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INTRODUCTION

It is well-known that C*-algebras can be defined in two different ways. At
first it is defined abstractly as a Banach algebra # such that for each
element in #Z there exists an "adjoint" element in & which satisfies
certain prgperties. Gelfand, Naimark and Segal proved that any such
abstract C -algebra is isomorphic to a norm-closed *-subalgebra of the
algebra of bounded linear operators on some Hilbert space [9]. Hence a
C*-algebra can be represented as a norm-closed *-subalgebra of the algebra
of bounded linear operators on a Hilbert space.

J von Neumann made a study of operator algebras and in 1930 for the first
time defined this class of operator algebras, later known as von Neumann
algebras, in terms of a representation on a Hilbert space. After the
studies of Gelfand, Naimark and Segal (cf also [2]), von Neumann algebras
vere defined as *-subalgebras of bounded operators on a Hilbert space which
are weak operator closed.

A further concrete characterization of von Neumann algebras follows from
von Neumann’s well-known double commutant theorem [2] which characterizes
von Neumann algebras in an algebraic way. Von Neumann tried to
characterize these algebras in a more abstract or representation-
independent manner. It was only in the mid fifties that two mathematicians
named Kadison and Sakai, almost simultaneously published two abstract
characterizations of von Neumann algebras [4], [8]. Im our paper we give a
description and proof of these von Neumann algebra characterization
results.

In the first section of chapter one we state important results on
projections and operators that are later needed to prove a few propositions
and theorems. In the second section of the first chapter we state the
important spectral theorem [7], [10] and a few results on Borel calculus.
Ve prove a theorem of Baire in a unique way by using L-sets. Ve then use
this theorem together with the spectral theorem to extend the Gelfand
Naimark *-isomorphism to a *-homomorphism between all the bounded complex
Borel functions on the spectrum o¢(T) of an operator T and the von
Neumann algebra generated by T and I [10].
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In chapter 2 we discuss Kadison’s characterization. During his studies it
became clear to him that a von Neumann algebra A c B(H) satisfies two
conditions, firstly each increasing net of self-adjoint operators that is
bounded from above has a 1least upper bound and secondly the states
(positive linear functionals of norm 1) in A which are normal, separate
A. Ve prove that it is exactly these two conditions that characterize a
von Neumann algebra. In the latter part of chapter two we construct
Kadison’s example which shows that both conditions are necessary [4]. We
construct a commutative C*-algebra with the upper bound property, but
vithout any normal states. Since all vector states in a von Neumann
algebra are normal, this shows that this algebra can’t be isomorphic to a
von Neumann algebra.

It is well-known that one of the basic features of von Neumann algebras is

that for each von Neumann algebra A ¢ B(H) there exists a unique Banach
*

space A, such that A is the dual of A, [2]. Thus A 1is a C -algebra

*
with a predual. In chapter 3 we show that a C -algebra 4 1is isomorphic
to a von Neumann algebra if and only if there exists a Banach space ¥

*
such that (#;) = Z. This theorem was first proved by Sakai in 1956. We

give Tomiyama’s proof for this characterization. Tomiyama made a study of
conditional expectations (projections of norm one) by generalising
conditional expectations from commutative measure theory to non- commutative
measure spaces. By using this technique and results on the well-known
universal representation [6], Tomiyama gave an elegant proof of Sakai’s
result in 1957 [13]. The exposition hereof is contained in chapter 3.

Ve conclude this thesis with an Appendix where we mention a few basic
results on some useful locally convex topologies defined on A. As far as
the references are concerned, the main sources used in this work are [2],
[4], [5], [6], and [10]. More detailed references are given throughout the
chapters. The notations and conversions used are also defined at the
beginning of each section.

The author could find no reference of a proof of Baire’s theorem in chapter
1, hence the proof given is his own. Another original piece of work is the
proof of Lemma 1.1.12 using Borel calculus. The classical proof (which
depends on many other results) can be found in [6]. Apart from these there
are a few interesting remarks (cf Remark 3.4).
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CHAPTER 1 : PROJECTIONS AND OPERATORS
I The lattice of projections

Let H be a Hilbert space and denote the C*—algebra of all bounded
linear operators on H by B(H). We denote by A a *-subalgebra of
B(H), which is a von Neumann algebra. A von Neumann algebra is
defined as a *-subalgebra of B(H) which is closed in the weak
operator topology on B(H). Hence clearly B(H) itself is a von
Neumann algebra. If F is a subset of B(H) then the commutant F’
of F is the set F’ = {T € B(H) : TS = ST for all S € F}.

The well-known double commutant theorem of von Neumann ([2], Theorem
3.5.2) states that a von Neumann algebra is a unital *-subalgebra A
of B(H) such that A4 = A’’. One of the most important classes of
operators in a von Neumann algebra A is the class of so-called
projections. It is well-known that there exists a one-to-one
correspondence between closed iubspaces of H and projections in
B(H) (P is a projection if P =P and P? =P). The aim of this
part is to study the properties of projections in a von Neumann
algebra. The set of all projections in A is denoted by 7(4). It
is easy to see that the order relation <, defined by E < F iff
EF = E iff E(H) c F(H) gives a partial order on P(A). From these
equivalences it follows that the partial ordering of projections
corresponds to the partial ordering of closed subspaces by the
inclusion relation (C). If we now consider a family of projections,

say {Ei}iEI then iQIEi(H) and Eg E.(H)] are closed subsets of &

where [U E; (H)] is the closed linear span of U Ei(H). Let E
1€l

iel
and F be the projections in B(H) corresponding to 0 E.(H) and
iel
[u E.(H)] respectively. It is now clear that sup E; =F and that
1€l iel
inf E; = E, for if E, <G for each 1 then U E.(H) c G(H).
iel ! iel

Hence [U E.(H)] c G(H) which implies that F < G. Thus since
1€l

Ei <F for each i€ I it follows that sup Ei = F. The fact that
iel

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



inf E; =E follows from a similar argument. Our next lemma now
iel
shows that if {Ei}ieI C A, then sup E; and inf E

i are elements
iel iel

i
of 7P(4).

Lemma 1.1 ([12], V, Proposition 1.1)

If A is a von Neumann algebra, then the set of all projections
P(A) is a complete lattice.

