAM MAM +MAM M +MM All +MM 

Since 

m n n m m n n n n m n n 

=MAM AM +MAM + M All + M m nm m n nm n 

(M M = M 2 = M ). n n n n 
00 

F = ~ Mn e 11 we now show that 
n=1 

M AFAll e 11 m m and 

also M AFAM + M AF+ FAM +Fe 11. This follows since m m m m 

multiplication is separately continuous in the strong 

operator topology 

k 

00 

= ~ MAM AM . 
n=i m n m 

Let Sk = ~ MAM AM then {Sk} is an increasing sequence 
n=i m n m 

of positive operators which is bounded above and from the 

assumption on 11 its strong operator limit M AFAll is m m 

contained in ll. The fact that 

M AFAM + M AF+ FAM +Fell follows similarly. m m m m 
Since F e 11 and from what we've just shown it follows 

that M AF+ FAM e 11. m m 

From Mm [MmAF + FAMm] = MmAF + MmAMm the latter is also in 

ll. 

is in ll and we can now conclude that M AF Ell. m 

* (iii) From (ii) we have (MmAF) (MmAF) 

* * * =FAM M AF 
m m 

= FAM AF ell. 
m 
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By using the same argument as in (ii) we now have 
ID 

FAFAF = E FAM AF Ell. 
m=1 m 

(iv) From Lemma 2.4 (v) we now have that Fx = x and Fy = y 
hence since Ax= x and Ay = O, 
FAFAFx = x and FAFAFy = 0. 

(v) From the conclusions of Theorem 2.2 and our proof thus far 
we see that for each cyclic projection E in O.fJJ- 0 with 

generating unit vector x and each unit vector y in 

(I - E)(H) there is a self-adjoint operator FAFAF in ll 

such that FAFAFx = x and FAFAFy = 0. This fulfills the 

conditions stated in parts (v) and (vi) of Theorem 2.2, thus 
-w-o ll = ll . 

Ve can now prove our characterization of a von Neumann algebra in 
terms of nets and normal states. 

Theorem 2.6 ([4], Theorem 4.4) 

* A C - algebra ll is *- isomorphic to a von Neumann algebra if and 
* only if it is a V -algebra. 

Proof 
Suppose ll is *-isomorphic to a van Neumann algebra A. Thus there 

exists a *- isomorphism rp : ll -+ A where A is a weak operator 

closed self-adjoint subalgebra of some B(H). 
If a ~ b in ll, then b - a ~ 0 and there exists a c in ll 

* such that b - a= cc. 
* rp(b) - v,(a) = v,(b - a) = rp(c c), 
* 

rp(b) and rp(a) E A 
= rp(c )rp(c) 

* = (rp(c)) rp(c). 
* But (rp(c)) v,(c) ~ o, thus rp(b) - rp(a) ~ 0 

and rp (b) ~ rp (a) . 
Thus increasing nets in ll are mapped onto increasing nets in A. 

If {ba} is bounded above and b = sup ba then rp(b) ~ rp(ba) for 

all a and if rp(ba) ~ rp(c) for some c Ell then rp(b) ~ rp(c). 
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Thus ~(b) is a least upper bound of {~(b
0
)}. The *-isomorphism 

transforms increasing bounded nets onto such nets, also least upper 
bounds onto least upper bounds and normal states onto normal states. 

* Thus l1 is a V -algebra in this case. 
* Conversely, suppose l1 is a V -algebra and , =Ee r () where 

ae! 1/ a 

{11(a) : a EA} is the family of normal states of ll. Since {11(a)} 
is separating for ll, ~ is a *- isomorphism from l1 onto a 

subalgebra of some B(H) (cf the Gelfand-Naimark-Segal construction 

in Chapter 3 part I). Suppose {~(Ab)} with b EB is a bounded 

increasing net in ~(ll) with strong operator limit B. Then {Ab} 
* is a bounded increasing net in ll. Since l1 is a V -algebra, {Ab} 

has a least upper bound A rn l1 and {11(a) (Ab)} tends to 

11(a)(A) 
If we 

for each a 
write 

1n A (recall that each 11(a) is normal). 
for xTJ (a) ( cf Gelfand- Naimark- Segal) 

{<~(Ab)xa,xa>} tends to <~(A)xa,xa>, but {<~(Ab)xa,xa>} tends to 

<Bxa,xa> as well. Thus <(~(A) - B)xa,xa> = 0 for each a in !. 

* * Vith T invertible in 11, {T AbT} has TAT as least upper bound. 

Ve show this: is an increasing net, for if b < b 
1 - 2 

* <T Ab
1
Tx,x> = <Ab

1
Tx,Tx> 

~ <Ab/x,Tx> 
* 

= <T Ab/x,x> 

* * thus T Ab
1
T ~ T Ab

2
T. 

* * * Ve also know that T AbT 5 TAT for all b. Ve show that TAT is 
* * the least upper bound for T AbT. If S E l1 such that T AbT 5 S 

* * * for all b then (T- 1 ) T AbTT- 1 < (T- 1 ) ST- 1 • 

* * Hence Ab 5 (T- 1 ) sT- 1 for all b so A 5 (T- 1 ) sT- 1 which implies 

* * * T AT ~ S. Since ~ is a *- isomorphism ,(T AbT) = ~(T) ~(Ab) ~(T) 
* and has ~(T )B~(T) as strong operator limit. Thus 

<(~(A) - B)~(T)xa, ~(T)xa> = 0 for each a in ! and each 

invertible T in 11. 
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Vith S in l1 arbitrary; S + nl is an invertible element of l1 

for all large n, since one has that u(S + nl) ~ u(S) + {n}. Hence 
if ve choose n large enough O ;. u(S + nl) and consequently 
S + nl is invertible. 

Thus <(,(A) - B),(S + nl)xa, ,(s + nl)xa> = 0 .... (I) 

large positive integers n. 

for all 

But <(,(A) - B)~(S + nI)xa,~(S + nI)xa> 

= <(,(A) - B)(~(S) + n~{I))xa, (~(S) + n,(I))xa> 

= <(~(A) - B)~(S)xa, ~(S)xa> + <(~(A) - B)~{S)xa, n~(I)xa> 

+ <(~(A) - B)n~(I)xa, ~(S)xa)> + <,(A) - b)n~(I)xa, n~(I)xa> 

= <(~(A) - B)~(S)xa, ~(S)xa> + <(~(A) - B)~(S)xa' nxa> 

+ <(~(A) - B)nxa, ~(S)xa> + n2 <(~(A) - B)xa,xa>· 

= <(,(A) - B)~(S)xa, ~(S)xa> + 2 Re <(~(A) - B),(S)xa,nxa> 

+ n2 <(~(A) - B)xa,xa>, (since z + z = 2 Re z). 

And from (I) this equals zero when n is large. 

But <(~(A) - B)xa,xa> = 0 and <(~(A) - B)~(S)xa, ~(S)xa> 

is inde.pendent of n, thus 

<(~(A) - B)~(S)xa, ~(S)xa> = 0 for each S in ll. 

Since is a cyclic vector for the representation 

~ = e x one has that [xa(S)xa: SE ll] = H. 
ae! a 

Nov <(~(A) - B) x,y> = 0 for any x and y EH= e H. 
aE! a 

Hence it follows that ~(A) - B = 0. 

and 

Thus ~(A) = B. Hence ~(ll) satisfies the conditions in Theorem 2.5 

and ~(ll) = ~(ll) w- 0
• Thus l1 is *- isomorphic to a von Neumann 

algebra. 

Ve now prove the following strengthened version of Theorem 2.6 vhen 
ll satisfies a certain "countability" assumption. This assumption is 
always fulfilled if H is separable. 
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Lemma 2.7 ([4], Lemma 4.5) 

* Let ll be a C -algebra acting on a Hilbert space. Suppose that each 
bounded increasing sequence in ll has its strong operator limit in 

ll and that each orthogonal family of non-zero projections in ll is 
countable. Then ll = liuJ- 0

• 

Proof 
By studying the proofs of Lemmas 2.2, 2.4 and 2.5 we note that the 
only use of nets as opposed to sequences is to show that arbitrary 
unions of projections in ll lie in ll. Thus we only have to show 

that the union of an increasing net of projections in ll is in ll 

under the present assumptions. Ve show that the union F of an 

arbitrary family {Fa: a EA} of projections in ll lies in ll. 

Let {Eb : b EB} be a maximal orthogonal family of non-zero 

projections in ll such that Eb 

is countable (possibly finite) , 
{FM} by {E ,E , ... }. Since 
-b 1 2 

sequence of projections in ll, 

~ F for each b. By assumption B 

so that we can denote the family 
{E ,E +E , ... } is an increasing 

1 1 2 

its strong operator limit EE n n 
is 

in U. Let E =EE, we must now prove that E = F. 
n Since E ~ F, 

n 

sup{E,F a} ~ F for each a in !. The range projection of 

½(E + Fa) is ½sup{E,Fa} (cf Lemma 1.4) and is the strong operator 

limit of the increasing sequence {[(E + Fa)/2] 1/n} (cf Lemma 1.6). 

Thus sup{E,Fa} is in ll as is sup{E,Fa} - E. If sup{E,Fa} - EI 

0 it can be added to {E ,E , ... } to form a larger orthogonal 
1 2 

family of non-zero projections in 
maximality of {E , E , ... } . Thus 

1 2 

F < E for each a in A. Since a -

F =EE ll. 

F. This contradicts the 

sup{E,Fa} - E = O, and hence 

¾ ~ F for each b, we have 
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Ve can now characterize countable decomposable von Neumann algebras. 
Before we state the characterization we must first define countable 
decomposable. A projection E in a von Neumann algebra A is said 

to be countable decomposable relative to A when each orthogonal 

family of non-zero subprojections of E in 1, is countable. If I 
is countable decomposable relative to A we say that A is 

countable decomposable. 

Theorem 2.8 ([4], Lemma 4.6) 

* A C - algebra lJ. is *- isomorphic to a countable decomposable von 

Neumann algebra A if and only if each bounded increasing sequence 

in lJ. has a least upper bound in ll., there is a separating family 

of normal states of lJ. whose limits on such a sequence are their 

values at the least upper bound, and each orthogonal family of 
non-zero projections in lJ. is countable. 

Proof 
Suppose lJ. is *-isomorphic to a countable decomposable von Neumann 

algebra A acting on a Hilbert space H. Then as in the proof of 
Theorem 2. 6 bounded increasing sequences in lJ. map onto such 

sequences in A under the isomorphism and the least upper bound of 
the image sequence in A is the image of an element of lJ. that is 

the least upper bound of the sequence in ll. Hence vector states of 

A composed with the isomorphism are normal states of lJ. and the set 

of such forms a separating family for 11. This is true since if 

, (T) = <Tx ,x> and llxll = 1 (, is called a vector state) then 
clearly , is a normal state on A (II ,II = 1 and ,(T) ~ 0 if 

T ~ 0). Now if ¢ is the *-isomorphism from lJ. to A, then clearly 

7(a) : = ,(;(a)) 

= ,-~(a) for each a in lJ. defines a normal state on ll.. 

Ve show that 11111 = 1. 

l1(a)I = l,(¢(a))I 
~ II ,II 11 ¢11 llall 
= Hall hence 111II < 1. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

51 

Also 11711 > 11,o(p(I))II = l<x,x>! 
IIIII IIIII 

ll!lL:. = 1 = 1. 

If En and Em are orthogonal in ll the isomorphism , will map 

them onto orthogonal elements in A since 

¥'(En)¥'(Em) = ¥'(EnEm) = ~(O) = 0. 

Because ,(En) 2 = ¥'(En 2 ) = ~(En), projections will also be mapped 

onto projections. Thus an orthogonal family of non-zero projections 

in ll maps onto such a family in A. Since A is countable 

decomposable, the family of projections is countable. 

To prove the converse, we use the same argument as in Theorem 2.6 and 
* apply it to a C -algebra in ll satisfying the given conditions, but 

now we use sequences in stead of nets and the previous lemma. Thus 

ll is *-isomorphic to a von Neumann algebra A. From our assumption 

we know that orthogonal families of non-zero projections in ll are 

countable, thus A is countable decomposable. 

Ve've now shown that countable decomposable von Neumann algebras can 

also be characterized in terms of bounded increasing sequences and 

separating families of normal states. In the next part of this 

chapter we're going to take a look at an example that shows that a 
* C - algebra satisfying the order property, but not the separating 

condition stated in Definition 2.1, is not a von Neumann algebra. Ve 
* will construct a commutative C - algebra not isomorphic to any von 

Neumann algebra. 