Proof

To prove that P(A) 1is a complete lattice we must show that sup E;
iel

and inf E, are in 7(4) where {Ei}iEI is a family of projections

iel
in A. Let Eo be a projection of H onto the closed subspace

nE.(H) of H. Let U be unitary and U € 4’, then
iel

U(E; (H)) = E;U(H) (U e 4)
= E, (H) (a unitary operator is onto)

Thus any unitary element in A’ leaves each E;(H) invariant.
Hence any unitary element in A’ leaves n E;(H) invariant, which
inplies that EUE = UE . A sinilar argument applied to U oe A

* *
also implies that EOU E0 =T Eo' If we take adjoints it follows
that EoUEo = EoU' Thus EoU = UE0 for every unitary Ue A’.

Since every element in A’ is a linear combination of four unitaries
([10], Proposition 2.24), it follows that EOT = TE0 for every

T € A/. Thus E0 e A’ = A

Since the mapping E — I - E reverses the ordering of projections

ve have sup E; = I - inf(I - E;) € P(4). The equality follows since
iel iel

inf(I- E.,) <I-E,. Thus I- inf(I- E;))>I- (I- E;) =E..

iel ! ! i€l 1 1 1
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Now, if Ei <G for all i€ I then inf (I - Ei) >I- 6 for all

iel
i. Thus I- inf(I- E;) <I- (I-G) =6 forall i.
iel
Hence I - inf(I - Ei) = sup Ei'
_ iel iel

The following result follows directly from the last part of our
previous proof. Since we are going to use it in the chapters that
follow, we state it as a corollary.

Corollary 1.2

If {E;} is a family of projections in H, {E;} has a greatest

lower bound inf Ei and a smallest upper bound sup Ei‘ The mapping

iel iel
E—I-E reverses the order of projections and
sup (I - E.) =I- inf E;; inf (I- E;) =1- sup E..
i€l 1 iel ¥ el 1 el 1

Vith each bounded linear operator T acting on a Hilbert space we
associate a null space and a range space. The null space
{x € ¥ : Tx = 0} and the range space (which is the closure [T(H)]
of the range T(H) where T(H) = {Tx :x € H} of T) have
‘corresponding projections namely the null projection, N(T) and the
range projection, R(T). When E is a projection, R(E) =E and
N(E) =T1- E.

Lemma 1.3 ([5], Proposition 2.5.13)

If T is a bounde%:linear operator gfting on a Eilbert igace H,
then R(T) =I- N(T), N(T) =I- R(T) and R(TT) = R(T ).

Proof
Since the set {x € H : Tx = 0}
={xel: <Tx,¥> =0 for each y in H}
= {§ el : <«x,Ty>=0 for each y in H}
T £H)*
[T (1)]*
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it follows that N(T) = I - R(T'). If we replace T by T v get
N(T ) = I- R(T). Now for each X in H, ||Tx||? = <Ix,Tx> = iT Tx,x>.
Thus Tx = 0 if and omly if T Tx = 0. That is N(T) = N(T T) from
wvhich it follows that R(T T) = I - N(T) = R(T )

Lemma 1.4 ([5], Proposition 2.5.14]

If E and F are projections acting on a Hilbert space H, then
R(E + F) = sup {E,F}. Hence if EF = 0 then R(E+F) =E+F =
sup {E,F}.

Proof
Since ||Ex||? + ||Fx]||?

= <Ex,x> + <Fx,x> (E and F are projections)
<(E + F)x,x>
for each vector x it follows that (E + F)x = 0 iff Ex = Fx = 0.
Thus N(E + F) = inf {N(E),N(F)}
inf {(I- R(E)), (I- R(F))}
inf {(I - E), (I - F)}
From Lemma 1.3 it follows that R(E + F) = I - N(E + F).
Thus R(E+F) =1- inf {(I- E), (I - F)} and from Corollary 1.2
inf {(I- E), (I- F)} =1I- sup {E,F}. Hence

R(E+F) =1I- (I- sup {E,F})
= sup {E,F}.

In chapter two we are going to state two conditions which a
C*-algebra U has to satisfy to be isomorphic to a von Neumann
algebra. One of these conditions is that each increasing net of
self-adjoint operators in Z that is bounded above has a least upper
bound in #. In the following proposition we prove that if A4 is a
von Neumann algebra, then this condition is satisfied. Moreover we
show that this least upper bound of the increasing net is also the
strong operator limit. (Note that for T,S € 4, T<S iff
<Tx,x> < <Sx,x> for each x € H.)
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Proposition 1.5 ([5], Lemma 5.1.4)

If {T;} is a monotone increasing net of self-adjoint operators

iel
in A4 and T; < kI forall ie€I and k a constant, then {T.}

is strong operator convergent to a self-adjoint operator T. Thus
TeAd and T is the least upper bound of {Ti}'

Proof
Since the convergence of {Ti}ieI and that of {Ti’ i io} are

equivalent we may assume that {T.} is bounded below (by T, ) as
0

wvell as above. Thus -”Ti I < T, < kI, and so {I;} is a bounded
0

set of operators. Since a closed ball S in B(H) is weak operator
compact (Banach Aloaglu, [9]) there exists a subset {T,} of {T;}

wvhich is weak operator convergent to a T in B(H). Since A is

veak operator closed, T € 4. As {Ti} is monotone increasing
<T£x,x> > <Tilx,x> wvhen £ > i1 and x € H. Since <Ix,x> =

1im<Tex,x> > <Ti1x,x> for all x e H we have that T > Til for all
‘ ,

i1 (the order relation is to be interpreted in the operator sense).
If i>¢ then 0<T-T,<T-T, and 0 < <(T- T)x,%> =
[|(T - Ti)‘/2x||2 < <(T- Ty)x,x>. Hence {(T - Ti)l/z} is strong

operator convergent to zero. The strong operator continuity of
multiplication on bounded sets of operators allows us to conclude
that {T - T,} is strong operator convergent to 0. We have noted

that T is an upper bound for {I;}. If §2 T, for all i, then
<Sx,x> > <Tix’x> i, <Tx,x>. Hence <Sx,x> > <Tx,x> for all x € H

so §>T. Therefore T is the least upper bound of {T.}.