II The commutative case: A counter example 

A lattice is a Banach space E endowed with a partial order which 

(i) is compatible with the algebraic operations in the following 

way : if x 5 y then z + x 5 z + y ( x, y, z E E) and if 

a E ~+ then ax 5 ay 
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(ii) includes the sup (x,y) and the inf (x,y) if x,y e E. 

Definition 2.9 

A boundedly complete lattice is a lattice in vhich each non- empty 
family of elements that has an upper bound, has a least upper bound. 

Our first theorem concerns the algebra of all complex valued 

continuous functions on a compact Hausdorff space X, namely C(X). 
It is clear that under the following order relation C(X) is a 
lattice: 

f S g iff f(x) S g(x) for every x EX. 

Theorem 2.10 ([4], Theorem 3.1) 

If C(X) is a boundedly complete lattice, then each open set in X 

has an open closure. 

Proof 
Let O be an open subset of X 

be the .family of functions f in 
X is completely regular, 
p' i o. 

1 

and O its closure. Also let 1 

C(X) such that O < f < 1 (since 
is non-empty) and f(p') = 0 if 

Since C(X) 
bound for 1, 

is a boundedly complete lattice and 1 is an upper 

1 has a least upper bound say f
0 

vith f
0 

S 1. 

there exists an f e 1 such that 

for each p in O ( f S f 
O 

S 1) 

continuous, f
0

(p) = 1 also for each p in 0. 

there exists a g e C(X) such that OS g S 1 

f(p) = 1, so 
and since fo 

If p' i o, 
and g(p') = 0 

g(q) = 1 vith q e O (X is compact Hausdorff and thus normal). 
Hence g is an upper bound for 1 which implies that f

0 
~ g. 

that 
is 

then 

and 

Thus f
0 

is 1 on O and zero on X\O. Since f
0 

is continuous 
-1 1 3 - -and f (2 ,2) = 0, 0 must be open. 
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Ve now define a space X with the property that each open set has an 

open closure as extremely disconnected. Ve also define a subset 
which is both open and closed as cl open. The converse of Theorem 
2.10 is also true. 

Theorem 2.11 ([4], Theorem 3.2) 

If X 

C(X) 

is an extremely disconnected compact Hausdorff space, then 

is a boundedly complete lattice. 

Proof 
Let {fa : a E !} be a family of real valued functions in C(X) 

which is bounded from above by a constant. 

{fa} has a least upper bound, then C (X) 
Ve must now sho-w that 

will be a boundedly 

complete lattice. Ve construct this least upper bound in five steps. 

STEP 1 

Ve firstly suppose that each fa is the characteristic function of 

some clopen subset Xa of X. Ve -will now show that U X is a 
ae! a 

clopen set -with characteristic function sup{f a : a e A.} -which is 

the least upper bound of {fa} in C(X). Ve will also sho-w that the 

interior of n X is also a clopen set with its characteristic 
ae! a 

function inf{f a : a e !} , the greatest lower bound of {fa} in 

C(X). 

Since Xa 

be closed. 

is clopen, U X -will be open. If 
ae! a 

If g is an upper bound for {fa}, 

Y
0 

= U Xa, Y
0 

-will 
ae! 

then 1 5 g(p) for 

every p EU Xa. 
ae! 

in U Xa converges to some p it 
ae! 

follows from the continuity of g that g(pA)--+ g(p). 

Thus 1 5 g(p) for every p e Y
0

• Hence sup{fa: a EA} is the 

least upper bound of {fa}· 
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Clearly 1 - fa is the characteristic function on X\Xa. Let 

f
0 

= inf{fa a EA} from the first part 
) 

we now have that 1 - fo 

which is the least upper bound of {1 - fa} is the characteristic 

function of U (X\Xa). Thus f 
O 

is the greatest lower bound of 
ae! 

and f
0 

is also the characteristic function of X \ U (X\X ). 
ae! a 

Since X \ u (X\Xa) = X \ (X\n X) 
ae! aeA a 

(De Morgan) 

= int(n Xa) 
ae! 

f
0 

is the characteristic function of the 

STEP 2 

Ve show next that XA = X \ (u {x EX: fa(x) > A}) is a clopen 
ae! 

subset of X and also that if 

the property that fa (p) ~ A 

y ~ XA. 

Y is a clopen subset of X, 
for all a E A and p E Y, 

with 
then 

Since XA is the complement in X of the closure of the union of 

open subsets of X, XA will be open. But since X is an extremely 

disconnected space, the closure of open subsets are also open, thus 

XA will also be closed. Thus XA is a clopen set. 

If p E XA, then for every a in A 

p ¢ {x EX : fa(x) > A}, thus fa(P) ~ A. 

Ve have assumed that Y is a subset with fa(P) ~ A for all a in 

A., thus Y ~ X\f~1 (A,m) so that f~ 1 (A,m) ~ X\Y for all a EA.. 

As Y is open, X\Y is closed. 

Thus (U f~ 1 (A,m)) ~ X\Y and thus Y ~ XA. 
aeA 
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STEP 3 
Let eA be the characteristic function of XA, thus eA(x) = 1 if 

x E XA and eA(x) = 0 if x E X\XA. Ve know that {fa} is bounded 

from above, let k be the constant that bounds {fa} from above and 

such that -k ~ fa' for some a' e A. Ve now prove that 

(i) eA = 0 for A< -k and eA = 1 for A> k; 

(ii) eA ~ eA, if A~ A' and 

(iii) eA = inf{eA,:A' > A}. 

(Hence {eA} is the spectral resolution for some f which we will 

later show is contained in C(X).) 

(i) If A< -k and p E XA 

then p ¢ {x EX: fa'(x) > A}. 

But -k < f ', thus from A< -k it follows that - a 

{x EX : fa'(x) >A}= X. 

Thus XA = X\X = ¢ and eA = O. 

If A~ k and p EX 

then fa(P) ~ A for all a E A because {fa} is 

bounded from above by k. 

Thus X is a clop en set where all fa's take values not 

greater than A. From step 2 we know that X = XA. 

Hence eA = 1. 

(ii) If A~ A' 

then {x EX fa(x) > A'} C {x EX fa(x) > A}. 

Thus X/ ~ XA 

and the result follows. 
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(iii) Since eA ~ eA, if A~ A' (from (ii)) 

eA ~ inf{eA,:A' > A} . 

If YA is· a set with characteristic function 

inf{eA,:A' > A} then XA ~ YA. 

Since inf{eA,:A' > A} is the characteristic function for 

YA, YA~ XA'' for each A' > A. 

Thus if p E YA, fa(P) < A' for each a in A and each 

A' > L 
Hence fa(P) ~ A for all a in A and YA is a clopen 

set on which all fa take values not exceeding A (cf step 1). 

From step 2 we have YA~ XA. 

Thus YA= XA 

and eA = inf{eA,:A' > A}. 

STEP 4 
k 

Ve now sho11 that J ,Ide.,\ converges in norm to a function f in 

-k 

C(X) and that XA is the largest clopen set on which all fa take 

values not exceeding A. 
Let 7' = •-{.,\

0
, ••• ,An} and C = {µ

0
, ... ,µm} be two partitions of 

[-k,k] with 17'1 and 1£1 the lengths of the largest subintervals, 
A.' E [A. 1,A.) and µ.' E [µ. 1 ,µ.). If {7 , ... , 7 } is their 

J J- J J J- J o r 
common refinement and 7·' E [7. 1 ,7.) then 

J J- J 
n r r 

I~ A·' (e,. - e,. ) - E 7k' (e - e7 ) I < 1Plk~=1(e7k - e7k-1) 
j=1 J "J "J -1 k=1 7k k-1 

= 17'1 (e7r - e7o) ~ 17'1. 
n r 

Hence IIE A. I ( e A. - e A. ) - E 7k' (e - e1k-l)II < 17'1 . 
j=1 J J J - 1 k=1 1k 

m r 
Similarly IIE µ~(e. - e . ) - E 11c ( e - e1k-1) II < 1£1 . 

j=1 J µJ µJ -1 k=1 1k 
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The triangle inequality gives the following: 
n m 

II~ Aqe,. - e,. ) - E µ((e. - e. )II< 17'1 + I.Cl. 
j=1 J "J "J -1 j=1 J µJ µJ -1 

k 
Thus the family of approximating Riemann sums to J AdeA, indexed 

-k 
by their corresponding partitions of [-k,k] and the set of these 
partitions partially ordered by refinement, forms a Cauchy net in the 

norm topology on C (X) • Since C (X) is complete in the norm 

topology it follows that the Cauchy net converges in the norm to a 

real valued function f in C(X). Since each approximating Riemann 

sum has range in [-k,k], f also has range in [-k,k]. 

Thus f = Ja AdeA when k ~ a. 
-a 

Suppose now that k 5 a and A E [-a,a]. If {A
0

, ••• ,An} is a 

partition of [-a,a] with A as some Ak such that 
n 

g = E Aqe,. - e,. ) 
j=1 J "J "J-1 

is close to f in norm, then llfeA - geAII is small and 
k 

geA = E AJ((eA. - eAJ __ 
1

) (eAk 5 eAJ· for j ~ k) 
j=1 J 

k 
5 E Ak ( e A. - e AJ· _ 1) 
j=1 J 

k 
= Ak E ( e '- - e,. ) 

j=1 "J "J -1 

= Ak (eAk - eAo) 

= A ( e A - e_ a) 

But e, = 0 if A< -k and -a< -k hence e = 0. 
A -a 

llf(1 - eA) - g(1 - eA)II is also small and subsequently 

g ( 1 - e A) = g - ge A 
n 

= E A ( ( e A. - e AJ· _ 
1

) 
j=k+1 J J 
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n 
~ E ,.\k ( e ,.\J· - e ,.\J· _ 

1
) 

j=k+1 

= ..\(e..\n - e,.\k) 

= ..\(ea - e,.\) 

But e,.\ = 1 if ,.\ > k and a> k thus ea= 1. 

Hence g{1 - e,.\) ~ ..\(1 - e,.\) and thus f{1 - e,.\) ~ ..\(1 - e,.\). 

Let Y,.\ = X \ Z,.\ with Z,.\ = f- 1 ((,.\,(J))). Since f- 1 ((,.\,(J))) is the 

inverse image of an open set and f is continuous, f- 1 ((..\,(J))) is 

open. Since X is extremely disconnected Z,.\ will be a clopen set. 

Thus X \ Z,.\ is a clopen subset of X on which f talces values not 

exceeding ,.\. 

If Y is another clopen subset of X on which f takes values not 
exceeding ,.\ then 

Y £ X\f- 1 ((..\,(J))) from STEP 2. 
Thus f- 1 ((..\,(J))) £ X\Y. 
Since Y is open, X\Y will be closed. 

Thus Z,.\ ~ X\Y and Y ~ Y,.\. 

Ve've now proved that Y,.\ is the largest clopen set in X on which 

f takes values not exceeding ,.\. 

Ve've shown that fe,.\ ~ ,.\e,.\, hence f takes values not exceeding ,.\ 

on X,.\ and thus X,.\ ~ Y,.\. 

As e,.\ = inf {e,.\,:,.\' > ,.\} 
' x..\ is the largest clopen set in X 

contained in n xi. Now A I < f(p) if p E X\Xi since 
,.\ '>..\ 

,.\' (1 - e,.\) 5 f{1 - e ,.\) so that X\Xi ~ f- 1 ((..\,(J))) if ,.\' > L 

Thus X\Z,.\ £ xi so y,.\ C X' - ,.\ when A I ) _.\ and y,.\ is a clopen set 

contained in n X' but x..\ is the largest clopen set in X 
,.\ I )A ,.\ 

contained in n x..\ , thus y,.\ C X ,.\. 
_.\ I )A 
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Hence YA= XA and consequently XA is the largest clopen set on 

which f takes values not exceeding A. 

STEP 5 
Ve now only have to show that f is the least upper bound of {fa}· 

If f{p) < fa(P) for some p EX and a EA, choose A,A' such 

that f(p) <A< A' < fa(p). Let Y = f- 1 (-m,A) n f~ 1 (j' ,m). 

Since f and fa are continuous and X is extremely disconnected, 

Y is a clopen set containing p such that f(q) ~ A and fa(q) > ~ 

for each q in Y. Thus p E Y ~ XA from STEP 4. 

But p E {x EX: fa(x) > A} thus pt XA. 

Thus a contradiction and f < f for each a in A, so f is an a -

upper bound for {fa}· 

Ve must now finally show that f is a least upper bound. If g is 

another upper bound for {fa} and g(p) < f(p) for some p in X, 

then again there exists a A and a clopen set Y containing p 

such that g(q) ~A< f(q) for each q in Y. Since fa~ g for 

all a in A, Y is a clopen set on which all fa take values not 

exceeding A. From STEP 2 we know that p E Y ~ XA and from STEP 4 

ve now have f (p) ~ A since on X A f doesn't take values 

exceeding A. This contradicts the fact that A< f(q) for each q 

(also p) in Y. Thus f ~ g and f is the least upper bound of 

{fa} in C(X). 