Lemma 1.6 ([5], Lemma 5.1.5]
If T is a bounded operator on the Hilbert space H and 0 < T <1
then {T‘/“} is a monotone increasing sequence of operators whose

strong operator limit is the projection R(T).
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Proof

Let #(T,I) be the commutative C*-algebra generated by I and T.
Then by the Gelfand Naimark theorem (which will be stated in Chapter
1, II) «(T,I) 1is isometric isomorphic to C(o¢(T)). (C(¢(T)) 1is

the continuous functions on the spectrum ¢(T) of T). This
isomorphism is also an order isomorphism. Now let f € C(¢(T)) be
the function corresponding to T under this isomorphism. Then

0<f<1 and (f!/™) 1is a monotone increasing sequence in C(s(T))
bounded above by 1. Hemce {T!/®} 1is a monotone increasing sequence
bounded above by I. Thus {T‘/“} has a strong operator limit E
and this limit is the least upper bound of {T‘/“} (cf Lemma 1.5).
Since multiplication is jointly continuous on bounded parts with
respect to the strong operator topology, {T2/“} is strong operator
convergt to EZ2. {T‘/“} = {T?/2"} is a sub-sequence of {T2/“} S0
that E = E?. Thus E is a projection.

If we apply the Stone-Weierstrass theorem ([9], p160) to the function
algebra representing #(T), we see that T!/® is the norm limit of
polynomials, without constant term in T.

Thus T/°x =0 if Tx=0 and Ex=0 when Tx = 0. If Ex =0
then 0 = <Ex,x> > <T‘/“x,x> = “T1/2“x”2. Thus T!/2%% = 0  and
Tx = 0. Ve have now proved that E and T have the same null
space. From Lemma 1.3 we know that

R(T) =I - N(T') =I- N(T) = I- N(E) = R(E) = E.

Remark

If TeAd (4 a von Neumann algebra) and 0 < T < I it follows from
Proposition 1.5 and Lemma 1.6 that R(T) € 4. Now let* Sed be
arbitrary. We show that R(S) € 4. Since R(S) = R(SS ) (cf Lemma
1.3) it suffices to show that R(S) € 4 for S positive, and since
R(S) = R(aS) for each positive scalar a vwe may assume that
0 ¢S <I. Hence from the argument above R(S) € A for an arbitrary
S e A
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The following lemma will be crucial in the proof of ome of our
characterization theorems. This lemma states that each projection is
the union of an orthogonal family of cyclic projections. A
projection E is said to be cyclic in a von Neumann algebra A if
its range is [A’x] for some vector x. We call x the generating
vector for E under A’ (A’ the commutant of A).

Lemma 1.7 ([5], Proposition 5.5.9]

If E 1is a cyclic projection in a von Neumann algebra A with
generating vector x and F is a projection in A such that
F<E, thenm F is cyclic in A with generating vector Fx.
Moreover each projection in A is the union of an orthogonal family
of cyclic projections in A.

Proof

Firstly we must note that [T’Fx : T/ € A’] = [FT'x : T/ € 4'].
Since F is continuous and {T‘x : T’ € A’} 1is demse in E(H),
{FI’x : T’ € A’} 1is dense in FE(H) = F(H). Thus F is cyclic in
A and Fx is a generating vector for F. Suppose E is an
arbitrary projection in 4. If E is 0 then E is cyclic in 4
with generating vector 0. If E#0 and x 1is some non-zero
vector in its range then [A’x] 1is the range of a cyclic projection
Eo' The following with regard to the ranges of E0 and E are true.

If Te A and x € E(H) then
Tx = TEx = ETx (T € 4’)
€ E(H).
Thus T(E(H)) c E(H) and the range of E is stable under A’.
Similarly E0 is stable under A’.

Now if x € E(H), choose any T € A’ then since Tx € E(H) for any
T we have A’x C E(H), but since E(H) is a closed subspace of H,
it follows that [A’x] C E(H). Hence E0 < E. To prove that

E0 € A’ = A wve must show that EoT = TEo for any T € A’. Let
y € H, then from the range stability we know that TEoy € Eo(H)'
Thus EO(TEOy) = TEoy for all yeH for which EOTE0 = TEo
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follows. Similarly we can show for T* € A’ that EOT*E0 = T*Eo'
If we take adjoints we have ETE =T (Eo* =E). Thus

TEo = EoT for any T € A.

From the above arguments E has a non-zero cyclic subprojection if
E # 0. The set of orthogonal families of mnon-zero cyclic
subprojections of E is non-empty and the union of each totally
ordered subset is an upper bound for that subset under inclusion
ordering. Zorn’s lemma guarantees the existence of a maximal
orthogonal family {Ea} of non-zero cyclic subprojections of E. If

E - Syp Ea is not 0, it contains by the argument above a non-zero
cyclic subprojection Eo' Adjoining E0 to {Ea} contradicts the
maximality of {Ea}. Thus E 1is the union of the orthogonal family

E_} of non-zero cyclic projections.
a

The spectral theory and Borel calculus

In this part we’re going to take a look at some of the important
theorems needed to prove some of the characterization theorems of
von Neumann algebras. The well-known and important spectral theorem
for self-adjoint operators is used throughout this writing. In [2],
[5], [12], etc proofs are stated for the spectral theorem, we’ll give
the proof sketched by Stratila and Zsido ([10], paragraph 2.19). To
egable us to do this we need some preliminaries on elementary
C -algebra theory. An important class of elements in a C -algebra is
the so-called positive elements. An element T € 4 is called
positive if T is self-adjoint and o¢(T) C [0O,0), where o¢(T) is
the spectrum of T. If « = B(H) it can easily be seen ([7],
Theorem 9.2-1 and Theorem 9.2-3) that this definition coincides with
the classical definition for positive operators (i.e. T > 0 iff
<Tx,x> > 0 for every x € H). In a general C*-algebra U, the
following condition is equivalsnt to the above-mentioned:
T>0 iff T=S9S for some S € Z.
The following important lemma that gives a *-isomorphism between
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C({T,I}) and C(o(T)) where C(o(T)) is all the*continuous complex
functions in the spectrum and C({T,I}) is the C -algebra generated
by T and the identity I. Ve state the lemma without proof.

Lemma 1.8 (Gelfand-Naimark; [10], Theorem 2.6)

Let T e B(H) be a self-adjoint operator. Then there exists a
unique mapping 7 : C(o(T)) — B(H) taking a f € C(¢(T)) and
mapping it onto f(T) € B(H) and

(1) if f is a polynomial, f(1) = a + alA + ... +a A%, then
n
f(T) =al+aT+ ...+afT"
0 1 n

(ii) 7 1is isometric.