It now follows that C{X) is a boundedly complete lattice. 

In the following lemma a few conditions on a compact Hausdorff space 
that are equivalent to the extremely disconnectedness of the space 

will be given. In the second part we'll see that a totally 
disconnected Hausdorff space X is extremely disconnected if the 

family of clopen subsets of X is a complete lattice. (Recall that 

X is totally disconnected if each pair of points can be separated by 

clopen sets.) 
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Lemma 2.12 ([4], Lemma 3.3) 

Let X be a compact Hausdorff space. 

(i) X is extremely disconnected if and only if each pair of 
disjoint open sets have disjoint closures. 

(ii) X is extremely disconnected if and only if it satisfies the 
following two conditions: 

Proof 
(i) 

(a) X is totally disconnected 
(b) the family C of clopen subsets of X partially 

ordered by inclusion is a complete lattice. 

Suppose O and O are disjoint open subsets of X and 
1 2 

X is extremely disconnected. Since O is open, X\O is 
2 2 

closed. Thus O ~ X\O and hence O c X\O . 
1 2 2 - 1 

Ve know that X is extremely disconnected, so that 0 
1 

is 

open and X\O 
1 

is closed. Hence 0 C X\O 
2 - 1 

which means 

o no = ;. 
1 2 

Thus if X is extremely disconnected, each pair of disjoint 
open sets have disjoint closures. To prove the opposite of 
(i) we now suppose that disjoint open subsets of X have 
disjoint closures. Let O be an open subset of X. Then 
0 and X\O are disjoint open subsets of X. By our 
assumption O and the closure say F of X\O is disjoint, 
but X =FU 0. 
Hence O is the complement of F in X (0 = X\F) and 0 
is open. Thus each open subset has an open closure and X 
is thus extremely disconnected. 
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{ii) Assume that X is totally disconnected and C is a 
complete lattice. Since X is a compact Hausdorff space in 

which points can be separated by clopen subsets of X, a 

standard compactness argument shows that a point can be 
separated f ram a closed (compact) subset of I by clop en 
sets: 
If x ¢ Y (Y c X is closed) there exists for each y E Y 

disjoint clopen neighbourhoods Vy and Uy of x and y. 

Now {U : y E Y} is an open covering for Y and since Y 
y 

is compact there exist y , ... ,y E y 
1 n 

such that 

{U I Y· E Y}~-1 y. 1 1-
1 

covers 

n 

Y. Let 
n 

V = n V 
i=1 Yi 

and 

U = U U , then clearly V and U are disjoint and 
i=1 Yi 

clopen subsets containing x and Y respectively. 

This in particular implies that each open set in X is the 
union of clopen sets. Let O and O be disjoint open 

1 2 

subsets of X and let c. 
J 

be for j 

in {1,2}. C is a complete lattice by assumption and has 
1 

a least upper bound, say X in C. 
1 

If X
0 

E C
2 

then X\X
0 

is a clopen subset containing 0
1

• 

Hence X\X
0 

contains each element of C
1

• 

Thus X
1 

~ X\X
0 

and X
0 

~ X\X
1

• 

Since 02 = u c2 (C2 = {XO EC: XO~ 02}), 02 ~ I\Xl. 

But X\X
1 

is clopen so that 0
2 

~ X\X
1

• 

As X
1 

is the least upper bound of C
1 

= {1
0 

EC X C O } 
0 - 1 

it follows that O c X and X is clopen thus O C X. 
1- 1 1 1- 1 

Thus O n O = ¢. From (i) it now follows that X is 
1 2 

extremely disconnected. 
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To prove the converse of (ii) we now assume that X is 

extremely disconnected. From Theorem 2 .10 we know that 

C(X) is a boundedly complete lattice. If we consider the 
characteristic functions associated with the clopen subsets 

of X it can easily be show that C is also a complete 

lattice. Since X is extremely disconnected, X is also 
totally disconnected. 

* Ve will now construct a commutative C -algebra that is not 

isomorphic to a von Neumann algebra, although it satisfies the first 
* condition of the definition of a V -algebra (cf Definition 2.1). 

Definition 2.13 

( i) In a topological space X, a subset is said to be meager 
when it is a subset of a countable union of subsets of X 

each of which is nowhere dense (Mc X is nowhere dense if 
its closure M has no interior points) in X. 

(ii) An open subset of X is said to be regular when it 

coincides with the interior of its closure. 

It is clear from our definition that a countable union of meager sets 

is meager and a subset of a meager set is meager. ( 0, 1) is an 

example of a regular set in IR since the interior of [0, 1] is 

(0,1) but (-1,0) U (0,1) is not a regular set in IR because the 
interior of [-1,1] is (-1,1) and not the above-mentioned set. 

Lemma 2.14 

Let X 

sets in 
be a topological space and 1 be the family of all Borel 
X. Ve call S NS in 1 if S differs from S by a 

1 2 1 2 

is meager) . Then N meager set (i.e. S \S US \S 
1 2 2 1 

is an 

equivalence relation. 
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Proof 
If S ,S ,S e 1 clearly S NS and if S NS then S NS. 

1 2 3 1 1 1 2 2 1 

Ve show that if S NS and S NS then S NS . 
1 2 2 3 1 3 

Since S \S US \S 
1 3 3 1 

= S1\(S2 U S3) U (S2 n S3)\S1 U (S1 n S2)\S3 U S~(S1 U S2) 

c S \S US \S US \S US \S 1 2 2 1 2 3 3 2 
the result follows. 

Lemma 2.15 ([4], Lemma 3.4) 

Let X be a complete metric space. 

(i) The interior of the closure of an open set and the interior 

of the complement of a regular open set in X are regular. 

(ii) Each open subset of X differs from a regular open subset 

on a meager set. 

(iii) Each Borel subset of X differs from a regular open subset 
on a meager (Borel) set. 

(iv) There is a unique regular open subset of X that differs 

from a given Borel set on a meager (Borel) set. 

(v) Let 1
0 

be the family of regular open subsets of X 

partially ordered by inclusion. Then 1
0 

is a complete 

lattice. 

(vi) Let 1 be the family of Borel subsets of X and M be the 

u-ideal of meager Borel subsets of X (a countable union of 
sets in M is in M and the intersection of a set in M 
with any set 1 is in J/). Let 1 / M be the family of 
equivalence classes of sets in 1 °under the relation 

SNS' when S and S' differ by a meager set. Vith £ 

and £' in 1/M define £ ~ £' when SC S' for some S 
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in £ and S' in £'. The < is a partial ordering of 
1/JI. (the quotient of inclusion on 1 by the ideal JI.). 
Each £ in 1 / JI. contains precisely one regular open set 
and the mapping that assigns to each £ in 1 / JI. the 
regular open set it contains, is an order isomorphism of 
1/JI. onto 1

0
• The partially ordered set 1/JI. is a 

complete lattice. 

The algebra 
commutative 

B(X) of bounded Borel functions on X is a 
* C -algebra and the family J/.

0 
of functions in 

B(X) that vanish on the complement of a meager Borel set is 
a closed ideal in B(X) and B(X) / J/.

0 
is a commutative 

* C - algebra. 

(viii) Let Y be a compact Hausdorff space such that 

Proof 

B(X)/J/.
0 

~ C(Y) (cf Lemma 1.8 Gelfand-Naimark). Then Y is 

totally disconnected and the family of clopen subsets Y 
partially ordered by inclusion is a complete lattice. Y is 
extremely disconnected and C(Y) and B(X)/J/.

0 
are 

boundedly complete lattices. 

(i) Let Y be a closed subset of X and O be its interior. 
Since O is an open subset of X contained in 0, 0 is 
contained in the greatest open subset of X contained in 0 
being the interior of O say 0

0
. Since 0

0 
~ 0 ~ Y and 

0
0 

is an open subset of X, 

interior O of Y. Thus O = 0 , 
0 

and hence O is regular. 

0
0 

is contained in the 

0 is the interior of 0 

For the second part let Y = interior (X\O) with O still 
a regular open set. From the proof above it is clear that 
the interior of X\O is regular. Thus the interior of the 
complement of a regular open set in X is regular. 
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(ii) Let 0 be an open subset of X and 0
0 

the interior of 

0. Then (00\0) U (0\00) 

= 00\0 (0 ~ 00) 

~ 0\0. 
0\0 is a closed nowhere dense set (has no interior points). 

Hence O and O 
O 

differ on a meager subset of X, thus 

0 N 0
0 

and from (i) we know that 0
0 

is regular. 

(iii) Let 1' be the family of Borel subsets of X that differs 
from a regular open set on a meager (Borel) set. If Se 1' 

and 0
0 

is a regular open set such that SN 0
0 

(S differs 

from 0
0 

on a meager set) then 

[(X\S)\(X\0
0

)] U [(X\0
0
)\(X\S)] 

= (S\0
0

) U (0
0
\S) is meager. 

Thus X\S N X\0
0 

and from (i) the interior 0 
1 

is regular and 0 N X\0 N X\S. 
1 0 

Thus X\S is a Borel set that differs from 0 on a meager 
1 

set. Thus X\S E 1'. 

Suppose {Sj} are in 1'. Let 0j be a regular open set 

such that S. No .. Then (S.\0.) U (0.\S.) = MJ. is meager 
J J J J J J 

and by direct computation 
(I) (I) (I) (I) (I) 

[J~1Sj)\J~1Dj)] U [J~1Dj)\J~1Sj)] ~j~lMj . 
(I) 

As UM. is meager, we have 
j=1 J 

(I) (I) 

us.Nu o .. 
j=1 J j=1 J 

From (i) -we kno-w that the interior 

(I) (I) 

regular and 0 NU 0. NU s .. 
o j=1 J j=1 J 

of 
(I) 

(U 0.) 
j=1 J 

is 
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ID 

Thus U 
j=1 

S. E 1' 
J 

and 1' is a (I- algebra containing the 

open sets and contained in 1 (the Borel subsets of X). 

Since 1 is the smallest (I-algebra of such nature, it 

follows that 1 = 1'. 
Thus each Borel subset of X differs from a regular open 

subset on a meager (Borel) set. 

If Se 1 (a Borel set) and SN O and SN O with 0 
1 2 1 

and 0 
2 

regular open sets, then 0 N 0 
1 2 

Since 0 
·2 

is 

closed, it follows that if some 

some open set O containing p 

0 n O CO \0 . 
1 1 2 

p E O and 
1 

does not meet 

p;. 0 then 
2 

0 and 
2 

But O \0 is meager and we know that meager sets in a 
1 2 

complete metric space have empty interior. Ve have a 

contradiction, so 0 ~ 0 and 0 is also contained in 
1 2 1 

the interior 0 of 0 . Thus 0 C 0 • Symmetrically it 
2 2 1 2 

follows that 0 C O . Thus 0 = 0 and there is a unique 
2 - 1 1 2 

regular open subset of X that differs from a given Borel 

set on a meager (Borel) set. 

Suppose Oa e 1
0 

for a in A. Let 0 
1 

be the interior 

of ( U O ) . Then 0 
aeA a 1 

is regular from (i) since U O is 
ae! a 

open. Clearly by using the definition of an interior set, 

0
1 

is an upper bound for {Oa : a e !}. If O E 1
0 

is 

another upper bound for this set then U O C 0 a - and the 

interior O of O contains O. Thus O is the least 
1 1 

upper bound of {Oa: a EA} and 1
0 

is a complete lattice 

(1
0 

contains its least upper bound). 
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It now follows that the set of lower bounds of {0a} also 

has a least upper bound say 0
0 

and 0
0 

is the greatest 

lower bound of {0a}· 

(vi) Since S ~ S for every SEC we have 
C ~ C for every l in 1/j. 

If C ~ l' and £' 5 l'' there exist a S ~ T and T ~ R 

for S in C, T in l' and R in l'', then S ~ R 
and C 5 C''. 

Suppose C ~ l' and £' ~ C with C and l' in 1 / j. 