Ig is further true that this mapp}ng is a *-isomorphism of the
C -algebra C(¢(T)) onto the C -algebra C({T,I}) and this
isomorphism is an order isomorphism (i.e. f < g iff 7(f) < 7(g)).

In the latter part of this section we extend this *-isomorphism to a
*_homomorphism between all the bounded complex Borel functions in the
spectrum ¢(T) and the von Neumann algebra generated by T and I.
To prove this extension we need a theorem of Baire which we’ll
discuss after the spectral theorem. Before we discuss and prove the
very important spectral theorem, we need the following lemma.

Lemma 1.9 ([10], Lemma 2.18)

Let T ¢ B(H) be a self-adjoint operator and let {f } and {g,}

be two bounded increasing sequences of positive functions from
C(s(T)), such that sup £ (X) < sup g,(4)» A€ og(T). Then
n n

sup £ (T) < sup g, (T).
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Proof
Since {fn} (respectively {g }) is an increasing sequence which is

bounded it follows from the fact that the Gelfand- isomorphism is an
order isomorphism that {£,(T)} (respectively {g (T)}) is

increasing and bounded above. The existence of the elements
sup £ (T) and sup g,(T) follows then from Lemma 1.5.

n
Let n be a natural number and € > 0. For any A € ¢(T) we have

£,(0) - € <£,(3) ¢ sup £ (4) < sup g (4).

Consequently there exists a neighbourhood VA of 1 and a natural
number m,, such that f () - e<g(), melV,.
Clearly the set {VA : A € ¢(T)} is an open covering for ¢(T) and
since ¢(T) 1is compact there exist Al,...,An € o(T) such that
{VAi :1 <1< n} covers ¢(T). Now for each A, there is a

natural number m,, such that f (x) - €< gmAi(ﬂ) (b €Vy;). Let

m =max {m.,...,m }, then it follows that £ - €< B, in

C(a(T)). Since there exisES an order isomorphism between the
*
C -algebra C(¢(T)) and the C -algebra C({T,I}) it follows that
£.(T) - e < gy (T) < sup g (T).
Since € was chosen arbitrarily greater than zero, we have
£,(T) < sup g, (1)

and since n was arbitrary it follows that

sup £ (T) < sup g (T).

Let T € B(H) be a self-adjoint operator with
m(T) = inf {A : A € ¢(T)} and M(T) = sup {A : X € ¢(T)}.
Since ¢(T) is compact : m(T) and M(T) will also be in o(T).
For any A € R we shall consider the continuous functions
1 if t € (-m,)-%]

£At) = a(d - t) if te [0

0 if t e [A,o).
A
We then have £ “(t) nfae X(-m,))(t) for all t € R.
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Since the Gelfand isomorphism is also an order isomorphism we have
from Lemma 1.8 that {an(T)} is an increasing sequence which is

bounded above, hence from Lemma 1.5 there exists a self-adjoint
E, € B(H) such that

A
£ (1) TE,.
Moreover {an(T)} converges in the strong operator limit to E,.
Ve now show that EA is a projection.

Since multiplication of operators is strong operator continuous on
bounded parts it is clear that
fn"(T)2 — E,? in the strong operator limit.
On the other hand it also follows that
A
£0(t)* 1 x(_m,l\)(t) for t € R.
Using the same argument as above and Lemma 1.8
Apmy2
f (T)* — E,.
Thus E)? = E, and E, is a projection in B(H).
For a self-adjoint operator T the spectral theory consists of the
following properties. (EA) is known as the spectral family.

Theorem 1.10 ([10], Paragraph 2.19)

(1) E, € A({T,1}), the von Neumann algebra generated by T and

I.
(ii) If Al < A2 then El‘1 < EAQ.

(iii) If A, 71 then E TE,.
(iv) If X <n(T) then E, =0 and if 1> M(T) then E, = 1.

(v)  TE, < JE, and T(I - E;) 2 A(I - Ey).

o M(T)+0
(vi) T=| AdE = ME, .
J'm m'([T)

Proof
(i) Since:}here exists an *-isomorphism between C(¢(T)) and
the C -algebra C({T,I}), we have from the facts that
£ (1) e c({T,1}) and A({T,I}) is the weak operator
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closure of C({T,I}) that E, € A({T,I}) and in particular

EA commutes with any operator commuting with T.

(ii) For any n if Al < A2 ve have
A Az
£ Cf] in C(¢(T)).
Thus an‘(T) < anQ(T) and it follows from Lemma 1.9 that

A A
sup £ "!(T) ¢ sup £ “*(T), hence Elx <E),-

(iii) It is clear that £° 1 Y(.a,)) Pointwise as A T,
Since A ¢ A for each n it follows from (ii) that

An pointwise it follows

E/\n < E)' Since sup fmA“ < sup fn
from Lemma 1.9 that E, =sup f A“(T) < sup f An(T) = E,.
An i | nn R A

A
Hence E) 2 E,\n > £ "*(T) 1 E,. Therefore E/‘n TE.

(iv) If A< m(T), them ofT) C [A,0); therefore £ A(t) = 0
for all t e ¢(T). Thus E) = 0. If A >M(T), then
a(T) (-m,)-%] for n  sufficiently great, therefore

f (t) =1 forall t e o(T). Thus E, =1.

(v) To prove (v) we must first show that
tf A(t) < A A(t) for t €R and

t(1- £ 2 - Ha- £ ) s e
If te€ (-od- 1] then tf(t) =t-1=1t<)
and since £(t) =1, £ (t) < Af A(1).
If te[d-2,A] then
t£ 4(t) = tn(d - 1) € dn(d - ) = A A(8).
If t € [\,) then tf*(t) =0 but A A(t) = 0 as well.
Thus tf *(t) < A M(t) for all t e R.

Similarly we can show that
t(1- £ 1) 2 - Ha- £ ) forall tem.
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From tan(t) < Aan(t) for all t € R

we have TEA(T) < £ A(T). Thus IE, < AE).
Since t(1- £(t) > (A- H(1- £4(t)), tew
wehave T(I- £3(1) 2 (0 - Ha- £A(m).

If we take the strong operator limits on both sides we
obtain T(I - EA) > (I - EA)'

If 4 < A vwe know from (ii) that Eﬂ < Ey but from (v) we
further know that TEﬂ < ﬂEﬂ and also ’I‘EA < AEA.
Further T(I - E”) > u(I - E#) and T(I - Ey) 2 A(I - E,).

We’ll now use the following fact, if S,T and R are
bounded, self-adjoint linear operators on a complex Hilbert
space H and R > 0 and commutes with S and T then if
S<T one has SR TR ([cf [7], Theorem 9.3-1 for a
proof).

Now since E, >0 and E, commutes with T(I - Ep) and
with (I - Ep), we have T(I - E#)EA > p(I - Ep)EA'

Thus since E”EA = Eﬂ (E# < E)) we have

T(E, - Eﬂ) > p(E, - Eﬂ).

Since (I - Eﬂ) comnutes with TE, and AE,, we have
TE, (T - E#) < AE (T - E#) from which it follows that

T(E) - E#) < A(E) - Eﬂ).
Thus u(E, - Eﬂ) < T(E - E#) < ACEy - Eﬂ).

Let 6>0 and € > 0 be given and let
a = {mn(T) = Ao < Al < )2 <ovw <A = M(T) + 6}
be a partition of the interval [m(T), M(T) + 6] whose norm
is |lall = sup {}; - A;_ 4, i=1,2,...,0} < €.
Ve shall now consider the following sums

n
ss(a) = 3 A; , (E
i=1

ic1 (Byg - Byyq)

n
1=
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Since Ai-l < Ai it follows from the inequality proved above

2i1Eyg - Byyoq) S TRy - By q) S A5(E)5 - Eyy q)-

n n

But since i§1 T(Ey; - By q) = Tifl (By; - Eyioq)
=T(E), - B,
=T(1-0) =T

n
it follows that ss(a) =¥ A, ., (E,: - Ey. ,) < T.
jop  1-1 Al Ai-1

n
Ve also have S5(a) =% A; (E); - E); 4) 2 T. Further
i=1

n
15(a) - ss(@)ll = IZ A5 (E); - By q)
n
- 2 A By - Byl
n
i SR SUCTRETRY.

< sup {(/\i - Ai_l), i=1,...,n}
i

< €.
Now if one has 0 < S < T then |S|| < |IT||-
Thus 0 < T - ss(a) < S(a) - ss(a) which implies that
IT - ss(a)ll € [1S(a) - ss(a)]] < €.
These enable us to approximate T with a Riemann sum.

® M(T)+0
Tos T=[ ME = [
- m(T)
vhere the integral is to be considered as a
Lebesgue- Stieltjes integral which converges with respect to
its norm.

Before we can extend the *-isomorphism which we had in Lemma 1.8 by
means of a theorem on operational calculus with Borel functions, we
are now going to take a good look at a theorem of Baire. Let B(R)
be the class of all bounded real-valued Borel functions on R and
C(R) the class of all bounded continuous functions.

Definition 1.11

A set F(R) of bounded functions is called an L-set if
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(i) C(R) C F(R)

(i) If (f,) in F(R) is a bounded sequence (i.e.
sup || || < @) such that £ = lim f pointwise, then
n n n
f € F(R).

Since the collection of all functions contains the bounded continuous
functions it is clear that the collection of all functions is an

L-set. Let §=nF . Obviously Q itself is now an L-set and
FeLl-sets

Q is contained in every L-set.
Lemma 1.12

The following is true in (.
(i) If f,g e Q then f +g, fg, sup {f,g}, inf {f,g} and
|f| are all elements of 4.
(ii)  If (f) c 0 and the sup [l < o then

sup fn = 1%m sup {f,’fg""’fn} € Q.

Proof

(1) If f € C(R) then the set of all functions g : R — R for
which f + g € §Q is clearly an L-set, hence contains § ({
is contained.in every other L-set). Thus if f € C(R) and
g€Q then f + ge (. Further if g € (, the set of all
functions f : R — R for which f + g € § is an L-set
vhich contains (. Thus if fe§ and ge€(Q then
f+gefQ. If f,g €Q we can in a similar manner show
that fg e . We conclude (i) by showing that f € {
implies |f]| € Q.
Let K={f :R—R: [f| € Q}. It is clear that C(R) c X
and if (f)) c X, sup [l <o with f = lim f  then

f| = lim |f and sup |||f < w, hence |f]| € Q. Thus
n n n

we’ve shown that X is an L-set containing § (Q the
smallest L-set), thus if f € Q then f € X, implying

|f] € Q.
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Since sup {f,g} = (f+g ; £ - gl)
and inf {f,g} = (f + & -2 If - gl) ([9], p 159)

the rest of (i) follows.

(ii) This part follows directly from (i) and the definition of an
L-set.

Proposition 1.13

Let # ={ECR| Xp € Q}, then the following properties hold:
(1) gel, Rel
(ii) If A,Bef, then AUB, A% B/Aen

@® ®
(1i1) If {A;}5., cf, then UA, and N A, €
= i=1 i=1

(iv) i contains all open sets.

Proof
i Since C(R) cQ and y, , x are the zero and identity
) R

functions respectively, (i) is trivial.

(ii) Since x, , p = sup {x;, xg} it follows from Lemma 1.12 (i)

that A UB e . From the same lemma and the following
relations XR\A =X - Xy XB\A =Xg - X} it follows that

A® and B\A € 0.

o
(iii) If {A}J{ R, let A =_U1Ai.
1=

Since x, = lim sup {XAl’XAz""’XAn} it follows from the
N-m

second part of Lemma 1.12 that y, € Q. Hence A € 1.

m o
Since N A; = U (R\A;), (iii) follows.
i=1 1 =1

(iv) Since any open set is a countable union of open intervals it
is enough to prove the result for open intervals. Let
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(a,b) be any open interval. Ve are now going to show that
X(a,p) € &
0 on (-w,a) U (b,n)

1.1
1 on [a+g,b-7]

Define f _(x) = -
n n(x-a) on [a,a+%]

| n(b-x) on [b-%,b]

—

Then clearly (f) <@, sup fIf fl =1 < o and

lim f_ = . Th .
Lim £ = X(a,py- THUS X(ap) € 1

Proposition 1.14 ([14], Theorem 16.7)

Let f .: R — R. The following conditions are equivalent:
(1) feq
(ii) For all o € R, {x : f(x) 2 a} € 1.