Then there are an S and S in C and an S' and S' 
1 2 1 2 

in l' such that S c S' and S' ~ S . 
1 - 1 2 2 

Let M be (S
1
\S

2
) U (S

2
\S

1
) and 

M' be (S'\S') u (S'\S'). 
1 2 2 1 

Since s N s 
1 2 

and s I N s / 
1 2 ' 

M, M' and M U M' are 

meager and s U M = S UM, S' UM'= S' UM'. 
1 2 1 2 

Thus S' UM' U M = S' UM' U M 
1 2 

C s U Mi U M 
2 

= s UM' U M 
1 

C S' UM' UM. 
1 

Hence S' UM' UM= S UM' UM from which it follows that 
1 1 

S and S' differ by a meager set. 
1 1 

and C = C'. Thus S' N S 
1 1 

This proves that < is a 

partial ordering of 1/U. From (iii) and (iv) we know that 
each S in 1 differs from a unique regular open set 0 

by a meager set. Thus the equivalence class C of S 
containing 0 has no other regular open sets. This implies 

that the mapping that assigns C to 0 is a bijection. If 
l' is another equivalence class and 0' is the regular 
open set it contains, then if 0 ~ 0', £ ~ £' by the 
definition of 5. 
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Conversely, to complete the proof of our order isomorphism 
we must still prove that if l ~ l' then O ~ 0' . If 

l ~ l' then by definition of the relation < there exist 
meager sets M' and M in M such that 

0 U M ~ 0' U M'. 

Thus O ~ 0' UM' so that 

0\0' ~ 0\0' ~ M' 

Since 0\0' is open and M' is meager 

0\0' = ¢, that is O ~ 0'. 

Hence O is contained in the interior 0' of 0'. Ve've 

now proved that the mapping l--+ 0 for 1/M onto 1
0 

is 

an order isomorphism and from (v) we know, that 1
0 

is a 

complete lattice. Thus 1/M is a complete lattice. 

(vii) Let B{X) be the algebra of bounded Borel functions on X. 
If we define the norm llfllCD = sup If (x) I on B{X) it is 

clear that B{X) becomes a Banach algebra. The operation 
of complex conjugation of functions is an adjoint operation 

in B{X). llf•tll = II lfl 2 II= II lfl 11
2 = llfl1 2 

• 

Thus B(X) with the given norm and adjoint operation is a 
* C -algebra. If f and f vanish outside the meager-sets 

1 2 

M and M, then f + f vanishes outside M UM where 
1 2 1 2 1 2 

M UM 
1 2 

is a meager subset of X. Further ff vanishes 
1 

outside M for each f in B{X). 
1 

Thus M as defined above is an ideal in 
0 

B(X). Let f 

E Jl
0

• Then there exists a sequence {fn} c M
0 

such that 

llf - f II -!!...+ 0. Let M be the meager set such that 
n CD n 

for each Clearly 

CD CD 

CD 

U M n n=1 

Ve show that f vanishes on X\ u Mn= n {X\Mn). 
n=1 n=1 

is meager. 

Choose E > 0 arbitrarily. Then there exists an n
0 

such 

that for all n ~ n
0

, llf - fnll < E. 
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CD 

Thus if Ye choose x in n (X\Mn) then 
n=1 

lf(x)I < lf(x) - fn(x)I + lfn(x)I 

< e for all n ~ n
0

• 

Thus f (x) = 0 Yhich shoYs that f E Jl
0 

and Jl
0 

is a 

closed (tYo-sided) ideal in B(X). Vith the supremum norm 

and complex conjugation as involution, B(X) is a 
* commutative C -algebra. 

NoY let f + M and g + M be in B(X)/Jl
0

• 

Then (f + M) (g + M) = fg + M 
= gf + M (B(X) is commutative) 
= (g + M)•(f + M). 

* Hence B(X)/Jl
0 

is a commutative C -algebra. 

(viii) Let l be in 1/M and e be the characteristic function 

of a set in £ (clearly e E B(X)). 
Define n(£) to be the projection in B(X)/Jl

0 
Yhich is the 

image of 
B(X)/Jl

0
• 

e under the quotient mapping from B(X) to 
If e' corresponds to another set in l, then by 

definition of sets in £, e - e' E Jl
0 

so that e and e' 

have the same image in B(X) / Jl
0

• Thus n (l) is Yell­

def ined. 
Ve shoY that n is order preserving: 
If l ~ l' there exist sets S in l and S' in l' 

such that S ~ S'. Vith e and e' the characteristic 

functions of S and S' respectively and since S ~ S' Ye 

have e ~ e' so that n (l) ~ n (£') . (Note that the 
quotient map preserves order.) Let E be a projection in 

B(X)/Jl
0 

and f an element of B(X) mapping onto E. Then 

f 2 - f maps onto E2 - EE M
0

• 

Thus f 2 - f vanishes outside some meager Borel set M. 

Let e(p) = { 6(p) 

On B(X) ye'll have 

p E X\M 
p E M 

e2 (p) - e(p) = f 2 (p) - f (p) = 0. 
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Hence in B(X), e is an idempotent and consequently e 
is the characteristic function of a set S in 1. 

If (, in 1 / Jl is the equivalence class of S then 
1J ( £) = E. Hence we've proved that 1J is an order 
preserving mapping of 1/Jl onto the set 1 of projections 

in B(X)/Jl
0

• 

If E and E' are in 1 and E ~ E', there are sets 
and l' in 1/Jl such that TJ(l) = E and 1/ (l') = E' . 
By the definition of TJ there are sets 

and (,' whose characteristic functions 
onto E on E' respectively. 
Thus 2(e - e'e) maps onto 2E - 2E'E 
and 2E - 2E'E = E' - 2 E'E + E - E' + E 

s 
e 

= (E') 2 
- 2E'E + (E) 2 

- E' + E 
= (E' - E) 2 - (E' - E) 
= 0. 

and S' 

and e' 
in 

t, 

l 
map 

Hence (e - e'e) is O on X\M' for some meager set M'. 

It follows that S\S' ~ M' so that S ~ S' UM' (SE l). 
Since S' UM' E £', t, ~ l'. 
If TJ(l) = TJ(l') = E then £ ~ l' and £' ~ l. 
Thus l = (,' from (vi). 
Hence 1J is a one- to- one mapping and since 1J is order 
preserving it follows that T/- 1 ~s also order preserving. 
Ve know from (vii) that B(X)/Jl

0 
is a commutative 

* C -algebra. It follows from Lemma 1.8 that B(X)/Jl
0 

~ C(Y) 

for some compact Hausdorff space Y. If , is the 

isomorphism of B(X)/Jl
0 

onto C(Y) then ;.,, is an order 

isomorphism of 1 / Jl with the set 1' of idempotents in 

C(Y). Ve know from (vi) that 1/Jl is a complete lattice, 
hence 1' is a complete lattice. Each continuous function 
in B(X) is approximable in norm by step functions as close 
as we wish. Since each f e B(X) is a linear combination 
of four positive functions we only have to show this for a 

positive function. Let c = l1!ll and define g = c• XE 
2 1 

0 

where E
0 

= {x: f(x) > c}. 

Then llf - g
1 

II ~ c and O ~ g
1 

< f. 
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If we use the same argument for O 5 f - g we can find a 
1 

0 f h II (f - ) - II < llf - gt II < C • 5 g
2 

5 - g
1 

sue that g g 
1 2 - 2 - ~ 

By induction we obtain a simple function ~ such that 

0 5 gn 5 f - (g
1 

+ ... + gn_ 1) and 

llf (g
1 

+ • .. +gnll ~ ~- l. If we choose 
2 

f = g + . . . + g th en II f - f n II __!!_. 0 and f n is a n 1 n CD 

simple function. Thus linear combinations of idempotents 

lie dense in B(X), in B(X)/Jl.
0 

and in C(Y). Hence Y 

is totally disconnected. From Lemma 2 .12 we have that Y 

is extremely disconnected and from Theorem 2.11 it follows 

that C(Y) is a boundedly complete lattice. From 

B (X) / Jl.
0 

~ C (Y) we have that B (X) / Jl.
0 

is a boundedly 

complete lattice. 

Theorem 2.16 ([4], Theorem 3.5) 

Vi th the notation of our previous lemma assume that X is [O, 1] 
and let q be a state of C(Y). 

CD 

(i) Suppose q(sup en) = E q(en) whenever {en} is a 
n n=1 

countable family of orthogonal idempotents in C(Y) (i.e. 

en-en'= 0 unless n = n'). 

CD 

Then q ( sup f n) ~ E q ( f n) for each countable set { f n} 
n n=1 

of idempotents fn in C(Y). 

(ii) Enumerate the open intervals in [0,1] with rational end­

points and let f ,f , ... be the idempotents in C(Y) that 
1 2 

are the images of their characteristic functions in B(X) 
under the composition of the quotient mapping of B(X) onto 

B(X)/Jl.
0 

and the isomorphism of B(X)/JJ.
0 

with C{Y). For 
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each j in {1,2, ... }, let e. 
J 

be an idempotent in C{Y) 

such that O < e. < f .. Then sup e. = 1. 
J - J j J 

Vith the notation of {ii) and a positive E given, e. 
J 

can 

be chosen such that q(ej) ~ 2-J e. 

that C (Y) has no normal states. 

Moreover this vill shov 
* (Hence the C - algebra 

C(Y) is not isomorphic to any abelian von Neumann algebra, 
although Y is extremely disconnected.) 

Let f' = f and 
1 1 

f' = sup { f , f , ... , f } - sup { f 
1 

, ••• , fn- 1} for 
n 1 2 n 

n = {2,3, ... }. If m < n, then f ~ sup {f , ... ,f 1} so m 1 n-

that f ~ ~ sup { f 
1 

, ••• , f n- 1} from vhich it follovs that 

f'. f' = 0. Moreover f' + f' + f' + ••• + f' 
m n 1 2 3 n 

= f + sup {f ,f} - f + sup {f ,f ,f} - sup {f ,f} + ... 
1 1 2 1 1 2 3 1 2 

+ sup {f , ... ,f} - sup {f ,f , ... ,f 1} 
1 n 1 2 n-

= sup {f ,f , ... ,f} for each n in {1,2, .•. }. 
1 2 n 

Since 

ve have 

Conversely 

f', ... ,f', 
1 n 

f' 
1 

f' 
1 

but 

+ f I + 
2 

for all n and f' •f' = 0 n m 

+ f' < sup {f' ,f' , ... ,f'}. n 1 2 n 

+ f; + ... + f~ is an upper bound for 

sup { f I 'f I ' ••• 'f I } 
1 2 n 

is the smallest upper 

bound for f' , ... ,f' . 
1 n 

Thus sup {f',f', ... ,f'} < f' + f' + ... + f'. 
1 2 n - 1 2 n 

n 
Thus sup{f' ,f' , ... ,£'} = E f~ = sup {f , ... ,f} 

1 2 n i=i 1 1 n 
for each 

n = {1,2, ... } so that sup f~ = sup fn. 
n n 

ID 

Nov q(sup {f ,f , ... }) = q(sup {f' ,f' , ... }) = E q (f~)-
1 2 1 2 n=1 
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Nov sup {f ,f , ... ,£} < f + f + ••• + f so that 
1 2 n - 1 2 n 

m 
E q(f') = q(sup {f ,f , ... ,£ }) 

n=l n 1 2 m 
m 

5 E q(fn) 
n=l 

(I) (I) 

Thus q(sup {f ,f , ... }) = ~ q(f') 5 ~ q(fn). 
1 2 n=l n n=l 

(ii) Vith the notation and results of the last part of Lemma 2.15 

in mind, let (¢•TJ)- 1 (ej) be .Cj. From (iii) in the 

(iii) 

previous lemma C. 
J 

contains a regular open set 0 .. 
J 

Let 
(I) 

0 = U O.. If p E [0,1]\0, there is some open interval 
j=l J 

(a,b) vith rational endpoints that contains p and does 
not meet 0. Let C be the equivalence class of (a,b) in 

1/M and fj = (¢•TJ)(C). 

Since (¢•rJf 1 is an order isomorphism it follows from 

0 < e. < f. that .C. < .C. Nov (a,b) is regular and from 
J - J J -

Lemma 2.15 (iv) (a,b) is the only regular set in .C. Since 

.Cj 5 .C it follows from Lemma 2.15 (vi) that Oj ~ (a,b). 
(I) 

This contradicts the fact that (a,b) and U O. are 
j=1 J 

disjoint. 
Hence O = [0,1], from which it is clear that sup e. = 1. 

j - J 

(Note that e. = ¢(x0. + M) thus sup e. = ¢(1 + M) = 1.) 
J J O j J 0 

Ve construct this sequence of idempotents e. 
J 

in C(X) by 

using the fact that C (Y) contains no minimal non- zero 
idempotents. 
f olloved that 

that ( ¢· qf 1 

In fact if f vere minimal it would have 
C = (¢· 11)- 1 (f) is minimal in 1/M (recall 
is an order isomorphism). This would have 
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implied that the regular open set 0 in £ is non- empty 

and minimal in 1
0

• This contradicts the fact that 0 

contains some open interval (a,b) (which is clearly 

regular) as a proper subset. Now let f be any non- zero 

idempotent in C (Y) . Then there exists an idempotent f' 

in C(Y) such that O < f'<f. Clearly O < f - f' < f 

also holds and one of q(f') and q(f - f') is not greater 

than }i(f). Suppose this is true for q(f'), then we can 

choose an f'' E C(Y) such that O < f'' < f' < f and 

q(f") < ½q(f') ~ ¼q(f). Continuing in this way, we can 

find an idempotent f E C(Y) such that 0 < f < f and 

q (:f) ~ E. Now if we apply this argument for each idempotent 

fj E C(Y) we can find an idempotent e. 
J 

such that 

0 < e. < f. 
J J 

and q(ej) ~ rj E. Suppose q is normal, 

then it follows from part (i) of this proof that: 
(Il 

1 = q(1) = q(sup e) ~ ~ q(e.) 
n n j=l J 

(Il 

~ ~ 2-j E 
j=1 

= E. 

Thus E ~ 1, but this is a contradiction since E was 

chosen arbitrarily. Hence C (Y) has no normal states. 

(Recall that normality of states defined after Definition 

2.1 is equivalent to the assumption on q in (i), (cf [11], 

Section 5.2). If C(Y) were isomorphic to a weak operator 

closed subalgebra of B(H) (for some Hilbert space H), 

then A (and hence C(Y)) would have had many normal 

states. In fact, any vector state on A (i.e. p is a 

vector state of A if there exists a unit vector x E H 

such that p(T) = <Tx,x>), is normal. 
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CHAPTER 3: SA.IlI'S CJWUCTERIZATION 

In chapter tYo Ye shoYed that a necessary and sufficient condition for a 
* C - algebra to be isomorphic to a van Neumann algebra is for it to be a 
* V -algebra. In this chapter ye present another "abstract" characterization 

* for a C -algebra to be isomorphic to a van Neumann algebra. 

It is Yell- knoyn that if A is a van Neumann algebra and A* is the 

Banach space of all ~-Yeak continuous (cf Appendix for a definition) linear 
* functionals on A, then A= (A*) (i.e. A is the Banach space dual of 

A*). So any von Neumann algebra A has a predual A*. In 1956 Sakai 
* proved that it is exactly those C -algebras that are dual spaces of Banach 

spaces Yhich are isomorphic to van Neumann algebras ( cf [8]) . In 1957 

Tomiyama gave an elegant proof of this dual space characterization by using 

the Gelfand- Naimark-Segal construction together Yith results on so-called 

conditional expectations (cf [13]). In this chapter ye present a version 

of Tomiyama's proof of Sakai's characterization. For this result ye need a 
* fey results on the universal representation of a C -algebra ll. 

I The un~versal representation 

By a representation of ll on a Hilbert space H Ye mean a 

*-homomorphism r from ll into B(H). If i- is one- to- one, ye 
call it a faithful representation. By means of the Gelfand-Naimark­

Segal construction ye can associate Yith each state ,p on ll a 

representation i-'P of ll on a Hilbert space H'P and a unit cyclic 

vector x'P for i-'P, so that 

,p(T) = <i-'P(T)x'P,x'P> (TE ll.). 

Let t be the state space of ll and consider the family 

{(i-'P,H'P):,p Et}. If Ye let H = e H'P and define i-: ll--+ B(H) by 
,PE! 

i-(T) ( e e ) = e 1" t/J (T) C, then if f olloYS that 1" is a faithful 
,pet 'P ,pet r r 

representation of ll on H. By means of this representation ll is 
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* isometric - isomorphic to a norm closed *- subalgebra of B(H). Ve 

call this representation the universal representation for a 
* C -algebra U (cf [5], Remark 4.5.7). 

One of the important merits of the universal representation 7, among 

other representations is that any bounded linear functional '{J on 

7(ll) is weak operator continuous. This result will follow after the 
* following lemma. If B is a C -algebra of operators on a Hilbert 

space H, we call a state '{J on B a vector state if there exists 

a unit vector x EH such that fJ(T) = <Tx,x> (TE B). 

Lemma 3.1 

* 
Let ( x ,H ) be the uni versa! representation of a C - algebra U. 

7 

* Each state of the C -algebra ~(ll.) is a vector state. 

Proof 

Let '{Jet, then there exists a unique unit vector x'{J such that 

fJ(T) = <r'{J(T)x'{J ,x'{J>. If we let wx(T) = <Tx,x> (TE B(H)), then 

'{J = w •• 7 • If we let y = e y where y = 0 for p # '{J and 
x'{J fJ pet P P 

y '{J = x'{J, 

with y 

then fJ = w • i-. y 

a unit vector in 

and define '{J on 

llfJII = fJ(I) = w((x(I)) = llwll 

that fJ is a state on 

exists a unit vector y 

Remark 

Hence each _state_ of U has the form 

H. Now, let w be any state on 
f' 

w •7 y 

7(U) 

lJ. by fJ(T) = w( 7(T)). Since 

(cf [5], Theorem 4.3.2) it is clear 

lJ.. Hence, by the above arguments there 

in H such that w(r(T)) = <7(T)y,y>. r 

This lemma actually shows more. In fact it can be seen f ram the 

proof that the mapping fJ ~ '{J • i-- 1 carries the state space of lJ. 

onto the state space of x(ll.) in a one-to-one manner. 
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Proposition 3.2 ([6], Proposition 10.1.1) 

Let r be the universal representation of ll. Each bounded linear 
functional p on r(ll) is weak operator continuous and extends 
uniquely to a weak operator continuous linear functional p on 

r(ll)v-o with IIPII = IIPII• 
Moreover, the mapping 7:p-+ p is a Banach space isomorphism from 

* the dual space r(ll) onto (~(ll)w-o )*. 

Proof 
From Lemma 3.1 each state of ~(ll) is a vector state wx (for some 

X E H) which is weak operator continuous. 

vector state vx on r(ll)w-o_ 

(Note wx(T) = <Tx,x> = lim <~(Tn)x,x> 
n--+w 

Hence 

where 

w extends to a 
X 

converges to T e r(ll) w- 0 in the weak operator topology.) From 

[2] it follows that each bounded linear functional p on r(ll) can 
be written as a linear combination of at most four states on r(ll). 

Since these states are vector states, p extends to the 

corresponding linear combination p of vector states on r(ll) w- 0
• 

Moreover p is weak operator continuous (all vector states are) 

which also implies that the extension is unique. 

Ve show that IIPII = IIPII • Clearly IIPII ~ IIPII • Consider the weak 

operator closed set {T E r(ll) w- 0 
: Ip (T) I ~ IIPII}. It is clear that 

this set contains r(ll) . Then since ( r(ll) ) v- 0 = ( r(ll) v- 0
) (by 

1 1 1 

the Kaplansky density theorem cf [2], Theorem 3.6.1), it follows that 

the set also contains ( r(ll) w- 0
) • Thus IIPII 5 IIPll -

1 

* --W-0 
Define 7: r(ll) -+ (r(ll) )* by 7(p) = p. 

Ve show that 1 

* then p e r(ll) 

is onto. If we (r(ll)w-o)*, let p = wli-(ll)' 

(~-weak continuous linear functionals are norm 
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continuous) and since p and w coincide on r(ll) and both are 

u-weak continuous on r(ll)w-o it follows that p = w. (Note that p 
is a linear combination of vector states which are u-weak 
continuous.) Now it is clear that 7 is a Banach space isomorphism. 

Proposition 3.3 ([6], Proposition 10.1.21) 

* Let r be the universal representation of the C -algebra 11 and for 

* p e r(ll) let p e (r(ll)w-o)* be the unique extension of p (cf 

Proposition 3.2). Then for each T E r(ll)w-o the mapping 
... * ... 
T : r(ll) ~ ( defined by T(p) = p(T) is a bounded linear 

* functional on r(ll) . Moreover the mapping T--+ T is an isometric 
** isomorphism from r(ll) w- 0 onto the bidual space r(ll) . Its 

restriction to r(ll) is the canonical embedding of r(ll) into 
** r(ll) • 

Proof 
It is well-known that any von Neumann algebra has a predual. In fact 

it can be seen from [10] that for the algebra r(ll)w-o the mapping 

; 1 : (r(ll)w-o)* --+ ( defined by ¢1(w) = w(T) is a bounded· linear 

functional on Moreover, the mapping 

defines an isometric isomorphism from (r(ll)w-o) onto the dual space 
-- * 
(r{ll)w-o)* of (r(ll)w-o)*. In Proposition 3.2 we have show that 

* th · - f (11) t (-r(ll)w-o)* 1·s an e mapp 1ng 7 : p --+ p rom -x on o ,. 

-- * ** 
isometric isomophism. Now let a : ( r{ll) w- 0

) * --+ r{ll) be the 

adjoint operator of 7 (i.e. a(¢)=~ where ~(p) = ,(1p) 
= ;(p)). 

Since 7 is an isometric isomorphism, a is one. If we consider 
the composition a•/3 : T -+ ~ it is an isometric isomorphism from 
-- ** (r(ll)w-o onto r(ll) where ~T(p) = ¢1(p) = p(T). 
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** Clearly a•Pl
7

(ll) : T(ll)-+ T(ll) is the canonical imbedding for if 

* Te 7(ll) then (a•P)(T) = fT where ~T(p) = p(T) (p e 7(ll) ). 

Remark 3.4 

The result above may be misleading if it is not understood in the 
* correct way. For instance let ll be the C -algebra l 00

• Then it 

was shown in Example 1.20 that there exists a representation t from 

l 00 into some B (H) 
van Neumann algebra. 

such that ! (ll) w- 0 = t (ll). Hence l 00 

For the universal representation 7 of 
is a 

loo 
' 

this is surely not the case that For if 

7(ll)w-o = T(ll) then it would follow from the above theorem that ll, 
** 7(ll) and 7(ll) are as Banach spaces the same! Hence l 00 will be 

reflexive - a contradiction. 

Remark 3.5 

* Note that from now on if we write ll for a C -algebra it will always 

mean that ll is represented as a closed *-subalgebra of some B(H) 
under the universal representation. (So we shall always write ll in 

stead of T(ll).) 

II Tomiyama's proof 

Ve've already mentioned that Tomiyama gave an elegant proof for 

Sakai's characterization. Apart from the universal representation, 
Tomiyama used conditional expectations which he generalised from 

commutative measure spaces to non-commutative measure spaces. 

Definition 3.6 

* * A linear mapping f from a C -algebra ll into another C -algebra B 

is said to be positive if f(H) ~ 0 when Heu+. If B is also a 

subalgebra of ll, ~(I)= I and ~(BAC) = B~(A)C when B,C EB and 
A ell then ~ is said to be a conditional expectation from ll onto 

B. 
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Proposition 3.7 

If ,p is a conditional expectation from 11 onto B (B is a 
subalgebra of 11) then ,p is a projection of norm one from 11 onto 
B. 

Proof 
By means of the Gelfand- Naimark Theorem ( cf Lemma 1. 8) it can be 
show that each self-adjoint element of 11 is the difference of two 
positive elements of 11. Hence ,p maps self-adjoint elements onto 
self-adjoint elements and ,p is hermitian (adjoint-preserving). 
For each A in 11 and B in B 

* 0 ~ (A - B) (A - B) 
* thus O ~ ,p((A - B) (A - B)) (,p is positive) 

* * * * = ,p(A A) - ,p(A B) - ,p(B A) + ,p(B B) 
* * * * = ,p(A A) - ,p(A )B - B ,p(A) +BB. 

If we replace B by ,p(A) we get: 
* * * * 0 ~ ,p(A A) - ,p(A ) ,p(A) - ,p(A) ,p(A) + ,p(A) ,p(A) 
* * = ,p(A A) - ,p(A ),p(A). 

* * Thus ,p(A ) ,p(A) ~ ,p(A A), which holds for each A in 11. It can 
* * easily be shown that <A Ax,x> ~ <IIAll 2 Ix,x> hence A A ~ IIAll 2 I and 

it follows that 
* * 

0 ~ ,p(A ),p(A) ~ ,p(A A) ~ IIAll 2 I 

and ll,p(A)II 5 IIAII and ll'PII 5 1. 

Since ,p(I) = I, ll'PII = 1 and 
,p(B) = ,p(B·I•l) 

= B,p(I)·-r (,p a conditional expectation) 
= B for each B in B. 

Thus ,p(,p(A)) = ,p(A) and ,p is idempotent. 
Hence ,p is a projection of norm one mapping 11 onto B. 

Ve give a few examples of conditional expectations. 