Proof
Suppose f € (, then let
¥={f :R—R: {x: f(x)>e} et for all a}.
From Proposition 1.13 (iii) and (iv) it is clear that C(R) c M.
Suppose (g, ) C M, sup gyl <o and g = lgm 8,
@® @® 1

Since {x € R:g(x) 2a} =0 U {x:g:(x)2a- 5},
n=1 j=n J

it is clear from Proposition 1.13 (iii) that {x € R : g(x) > a} € 1.
Hence g € M. Thus M is an L-set containing (. Ve’ve now shown
that (i) implies (ii).

Conversely, suppose f € M, for a € R let A(a): = {x : f(x) 2 a}.
Then XA(a) € @ and XR\A(a) € Q (Proposition 1.13).
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. a-1 if x € A(a)
Since axA(a)(x) = { 0 if x ¢ A(a)
i { a if f(x) 2 a

0 i 1) <f‘(zx) if £(x) 20

it follows that sup ay x) = {
a0 A(a)( ) 0 if f(x) <O

aeQ
= sup {£,0}(x).

Similarl -£,0} = .
imilarly sup {-f,0} 2;8 OXR\A(- a)
acq

Since f = sup {f,0} - sup {-f,0} and sup {f,0}, sup {-f,0} € §
ve know from Lemma 1.12 that f € Q.

Theorem 1.15 (Baire’s Theorem)

If B(R) 1is the bounded Borel measurable functions on R, then
B(R) =Q i.e. B(R) 1is the smallest class of bounded functions
which contains the bounded continuous functions and which is closed
with regard to pointwise convergence of bounded sequences of
functions.

Proof

Since # as defined in Proposition 1.13 contains all open sets and

is a o-algebra it is clear that the o-algebra
={E€R: y; € B(R)} is contained in Q. Hence if f ¢ B(R)

then for all a € R, {x : f(x) 2 o} € ¢ C Q.

Thus f € § (cf Proposition 1.14 (i)), so B(R) C Q. Conversely it
is well-known from the properties of bounded Borel functions that
B(R) 1is an L-set, thus 0 C B(R) and we have proved that B(R) = {.

This theorem can now easily be extended to complex valued bounded
Borel functions which we denote by B(C) where B(C) = B(R) + iB(R).
Theorem 1.16

B(€) 1is the smallest class of complex valued functions containing

the continuous functions and which is closed with regard to pointwise
convergence of bounded sequences of functions.
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Proof

Clearly B(C) is an L-set or such a class. The existence of the
smallest class is easily verified, let { =2 + i€ be the smallest
class. Let 7% now denote all those functions where £ is zero,
thus the imaginary part is zero. Since  C B(C) it follows that
TnQCc®nB(C) and thus 2 C B(R). We know that { contains all
real valued continuous functions, thus 7 also contains them and
since  1is closed with respect to pointwise convergence so is 7.
Thus ? is an L-set and then B(R) ¢ ? (B(R) is the smallest such
class (cf Theorem 1.15)), hence B(R) = 2.

It is easily verified that -i contains all continuous functions if
@ contains them and also if § 1is closed with regard to pointwise
convergence, so is -iQ. Since Q C B(C), -i§ € -iB(€). Hence from
B(R) + iB(R) = B(€) it is clear that -iQ C B(C). If we now use
exactly the same argument as before, it follows that & = B(R) and
hence { = B(C).

In our previous theorem the boundedness of functions can also be
dropped. In fact we can prove the following result which is a
corollary of Theorem 1.16. Let B be the smallest class of all
complex valued Borel functions.

Corollary 1.17

B is the smallest class of complex valued functions which contains
the continuous functions and which is closed with regard to pointwise
convergence.

Proof

Clearly B is such a class. If we take the intersection of all such
classes it can easily be verified that this will be the smallest
class, let it be Q. Thus Q C B. From the fact that Q contains
bounded continuous functions as well as the fact that Q is closed
with regard to pointwise convergence of bounded sequences, it follows
that B(C) C § since B(C) is the smallest such class (cf Theorem
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1.16). Any f € B is the pointwise limit of a sequence (f ) in

B(€) ¢ Q (this follows from the fact that any positive measurable
function is a pointwise limit of simple functions). Thus since {
is an L-set f € Q. Thus B3 C Q and it follows that B = (.

Ve nov state and prove the main theorem of this sectiom.
Theorem 1.18 ([10], Theorem 2.20)

Let T e B(H) be a self-adjoint operator. There exists a unique
mapping f ~— f(T) from B(s(T)) to B(H) such that:

(i) if f is a polynomial and f(A) =a +ah+ ...+ a A"

then £(T) = aOI + alT oo+ anTn

(ii) if £, € B(e(T)), sup [[f || €@ and f — f pointwise
then fn(T) — f(T) in the strong operator topology in
B(H).

' *
Moreover this mapping is a *-homomorphism of the C -algebra B(s(T))
into the von Neumann algebra A{(T,I)} and it is an extension of the
mapping 7 mentioned in Lemma 1.8.

Proof
If y is a mapping satisfying (i) and (ii), ¢ coincides with 7
wvhen ¢ is restricted to C(¢(T)). Then

¢ : B(o(T)) — B(H) and ¢(p) = 7(p) where p is a polynomial.
If f e C(s(T)) it follows from the Stone-Weierstrass theorem ([9],
p 161) that there exists a sequence (pn) of polynomials converging

uniformly to f on ¢(T) and hence pointwise. It follows from (ii)
that ¢(p,) — ¢(f) in the strong operator topology. On the other

hand r(p ) — 7(f) uniformly (r is an isometry), and hence

strongly.
Since r(pn) = w(pn) for each n, it follows that 7(f) = p(f).
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We now show that a mapping ¢ satisfying (i) and (ii) is unique (if
it exists): Suppose ¢ : B(s(T)) — B(H) is another such mapping.
ten plege(ny) = Hleqamy)-

Since any bounded Borel function on ¢(T) is a pointwise limit of a
bounded sequence of simple functions which is Borel measurable and
the open sets of o¢(T) generate the o¢-algebra of Borel measurable
sets it suffices to show that ¢(x,) = ¥(xy) by using properties (i)

and (ii). By Xg Ve denote the characteristic function of an open

subset 0 of o(T).
To prove this let O be any open subset of o¢(T). Then 0 = B n ¢(T)
wvhere B is open in R. Since B is a countable union of open

@
intervals, say B =UI. one has that @ 1is a countable union of

i=1
sets of the form I. n ¢(T).