* (i) Let 11 be a C - algebra and p any state on 11. Define 
t (T) = p (T) I. Then t is a conditional expectation on 

B = {S:S = JI, A EC}. 
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Clearly since p is positive, t will be positive and 

t{I) = p{I)I = IIPIII = I. 
If S = AI then t(ST) = t(AIT) 

= Ap(T)I 
= H(T) 

= AH (T) 

= St(T). 
Hence t is a conditional expectation. 
There are surely other non-trivial examples. 

{ii) Let A be a finite von Neumann algebra (i.e. I is a 
finite projection). Then it is well-know that there exists 

a unique central valued trace t : A-+ 2 where 2 =An A' 
which satisfies all the properties of a conditional 

expectation {cf [10]). 

Theorem 3.8 ([4], Lemma 5.1) 

* * Let B be a C -subalgebra of the C -algebra ll and let 

idempotent bounded linear mapping of ll onto B 

II rp 
0

11 = '1. Let o.w- 0 be the weak operator closure of 

rp
0 

be an 

such that 
ll, then rp

0 

is a positive linear mapping of ll onto B such that rp
0

(I) = I 

and 

mapping 

extends uniquely to a weakly continuous idempotent linear 

rp of o.w- 0 onto p,w- 0 such that II rpll = 1 and rp is a 

positive linear mapping. 

Proof 
Since rp

0 
is onto, we can choose an A E ll such that rp

0
{A) = B. 

As rp
0 

is idempotent we have rp
0

(B) = rp
0

(rp
0

(A)) = rp
0

(A) = B. In 

particular rp
0 

{I) = I. If p is a state on B it follows from 

p(I) = IIPII = 1 (cf Appendix, Lemma 1) that (p·rp
0

)(I) = p(I) = 1. 

Since llp·rp
0

II ~ IIPII llrp
0

II = 1 one has from the same reference that 

p•rp is a state on ll. 
0 
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Suppose HE ll+, then p(rpo(H)) ~ 0 for each state p on B. 

Since rp
0

(H) EB it follows from ( [5] ' Theorem 4.3.4) that 

'Po(H) EB+. Thus 'Po is a positive, linear mapping from l1 onto 

B. 

Let w be a ff-weakly continuous linear functional on B. Since a 

ff- weakly continuous functional is norm continuous it follows that 

w•rp is a bounded linear functional on ll. Hence by Proposition 3.2 
0 

w• rp is ff- weakly continuous on ll. 
0 

Since it is clear from 

Proposition 3. 2 that the ff- weakly and weak operator topologies 

coincide under the universal representation on l1 and B, we have 

that rp
0

: l1-+ B is ff-weakly continuous: 

If T -+ T ff- weakly in l1 we know that for each x in H 
a 

w ·rp (T)-+ w ·rp (T) (w (T) = <Tx,x> 
X O a X O X 

is ff-weakly continuous). 

( ) ( ) kl 
-ff- W -w- 0 

Hence rp 
O 

Ta -+ rp 
O 

T weakly, hence ff- wea y. Since l1 = l1 

and Bff-W = Bw-o, l1 and B is u-weakly dense in ow-o and Bw-o 

respectively. Thus rp
0 

can uniquely be extended to a mapping rp 

from ow-o into Bw-o which is u-weakly continuous. 

Ve now show that IIV'II = llrp
0

II = 1, since ll'P
0

II = 1 we only have to 

prove that ll'PII = 1. Clearly since rp is an extension of rp
0

, 

1 = IIV10 II ~ ll'PII • 

Since rp is u-weakly operator continuous the set 

S = {T E ou- w : II VJ(T) II ~ 1} is weak operator closed. Now for any 

T E 11
1 

it follows that 11 'P (T) II = 11 'P
O 

(T) II ~ 11 'P 
0

11 IITII ~ 1. Thus 

l1 c S. Hence it follows from Kaplansky' s density theorem 
1 

Theorem 3.6.1) that ( yff- w) = ( ll ) u- w c S. 
1 1 

Thus 11 'PII = sup 11 'P (T) II ~ 1 and 11 'PII = II V' 0 11 

IITll~1 
Tellu- w 

= 1. 

( [2] ' 
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-y- 0 -y- 0 
Since B c l1 , '{)•'{) is -well-defined, o---weakly continuous and 

coincides on l1 -with <p
0

·,p
0 

= ,p
0 

= 'Plu• Since the o---weak continuous 

mappings <p•<p and <p coincides on l1 and ll is o---weakly dense in 
[LY- 0 it is clear that <p • <p = <p on [LY- 0

• Since [LY- 0 is a von 

Neumann algebra one has that l/.-w-o = (li.-w-o)**. Hence from 

Banach-Alauglo ([9]) the unit ball of li-w-o is o-(li-w-o, (li-w-o)*) 

compact, hence o---weakly compact. Since B c ll and 11 'PII = 1, 'P 
1 1 

maps the o-- weak compact set onto a o--weak compact (hence 

closed) subset of Bw- 0 that contains B • 
1 

From Kaplansky it 

follo-ws that (B ) -w-o -- (B-w-o) It . t th 1s no-w easy o see at 
1 1 • 

,p(liY-0) = B',1-0. 

Since ll'PII = 1 and ,p(I) = I it can be sho-wn in a similar -way as 
for ,p

0 
that <p is positive. 

Remark 3.9 

It is important to notice that ,p is the identity on Bw-o_ It is 

clear at the beginning of the proof of Theorem 3. 8 that <p 
O 

(B) = B 

for each BE B. If we take BE 8-w-o then there exists a sequence 

B converging to B o-- -weakly. Since rp is o-- -weakly continuous 
n 

from li-w-o onto 8-w-o it is clear that ,p(B) = B. 

* Recall that a linear functional p on a C -algebra l1 is positive 

if p(A) ~ 0 for any positive element A of /1. 

Lemma 3.10 ([12], I, Lemma 9.5) 

* If p is a positive linear functional on a C -algebra ll, then 

* --,-- * * * p(B A)= p(A B) and jp(B A)l 2 ~ p(A A)p(B B). 

Proof 
It follo-ws by direct computation that 

* 3 
n * n 4B A=~ in (A+ i B) (A+ i B) 

n=O 
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and 

* -,--
Hence p(B A)= p(A B). 

* Since for any A e C, 0 ~ p((AA + B) (AA+ B)) 
* * * = jAj 2p(A A)+ 2 Re(Ap(A B)) + p (BB) 

* * * ~ p(A A) Pl 2 + 2jp(A B)I IAI + p(B B) 
it follows that the discriminant of the parabola in I;\ I is 

* * negative. Hence jp(A B)l 2 = jp(B A)l 2 

* * ~ p(A A)p(B B). 

Definition 3.11 

* A state p of a C -algebra is said to be definite on a self-adjoint 
element A of ll when p(A2 ) = p(A) 2 • 

The following two properties of a definite state will be crucial in 
this chapter. 

Proposition 3.12 

* Let ll be a C - algebra and suppose a state p is definite on a 
self-adjoint A E ll

0
• Then A - p(A)I is in the kernel of p and 

p(AB) = p(BA) for each Bell. 

Proof 
The proof will follow by direct computation. 

Consider p((A - p(A)I) 2 ) 

= p(A) 2 - 2p(A) 2 + p(A) 2 

= o. 
Thus p((A - p(A)I) 2 ) = 0 and since p(A - p(A)I) is real it is 
clear that p(A - p(A)I) = 0. 
Now if B E ll, then it 
p(B(A - p(A)I)) = p((A-p(A)I)B) 
p(BA) = p(B)p(A) = p(AB). 

fallows f ram Lemma 3 .10 that 
= 0 from which it is clear that 
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The following important fact will be used in the next proposition. 

Lemma 3.13 

For all T and S in B(H) and each projection E it follows that 

IIET(I - E) + (I - E) SEIi = max {IIET(I - E)II; ll(I - E)SEII}-

Proof 
Let x be a unit vector in H, then 

11 ET ( I - E) x + ( I - E) S Ex 11 2 

= IIET(I- E)xll 2 + ll(I - E)SExll 2 (E and I - E are orthogonal). 

5 II ET ( I - E) 11
2 11 ( I - E) x 11

2 + II ( I - E) SE 11
2 II Ex II 2 

(I - E and E are idempotent) 

5 max {II ET ( I - E) 11 2 
, II ( I - E) SE 11 2 

} 

since ll(I - E)xll 2 + 11Exll 2 = 1. 

On the other hand IIET(I - E) II 

= sup {IIET(I - E)yll : IIYII 5 1} 
= sup {IIET(I - E)zll : z = (I - E)y : llzll 5 1} 

5 11 ET ( I - E) + ( I - E) SE II 

(since (I - E)SE(I - E)(H) = (I - E)S(E - E2 )(H) = {O}). 
Similarly ll(I - E)SEII 5 IIET(I - E) + (I - E)SEII 

thus max {IIET(I - E) II; II (I - E) SEIi} 
5 IIET(I - E) + (I - E) SEIi from which equality follows. 

Proposition 3.14 ([4], Lemma 5.2) 

Vith the notation and assumptions of Theorem 3.8, let E be a 

projection in Bw-o and x be a unit vector either in E(H) or in 

(I - E)H. Then: 

(i) 

(ii) 

w ., is a state of nw-o which is definite on E. 
X 

E,(EA)E = E,(AE)E = E~(A)E, E~(EAE)E = E,(A)E and 

(I - E) ,(EA) (I - E) = (I - E) ~(AE)(I - E) = 0 for each A 
. -w-o 
1n ll • 
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(iii) rp(EAE) = Erp(A)E for each A in ow-o. 

(iv) rp(EA(I - E)) = (I - E) rp(EA(I - E) )E + Erp(EA(I - E)) (I - E) 
for each A in ow-o. 

( v) ( I - E) rp ( EA ( I - E) ) E = 0 . 

(vi) rp(EA) = Erp(A) and rp(AE) = rp(A)E for each A in ow-o_ 

Proof 
(i) wx(T) = <Tx,x> by definition and since rp(I) = rp

0
(I) = I 

(wx•rp)I = wx(rp(I)) = wx(I) = <Ix,x> = llxll 2 = 1. 

Let T ~ O, from Lemma 3.8 rp is a positive linear mapping 
of ow-o onto Bw-o so that 

wx•rp(T) = wx(rp(T)) 

= <rp(T)x,x> 
~ 0 since rp is a positive mapping. 

Thus w •f/J is a state of ow-o (cf Appendix, Lemma 1). As 
X 

E2 = E, the states p of ow- 0 that are definite on E 
are those such that p (E) = p (E2

) = p (E) 2 and that is 
precisely those that take the value O or 1 at E. 
Since E E Bw- 0 and rp is idempotent with range Bw- 0

, 

there exists an A E ow-o such that rp(A) = E. 

Thus rp(E) = rp(rp(A)) = rp 2 (A) = rp(A) = E and now 

(wx•rp)(E) = wx(rp(E)) = wx(E). 

lllien x E (I - E)H, (wx•rp)(E) = wx(E) 

= <Ex,x> 
= 0 because x E (I - E)H 

and when x E E(H), (wx•rp)E = <Ex,x> 

but <Ex,x> = llxll 2 = 1 if x E E(H). 
Thus when x E E(H), (wx•rp)E = 1. Thus wx•f/J is definite 

on E when x is a unit vector in either E (H) or 
(I - E)H. 
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* Since v • '{J is a state on the C - algebra li.v- 0 which is 
X 

definite on E, it follows from the proof of Proposition 
3.12 that vx•'{J(EA) = vx•'{J(E) . vx•'{J(A) 

= vx(E) . (vx•'P)(A). 

Hence for all x E E(H) one has 
<'{J(EA)x,x> = <'{J(A)x,x>. 

Nov if x E H arbitrary then Ex E E (H) and it fallows 
that <E'{J(EA)Ex,x> 

= <'{J(EA)Ex,Ex> 
=-<'{J(A)Ex,Ex> 
= <E'{J(A)Ex,x> 

From this it follows that E'{J(EA)E = E'{J(A)E. 
Since vx•'{J(EA) = vx•'{J(AE) (cf (i) and Proposition 3.12) it 

is clear that we also have E'{J(EA)E = E'{J{AE)E = E'{J(A)E. 
Vith x a unit vector in (I - E)H, from vx•'{J{EA) = 0 we 

have <'{J(EA)x,x> = 0 and this holds for all x E {I - E)H. 
Nov {I - E)'{J(EA)(I - E) = O. 
Similarly {I - E)'{J(AE)(I - E) = 0. 

Hence E'{J{AE)E = E'{J(A)E and {I - E)'{J(AE){I - E) = 0 for 
all A in li.v-o_ Thus 

E'{J(EAE)E = E'{J(E(AE))E = E'{J{AE)E = E'{J(A)E. 