Since X = l%m sup (XI1 n o(1)’ X1, n s(1)? X1, n a(T)) it is
sufficient from property (ii) to show that v(xg N J(T))

¢(XI 0 o(T)) wvhere I is an open interval in R. If we let
I = (a,b) and define f as in the proof of Proposition 1.13 (iv),
then f — x; pointwise. Let g = fnla(T)’ then g € C(s(T))
and g — X7 | 7(1) pointwise. Since p(g,) = ¥#(g,) the result

follows from property (ii).

Ve now prove the existence of such a mapping as well as the other
properties of the mapping described in the theorem:

Consider the spectral family of projections (EA)A’ for any

¢,m € B we shall consider the function Ef " defined by the
b
relation E{ ﬂ(A) = <E\{,n> with 1 e R. Ve show that the function
3

Ef . is of bounded variation. If we choose any partition of
b

n
FITILITI) say {Ag,eod ) then 3 [<By6m - <y y6m

I3

1|<(EA1 - By )6

)

T S B~ TR o B =

1|<(EA1 - Exi_1)2f,ﬂ>|

[
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n
=2 1By - Byi) 6 By - Byyg)wol

1=
n
Sigln(EAi - By € ITCE; - Byl
CE N, - B D GIE,; - By )
= 1o Al Ai-1 io1 Al Ai-1
- - 4
= £§1<(E)i - By 1)6:0) §§1<(EA1 - By )mm)

(B, - B )60 (<), - B )nm)?

6,6 <t = el Il

If we take the supremum over all possible partitions we have
sup (Ef ﬂ) < €Nl limll, where sup (Ef ﬂ) is the total variation of
) )

E Hence E{ " is of bounded variation. E£ " now defines a
bJ b

§>1°
measure (called the Lebesgue-Stieltjes measure) on the os-algebra of

Borel sets on R. For every f € B(¢(T)) we define

Ff(f;ﬂ) f(A)dEg’”(A)
o(T)

Jm E()dE, (1) -

-

(To get the second equality, we extend f to a Borel function on R.
Notice that if A ¢ ¢(T) we can find through the construction of the
projection E, an open interval (X-6,A+6) on which E, = E# for

each 4 € (X-6,A+6). Thus the support of the measure E§ " is
’
contained in ¢(T) ([7], Theorem 9.11-2).)

Fe({,n) 1is bounded and of sesquilinear form, because

(el = 1] f0aE, ()]

-

< [T e e )]

-®
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<lel [ 1ae, )]

- Il sup (B )
< Il Hel Wl

is bounded and since for inmner products <x,ay> = 3 <x,y>

Ff is of sesquilinear form defined on H = H. From the

representation theorem of Riesz it follows that there exists a unique
operator f(T) € B(H) such that

M, = [ £, (), & ek

We’ve no
If f,g
since <

-®
w defined the mapping f ~— f(T) from B(s(T)) — B(H).
€ B(¢(T)) and ¢,p € H, the linearity follows
(£(T) + g(T))¢&m

= <E(T)¢,m> + <g(T)¢&m

-m
=<
thus f
Qur next

<E(T

Thus

£(N)dE, () + J g(NE, ()

-m

(E(0) + g))E, ()

r@

[" ¢+ oy, 0

(£ +g)(T)m>
(T) + g(T) = (f + g)(T)-
step is to show that f£(T) = (£(T))

e = [ E0)E, ()

- @

*

- [" £()dE, ()

- :m £()dE, ()

- m

]

<E(T)E,m>
<§,f(T)Z>
(M)
(£(T)) .

i

£(T)
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For f € B(o(T)) we have .
Ef,(f(T))*n(A) = <E\¢, (£(T)) n> with {,7 € H
<f (T)E)é » >

[RE{OLAN®

If x> X it is true for the spectral family of projections (EA)A

that EAEp = EpEA =E

Hence if Bk, > A,

A

- E
Bp ¢,n(#) - Bp g q(K,)
= <E”1EAf,r;> - <Eu2E,\€’TI>
= <EA§’”> - <E/\£,r1> =0

A
Thus By sy, () = | £ ).

-®

© A
Suppose g = X[a,b] then J x[a,b] d J f(p)dEf,”(p)

-m - @

-b A
[ [ twe )
a -

-b A a A
[T [ rwe, 0 - [ o [ twe, o)
_ib -0 -o -
= | f(p)dE, (k)
a

= :m X[a,b]f(ﬂ)dEf,”(#)

- ®m

- [ e wa, .

-m

Thus <E(T)g(T)&,m> = <g(T)¢, (£(T)) m

- Jw 8(1) 4B (£ (1)) "y )

-m

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



29

=Fg@dﬁf@ﬂmﬂ)

- - ®

- [* ety war, -

By means of the Lebesgue’s Monotone Convergence Theorem ([1], 5,
Theorem 15), the above-mentioned relation can be extended to a
positive g € B(¢(T)) and thus for any g € B(s(T)).  Hence
£(Tg(T) = (fg) (1) with f,g € B(a(T)). )
Consequently f ~— f(T) 1is a *-homomorphism of the C -algebra
B(¢(T)) into B(H).

If fO(A) =1 and X € ¢(T) then from

< (M = [ £ (), )

-

) Jm @B, (V)

-m

= <&, we have fO(T) = I.
If fl(A) =) and A € ¢(T) then
{¢ 4]
[ 1,0 0
-m

Jw AE, ()

-

<T¢,n> therefore fl(T) = T.

<f1(T)€,”>

Since f ~— f(T) is a multiplicative mapping, we’ve proved that if
_ 1 2 n
f(1) = a + aIA + 02A ool
then f(T) =al+aT+aT + ...+ 0T
0 1 2 n
For any f € B(s(T)) and any (el
<E(T)¢, £(T)¢> = <(£(T)) £(T)¢, 6
E(T). £(T)¢,6
= <lf|2(T)f:§>
thus EDEN = [ 1£0)17dE, ,(2).

-@
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If £ € B(s(T)), sup f[f || <o and f — f pointvise,

@0
B} 2 . ) 2
IE,(D) - £M)EN? = | 1£,0) - £()1%aB, ()
-®
by Lebesgue’s Dominated Convergence Theorem ([1], Theorem 5.21) this
integral tends to zero.
Thus f (T) — £(T) in the strong operator topology.