(iii) Ve firstly show that -IIAIIE ~ EAE ~ IIAIIE 
l<EAEx,x>I = l<AEx,Ex>I 

~ IIAExll IIExll (Cauchy- Schwarz) 
~ IIAII 11Exll 2 

= IIAII <Ex,Ex> 
= IIAII <Ex,x> 
= <IIAIIEx,x> 

Thus <- IIAIIEx,x> ~ <EAEx,x> ~ <IIAIIEx,x> and it follows that 
-IIAIIE ~ EAE ~ IIAIIE. 

Since '{J is a positive linear mapping we have that 
- IIAIIE = - IIAll'{J(E) ~ '{J(EAE) ~ IIAll'{J(E) = IIAIIE. 

For x E {I - E)H it follows that 
l<'{J(EAE)x,x>I ~ <IIAIIEx,x> = O. 
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Thus <¥1(EAE)x,x> = 0 for all x E (I - E)H. 
If x EH arbitrary, then x =Ex+ (I - E)x 
so ,(EAE)x = ,(EAE)Ex + 0 thus ,(EAE) = ~(EAE)E. 

* * Now similarly one has ~(EA E) = ~(EA E)E for all 
A* E 9w-o_ 

* * * * Thus ~(EAE) = [~(EA E)] = [¥1(EA E)E] 
* * = E[,(EA E)] 

= E¥1(EAE). 
Thus ¥1(EAE) = E~(EAE) = E~(EAE)E. 
So that ,(EAE) = E~(EAE)E = E~(A)E follows from (ii). 

(iv) Since (I - E) ~(EA(I - E)) (I - E) 
= ,(EA(I - E)) - ~(EA(I - E) )E - E,(EA(I - E) )(I - E) 

we have 
~(EA(I - E)) = E~(EA(I - E))E + (I - E)~(EA(I - E))E + 

E~(EA(I - E)) (I - E) + (I - E) ~(EA(I - E) )(I - E). 
But E~(EA(I - E))E 

= E~(EA)E - E~(EAE)E = E~(A)E - E~(A)E (from (iii)) 
= 0 

and (I - E) ¥1(EA(I - E) )(I - E) 
= (I- E)~(EA)(I- E)- (I- E)~(EAE)(I- E) (~ linear). 

But (I - E)~(EA)(I - E) = 0 (from (ii)). 
Thus ( I - E) ~ ( EA ( I - E) ) ( I - E) 

= - (I - E) ¥1(EAE) (I - E) 
= -~(EAE) + ¥1(EAE)E + E~(EAE) - E,(EAE)E 
= -E~(A)E + E~(A)E + E~(A)E - E~(A)E 
= o. 

Thus ,(EA(I - E)) 
= (I - E)~(EA(I - E))E + E~(EA(I - E))(I - E). 

(v) Suppose (I - E)~(EA(I - E))E # O, then for all large 
positive integers n, IIE~(EA(I - E))(I - E)II 

~ II n ( I - E) ~ ( EA ( I - E) ) E II . 
Hence nll(I- E)~(EA(I- E))EII 

= max {lln(I - E) ~(EA(I - E) )Ell; IIE~(EA(I - E) )(I - E) II} 
= IIE~(EA(I - E)) (I - E) + n(I - E) ,(EA(I - E) )Ell 

[ cf Lemma 3 .13] 
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= IIE¥1(EA(I - E)) (I - E) + (I - E) ¥1(EA(I - E) )E 

+ ( n - 1 )( I - E) , (EA ( I - E) ) E II 
= II ¥7 ( EA ( I - E) ) + ( n - 1 )( I - E) p ( EA ( I - E) ) E II 

(from (iv)) 
= llp(EA(I - E)) + (n - 1)p(I - E)¥12 (EA(I - E))p(E)II 

(cf Remark 3.9) 

= llp[EA(I - E) + (n - l)(I - E)¥J(EA(I - E))E] II 
(¥' is linear) 

~ IIEA(I - E) + (n - 1)(! - E) p(EA(I - E) )Ell 

rn,11 ~ 1) 

= max {IIEA(I - E) II; II (n - 1)(! - E) p(EA{I - E) )Ell} 

= (n - 1) II (I - E) ~(EA(I - E) )Ell since EA(I - E) = 0 
(recall for n large enough 

IIEA(I - E)II ~ ll(n - 1)(1 - E)p(EA(I - E))Ell)­

This is a contradiction since n is a positive integer. 
Thus (I - E)~(EA(I - E))E = 0. 

(vi) From (iv) and (v) we have 
~(EA(I - E)) = E~(EA(I - E))(I - E). 

Thus for each A in llw-o we have from (iii) that 

p(A) = ~(EAE) + ~(EA(I - E)) 

+ ~ ( ( I - E) AE) + ~ ( ( I - E) A ( I - E) ) 

= E~(EAE)E + E~(EA(I - E))(I - E) + (I - E)p((I - E)AE)E 

+ (I - E)p((I - E)A(I - E))(I - E) 

so that Ep(A) = E2 p(EAE)E + E2 p(EA(I - E))(I - E) + 0 + 0 
= Ep(EAE)E + Ep(EA(I - E))(I - E) 

= p(EAE) + ~(EA(! - E)) 

= ~(EAE) + p(EA) - p(EAE) 

= ~(EA). 
* * Since [~(A)] =~(A) and Ep(A) = p(EA) it is clear that 

* * * * * * Ep(A ) = p(EA ) and so [E~(A ) ] = [p(EA ) ] • 

Thus ~(A)E = p(AE). 

Theorem 3.15 ([4], Theorem 5.3) 

Vith the notations and assumptions of Theorem 3.8, ,
0 

from ll onto 

B and ~ from llw-o onto nw-o are conditional expectations. 
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Proof 
From Theorem 3.8, ~ is a positive linear mapping from ov-o onto 
Bv-o and ~(I)= ~

0
(I) = 1. Since ~o maps U onto B and is the 

restriction of ~ to U, it vill follov that ~o is a conditional 

expectation from U onto B if ve can prove that ~ is a 
conditional expectation from ow-o onto Bw-o_ 
Ve now have to shov that ~(BA)= B~(A) and ~(AB)= ~(A)B for each 
A in u.w- 0 and B in Bw- 0

• First let B be a self- adjoint 
element in the von Neumann algebra Bw- 0

• Let E > 0 be given; 
from the spectral theory there is a finite orthogonal family 
{E ,E , ... ,E } of projections in Bw- 0 and real scalars 

1 2 n 

a ,a , ... ,a such that 
1 2 n 

n 
IIB - ~ a-E-11 < E/(2IIAII) vith A in u.w-o_ 

j=1 J J 

It nov follovs that 

ll~(BA) - B~(A)II 
n n 

< ll¥J(BA) - ¥J((~ a.E.)A)II + II~((~ a.E.)A) - B¥J(A)II 
j=1 J J j=1 J J 

n n 
< IIBA - (~ a.E.)AII + II(~ a.E.)~(A) - B¥J(A)II 

j=1 J J j=1 J J 
(from llfll = 1 and Proposition 3.14(vi)) 

n n 
< ll(B - ~ a.E.)AII + II((~ a.E.) - B)¥J(A)II 

j=1 J J j=1 J J 

< 2 "All IIAII + rlilf llf(A)II 

~ ! + rlilf IIAII (llf(A)II ~ IIAII) 

= E. 

Thus ¥J(BA) = Bf(A) and similarly ve can prove that ~(AB)= ~(A)B. 
Since any BE Bw-o is a linear combination of self-adjoint elements 
in Bw-o, the general case follows. 
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Theorem 3.16 ([4], Theorem 5.4) 

* Suppose the C -algebra U is the norm dual of a Banach space U*. 

* ** 'f/ is the natural injection of U* into U (= (U*) ) and U 

acting on H is the universal representation of U. 

** (i) If v is an element of U , then v•q = A for a unique A 

(ii) 

in U. 

Let A --+ A be the natural isometric isomorphism betYeen 
** ow-a and U obtained in Proposition 3.3. Let ~(A) be 

the unique element obtained in (i) such that A· 'f/ = ~(A). 
Then ~ is a conditional expectation from oY-O onto u. 

(iii) If l = ~- 1 (0) then l is a Yeak operator closed tYo-sided 
ideal in ow-a and l = ow-Op for some central projection 
p in ow-a_ 

(iv) ow-o(I - P) = U(I - P), hence U(I - P) is a van Neumann 

algebra. 

(v) U is *-isomorphic to the van Neuman algebra U(I - P). 

Proof 

(i) Suppose { e (U*) then since 'f/ is an isometry 
1 

ll(v•'f/HII < llvll 11'1(011 
= llvll 11{11 
< llvll (llell ~ 1). 

Hence v• 'f/ is a bounded linear functional on U*. By 

assumption U is the norm dual of U*. Thus there exists a 

unique A in U such that Zl•'f/ = A. 
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(ii) Suppose that A E !1. Ve show that ¥J(A) = A. Choose 

{Ell*, then ¥J(A)({) = (A-17)({) 

= A(11(0) 
= 11(0 (A) 

* = A({) (!1 = ll* ). 

Hence ~(A) = A for each A E !1. Then clearly ¥' is a 
linear mapping f ram u.w- 0 onto !1. ¥' is idempotent for 

if A E ll.w-o, ¥J(A) E l1 and it follows that ¥J(¥J(A)) = ¥J(A). 

Ve now show that II ¥'II = 1: 
** If BE (U.w-o) , then BE (!1 ) and 

1 1 

ll~(B)(OII = ll(B-11)(011 
= ll11(0BII 
~ 1111(011 IIBII 
~ 11{11-

** Hence ll~(B) II ~ 1 for all B E (!1 ) This implies that 
1 • 

II ~II ~ 1. Since ~ (I) = 1 it fallows that II ¥'II = 1. 

Theorem 3.15 now implies that ~ is a conditional 
expectation for u.w-o onto !J. 

(iii) Ve first show that K is weak operator closed. Ve know 

that A EK if and only if ~(A)= O, thus if and only if 

(A· 17 )( O = 0 for all { in U*, hence if and only if 

* 11(0(A) = 0 for all { E !1*. Now 11(0 E l1 and l1 

acting on H is the universal representation of ll, so 

that there are vectors x ( O and y ( O in H such that 

11(0 = wx(O ,Y(O jll. Thus A E r if and only if 

wx({),y({)(A) = 0 for all { in !1*. Since the null space 

of wx({),y({) is weak operator closed, it follows that r 

is weak operator closed (note that wx(O ,Y(O is weak 

operator continuous). Since ¥' is a conditional 
expectation form u.w-o onto ll, ~(BAC) = B~(A)C for each 
A in U.w-o and B, C in !1. Thus if A EK, 0 = B¥,1(A)C 

= ~(BAC) and thus BAC EK. 
By weak operator continuity of left (and then right) 
multiplication BAC EK for B, CE U.w-o and A EK. 
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Hence l is a veak operator closed tvo-sided ideal in ll. 
From Lemma 1.19 there is central projection P in ll such 
that l = li.v- 0P. 

(iv) Since ~ is idempotent, ~(A - ~(A))= ~(A) - ~(~(A)) 
= ~(A) - ~(A) = 0. 

Thus A - ~(A) el for each A in li.v-o_ 
Nov A - ~(A) E liv- 0P, say A - ~(A) = SP vith S E llv- o 

then (A - ~(A))P = SPP =SP= A - ~(A) (P a projection). 
Thus from A - ~(A)= (A - ~(A))P it follovs that 

A - AP = ~ (A) - ~ (A) P 
A (I - P) = ~(A) (I - P) E ll(I - P). 

Hence liv-o(I - P) = ll(I - P). 

(v) If A e lJ and Of A then Ail (since A= ~(A) f 0). 
Thus Ai liv-op hence A f AP and A - AP f 0. 

Since P is a central projection it commutes vith lJ and 
the mapping A --+ A(I - P) of lJ onto ll(I - P) is a 
*-homomorphism 

* * * ([A(I - P)] = (I - P)A = A (I - P) E ll(I - P)) 
and since it follovs from A f 0 that A - AP f 0, the 
mapping is one- to- one and hence a *- isomorphism f ram lJ 

onto ll(I - P). From ("iv) ve knov that 
zjY- 0 ( I - p) = lJ ( I - p) . 

Thus lJ is *-isomorphic to the von Neumann algebra 

ll(I - P) acting on (I - P)(H). 

* From this result and the fact that ( l 1 ) = l'JJ ( [7] , 
Example 2.10-6) ve nov have that £00 is *-isomorphic to a 

* von Neumann algebra. Hence any C -algebra vith a predual 
vill be *-isomorphic to a von Neumann algebra. Hence vith 
this more abstract characterization it is much easier to 

* prove that certain C -algebras are isomorphic to von Neumann 
algebras. 
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APPENDIX 

LOCALLY CONVEX TOPOLOGIES ON A VON NEUIANN ALGEBRA (cf [11]) 

Let A be a von Neumann algebra i.e. A is a *- subalgebra of B(H), 

containing an identity IE A such that A= A''. As stated in Chapter 1, 
this is the equivalent of saying that A is a *-subalgebra of B(H) Yhich 

is closed in the Yeak operator topology on B(H) (the double commutant 

theorem). The Yeak operator topology on A is the topology generated by 

the family of seminorms 

TE A-- l(Tx,y)I x,y EH. 

If A is the linear hull of the set of all yeak operator continuous 
N 

functionals on A, 

11(A,AN)-topology. 
then this Yeak operator topology is nothing but the 

The strong operator topology on A is the locally 

convex topology determined by the family of seminorms 

TE A --- IITxll x EH. 

The 11- Yeak operator topology on A is the locally convex topology 

determined by the family of seminorms 

m m m 
T E A--+ E (Txn,Yn) where E llx 11 2 < + m and E 11Yn11 2 < + m. 

n=l n=1 n n=l 

Let A* be the set of all 11-Yeak continuous linear functionals on A. It 
m 

can be show that every f EA* is of the form f(T) = E (Tx ,Y) 
n=l n n 

for 

m m 
some sequences (x ) , (y ) ~ H Yith E llx 11

2 < + m and E IIY 11 2 < + m 
n n n=1 n n=l n 

and that the 11- Yeak operator topology on A is exactly the 11(A,A*) 

topology on A. The locally convex topology determined by the family of 

seminorms 
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where (xn) is a sequence in H, is called the u-strong operator topology 

on A The topology given by the norm IITII is called the norm topology on 
A. If "<" means the left-hand side is finer than the right-hand side, 
the relation between these various operator topologies defined on A is as 
follows: 

norm< u-strong < u-weak 

" " strong< weak 

It can be shown that the u- strong and strong (resp. u- weak and weak) 

operator topologies coincide on bounded parts of A. Consider A* and A 
N 

as defined above. Then, by 
spaces it can be shown that 

* space A of A and A 
N 

topology. Furthermore, A 
space of the Banach space 

using the g·eneral duality theory of Banach 

A* is a closed subspace of the conjugate 

is dense in A* with respect to the norm 

is isometrically isomorphic to the conjugate 

A* under the natural correspondence 
* TE A---+ TE (A*) where T(w) = w(T) for every w EA*. Ve call A* 

the predual of A. Since A is a convex subset of B(H) there is a 

well- know result in the duality theory of Banach spaces from which it 

follows that the closures of A in all these locally convex topologies are 

the same. Since A is weak operator closed, it is closed in all these 

locally convex topologies on A. For the proof of these statements we 

refer to ([2], Sections 3.1 to 3.4) and [12]. 

One merit of all the locally convex topologies defined above, is that 

multiplication is separately continuous. This means that the mappings 

TE A---+ TSE A, TE A---+ STE A are continuous for every SE A. Ve 
show this for the weak operator topology on A (the proofs for the others 

are similar). If Ta---+ 0 weakly, one has that l(Tax,y)I---+ 0 for 
* every x,y E H ({T} a net in A). Thus l(Tax,S y)I---+ 0 for every 

a 
* x,S y EH. Hence I (STax,y)I ---+ 0 for every x,y EH. This proves that 

ST ---+ 0 a weakly. The same procedure is used to show that 

TE A---+ TSE A is weak operator continuous. Another merit of the weak 
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* and (J- weak topology on A is that the mapping T e A ~ T e A is 
continuous. The proof of this proceeds as above. This is not true in the 

strong and (J- strong operator topologies. The following is also true: 
Multiplication is jointly continuous on bounded parts in the strong 

operator topology on A. Moreover if TA---+ T, SA--+ S and IISAII 5 k 

for all A then the relation 

ll(SATA - ST)xll 5 k ll(TA - T)xll + ll(SA - S)Txll 

implies that (T ,S) e AxAb ---+ TS E A is continuous where Ab is a 

uniformly bounded subset of A. 

Lemma 1 {[5], Theorem 4.3.2) 

* . 
If D is a self-adjoint subspace of a C -algebra ll and contains the unit 

I of ll, a linear functional p on D is positive if and only if p is 

bounded and IIPII = p(I). 

Proof 
Let p be positive, a be a scalar with lal = 1 and A be in D such 

that ap(A) ~ ~- Let H be the real part of aA. Then IIHII 5 IIAII, 
H 5 IIHIII 5 !IA.III and IIAIII - H ~ 0. 

Hence IIAllp{I) - p(H) = p(IIAIII - H) ~ O, 

thus lp(A)I = p(aA) = p(aA) 
* 

= p (a.A ) 
1 * 

= p(~(aA + aA )) 

= p(H) 

5 p(I)IIAII-
Hence p is bounded and IIPII = p(I) follows easily. 
Conversely if we suppose p is bounded with IIPII = p(I) we only have to 

consider the case where IIPII = 1. Yi th A in n+, let p (A) = a + ib. 
Vith s ~ 0 and small, (J(I - sA) = {1 - st : t E (J(A)} ~ [0,1]. Since 

(J(A) ~ IR+, III - sAII = r(I - sA) 5 1 with r(I - sA) the spectral radius 
of I - sA. 
1 - sa 5 11 - s(a + ib)I = lp(I - sA)I 5 1, hence a~ 0. Vith Bn in D 

defined as A - aI + inbI for each integer n it follows that 
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( A - al - inb I) II 

since p(Bn) = p(A - al+ inbI) = p(A) - a+ inb 

=a+ ib - a+ inb 

= ib(1 + n) 

Thus lp(Bn)1 2 = lib(1 + n)l 2 

= l-b 2 (1 + 2n + n2 )1 
= b2 (1 + 2n + n2 ). 

Hence (1 + 2n + n2 )b2 = lp(Bn)1 2 ~ IIA - a!ll 2 +-n2b2 

and (1 + 2n)b2 ~ IIA - alll 2 for n = 1,2, ... 
Thus b = 0 and p(A) =a~ 0 and consequently p is positive. 

Lemma 2 ([5], Proposition 5.3.2) 

Each continuous real or complex valued function f is strong operator 

continuous on bounded sets of (self- adjoint or normal) operators on the 

Hilbert space H. 

Proof 

Ve may assume that the bounded set of normal operators under consideration 

is contained in the ball of radius r. If T
0 

is a normal operator in this 

ball, E > 0 and x , ... ,x is a set of vectors in H, we want to find 
1 n 

vectors y ' ... ,Y 
1 m 

and a positive 8 such that 

if II (T - T
0

)y j II < o where T is normal and IITII ~ r, to prove 

continuity. 
Ve only have to show this for a single vector x

0
, because we can do it 

for x , ... ,x by increasing the y's successively. If we now replace E 
1 n 

X 

by Ellxon- 1 and ll(f(T) - f(To))nx:1111 < ll;oll then ll(f(T) - f(To))xoll < E, 

hence we may assume that llx
0

II = 1. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

98 

From the Veierstrass approximation theorem ([9], Theorem 36A) there exists 

a polynomial p in z and z, such that llf - Plln(o,r) < !· (D(O,r) is a 

closed disk in C with center O and radius r). Since multiplication on 

bounded sets of operators and the adjoint operation on the set of normal 

operators (cf [5], Remark 3.4.15) is strong operator continuous, there 

exist vectors y 
1

, ••• ,Ym and a 8 > 0 such that II (p(T) - p(T
0

) )x
0

11 < ! 
if II (T - T

0
)yjll < 8 and T is normal with IITII < r. Ve have 

ll(f(T) - f(T
0
))x

0
II 5 ll(f(T) - p(T))x

0
II + ll(p(T) - p(T

0
))x

0
II 

+ ll(p(To) - f(To))xoll 

5 llf (T) - P (T) II llx
0

II + ~ + IIP (T
0

) - f (T0 )11 llx0 II 

= llf (T) - p (T) II + ~ + IIP (T
0

) - f (T
0

) II 

5 2llf - Plln(o,r) + ~ < E. 

The fact that both llf(T) - p(T)II and llp(T
0

) - f(T
0

)11 5 llf - Plln(o,r) 

fallows from the Gelfand- Naimark theorem ( cf Lemma 1. 8) where T is 
* represented by z and T by z and f(T) and p(T) are respectively 

represented by flu(T) and Plu(T)· Since the Gelfand-Naimark 

representation is an isometry we have llf (T) - p(T) II = llf - Pllu(Tf 
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SUDARY 

The aim of this thesis is to study the characterization theorems in von 

Neumann algebras. This class of operator algebras was defined for the 

first time in 1930 by J von Neumann in terms of a representation on a 

Hilbert space. 

After the studies of Gelfand, Naimark and Segal, von Neumann algebras were 

defined as *-subalgebras of bounded operators on a Hilbert space which are 

weak operator closed. Von Neumann himself was intrigued by the question 

how to characterize van Neumann algebras in a more abstract, hence 

representation- independent way. By studying the features of von Neumann 

algebras, Kadison and Sakai almost simultaneously solved this problem in 

the mid-fifties. 

Chapter one contains important results on projections and operators that 

are needed to prove the characterization theorems later. The well-know 

spectral theory and a few important facts on Borel calculus are also stated 

here. By using a theorem of Baire we extend the Gelfand-Naimark 

*- isomorphism to a *- homomorphism between all the bounded complex Borel 

functions on the spectrum of an operator T and the von Neumann algebra 

generated by T and I. 
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In the second chapter Kadison's characterization is discussed. He proved 
* that a C -algebra with the properties that an increasing net of 

self- adjoint operators bounded from above, has a least upper bound and 

secondly that the normal states separate the algebra, is a von Neumann 

algebra. Ve also show that both these conditions are necessary by giving a 

counter example in the case where only the first condition is satisfied. 

Kadison constructed this complicated example. 

* In the last chapter Sakai's characterization stating that a C -algebra ll 

with a predual is a von Neumann algebra, is discussed. An interesting 

proof by Tomiyama based on the universal representation and conditional 

expectations (projections of norm one) is given. Ve conclude this thesis 

with results on locally convex topologies and a few lemmas in the Appendix. 
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Graad: MSc 

OPSODING 

Die doel van hierdie verhandeling is om verskillende karakterisering­

stellings in van Neumann algebras te bestudeer. Hierdie klas van 

operator-algebras was vir die eerste keer in 1930 deur J. van Neumann in 

terme van 'n representasie op 'n Hilbert-ruimte gedefinieer. 

Na Gelfand, Naimark en Segal se onderskeie bestuderings van representasies 

is van Neumann algebras gedefinieer as *-deelalgebras van begrensde 

operatore op Hilbert- ruimtes wat swak operator geslote is. Von Neumann 

self was reeds gefasineer met die vraag hoe ·om von Neumann algebras 

representasie- onafhanklik, di t wil se op 'n meer abstrakte manier te 

karakteriseer. In die middel vyftigs het Kadison en Sakai bykans 

gelyktydig hierdie probleem opgelos na bestudering van die eienskappe eie 

aan von Neumann algebras. 

Hoofstuk 1 bevat belangrike resultate in verband met projeksies en 

operatore wat benodig word om die karakteriseringstellings te bewys. Die 

bekende spektraalstelling en belangrike resultate van Borel-calculus word 

oak hier weergegee. Met behulp van 'n stelling van Baire brei ans die 

Gelfand-Naimark *-isomorfisme uit na 'n *-homomorfisme tussen alle 

begrensde komplekse Borel-funksies op die spektrum van 'n operator T en 

die van Neumann algebra voortgebring deur T en I. 
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In die tweede hoofstuk word Kadison se karakterisering bespreek. Hy het 
* bewys dat 'n C - algebra met die eienskappe dat 'n toenemende net van 

selftoegevoegde operatore wat van bo begrens is, 'n kleinste bogrens besit 

en tweedens dat die normale state die algebra skei, 'n von Neumann algebra 

is. Ons toon verder aan dat beide hierdie eienskappe noodsaaklik is deur 

'n teenvoorbeeld te gee wat nie 'n von Neumann algebra is nie, alhoevel aan 

die eerste voorvaarde voldoen word. Hierdie ingewikkelde voorbeeld is deur 

Kadison gekonstrueer. 

In die laaste hoofstuk word Sakai se karakterisering bespreek. Sakai 
* def inieer 'n von Neumann algebra as 'n C - algebra met 'n preduaal. 'n 

Interessante bewys hiervoor wat gebaseer is op die universele representasie 

en projeksies van norm een deur Tomiyama word gegee. Die verhandeling word 

afgesluit met 'n bylae vaarin resultate oor lokaal konvekse topologiee en 

'n paar lemmas gegee word. 
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