Finally, since the set {f € B(¢(T)): f£(T) € A({T,I})} contains the
polynomials and is closed with regard to pointwise convergence, our
theorem of Baire (cf Theorem 1.15) applies; consequently the
above-mentioned set is equal to B(¢(T)). Hence the mapping is a
*-homomorphism of the C*-algebra B(s(T)) into the von Neumann
algebra A({T,I}).

Our next lemma will be used in the proof of our dual-space
characterization. A proof can be found in [6] (Theorem 6.8.8), but
we provide an alternative proof using Borel calculus.

Lemma 1.19

If X is a weak operator closed left (or right) ideal in a
von Neumann algebra A then X = A (or K= EA) for some
projection E in A. If X is a two-sided ideal E is a cenmtral
projection in A.

Proof

Let T be a positive operator in X and let {EA} be the spectral
1Tl

resolution for T. Let §, = J % dEﬂ. Then it follows that

)
I-E =15 ek Since I-E =y () (vhere xp o(T) is

to be understood in the sense of the Borel calculus) it is clear via
Theorem 1.12 that- I - Ex/ converges strongly to R(T)
n

(= X (o cn)(’1‘), cf the proof of Theorem 2.4 (ii)). Hence R(T) € X.
)

*
Now if we let S be any operator in X. Then S S 1is a positive
element of* X and from the argument above it follows that
*
R(S) =R(SS) € k.

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



31

Since sup (E,F) = R(E+F) (cf Lemma 1.4) for E,F € P(4), the
union of a finite family of projections in X is in X. Since X
*
is weak operator closed it follows that E: = sup R(T ) € X.
Tek

* * * ¥ * *
Since ET =T, (ET) = (T)

thus TE =T for each T in X and K = AE.

If X is a right ideal, x* is i left ideal. We’ve just shown that
for some projection F in A, X = A, thus £ =F4 If K is a
two-sided ideal K = FA = AE, thus E = FE = F it now follows that
EAE = AE and the range of E is invariant under A ([5], pl21).
Since A is a self-adjoint family, E commutes with all the
operators in A and E is a central projection.

Ve conclude this chapter with a few examples of von Neumann algebras
to which we will refer in the chapters to follow.

Example 1.20

1. If A= B(H) then clearly A is a von Neumann algebra.

2. Associate with each x € £® the operator T, : £? — £* defined
by T,y = xy. Then clearly T e B(¢?) and |T| = |Ix].

Moreover its trivial to show that under this representation £°
*
and A: = {T_: x € £} are isomorphic as C -algebras. Ve show

that A’/ = A. This will imply that A is a von Neumann
algebra. Let e = (0,0,0,...,O,1n,0,0,...). Then

sup e = (1,1,1,...).

Then clearly Te is a projection in A for each n € N and
n

@®
the strong operator sum X Te = I.
n=1 %

Now if T e A’ = {S € B(£*) : ST_ = T.S for all x € £’} and
T(e) = £, = (£5) € £2 ¢ £° then
T, (v) = T(vey) = T,T(ey) = £y = Tg y forall ye £ ... (D)
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Hence T, = T . Further from (1) it follows that
n n
f = T(ey) = T(e,-ep) = T(Tenen) = f e, for all n e N.

Define the sequence x by X) = fi for k =1,2,3,...

Since |If || = “Tfn” = ”TTen" < |IIT| for all n € N, it is clear
that x e £°.
Also TxTen = Txen = TfnTen = TTen for each n € N.
@®
Since ¥ T =1 it follows that
n=1 °n
m®
’I‘x = TXI = Tx ) Te
n=1 -0
®
:nfl TxTe“
5
= TT
n=1 ©n
b
=T T
n=1 ©»
= T.

Thus T € A. This shows that A’ Cc A. Since A is a
commutative C*—algebra it is clear that A c A’. Hence A=A’
which implies that A4’/ = (4’)’ = (4)’ = A. Hence A is a von
Neumann algebra.
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CHAPTER 2 : KADISON’S CHARACTERIZATION
I Kadison’s characterization of von Neumann algebras

In Chapier 1 we defined von Neumann algebras among C*—algebras as
those C -algebras that are weak operator closed in their action omn
some Hilbert space H. In the same chapter we’ve also seen that
von Neumann algebras satisfy the following order property, namely
that each increasing net of operators in A4 that is bounded above
has its supremum in 4. One significant structural difference
between C*-algebras and von Neumann algebras is that the weak
operator closed algebras contain many progectlons, vhile in general
C -algebras this is not the case. C -algebras with the above-
mentioned order property contain many projections and possess similar
properties than von Neumann algebras. It is thus natural to ask
vhether a C*-algebra satisfying the order property mentioned above is
isomorphic to a von Neumann algebra. The answer to this questlon is
negative. In the mid fifties Kadison proved that a C -algebra
satisfying this order property together with a separating condition
is isomorphic to a von Neumann algebra.

In the latter part of this chapter we construct a C*-algebra
satisfying the order*property, but not the separating condition. By
proving that this C -algebra has no normal states we show that it
can’t be isomorphic to any von Neumann algebra. We now define a
C*—algebra satisfying these conditionms.

Definition 2.1

*
A C -algebra A that satisfies the following two conditions is said
*
to be a V -algebra:

(1) Any increasing net of self-adjoint operators with an upper
bound, has a least upper bound.

(ii) The normal states of A separate A (i.e. if T e A and
T+ 0 then there exists a normal state ¢ such that
p(T) #0.)
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Remember a state ¢ 1is a positive linear functional of norm one and
¢ 1is normal if it follows from T, T T that ¢(Ta) 1 ¢(T). Since

the vector states (¢ is a vector state of A if ¢(T) = <Tx,x> for

some unit vector x € H) separate A4 it follows from Proposition
*

1.5 that von Neumann algebras are definitely W -algebras.

Theorem 2.2 ([4], Lemma 4.1)

*
Let % be a C -algebra acting on a Hilbert space H. Suppose that
each increasing net of operators in # that is bounded has its
strong operator limit in &, then:

(1)

(ii)

(iii)

(iv)

(v)

(vi)

Proof

(1)

Each decreasing net of operators in # that is bounded from
below has its strong operator limit in «.

If S is an arbitrary projection in #, then R(S) € 4.

The union and intersection of each finite set of projections
in 4 1lie in /.

The wunion and intersection of an arbitrary set of
projections in # lie in «.

1°  with
generating vector x provided that for each vector y in
(I - E)(H) there is a self-adjoint 'I‘y in % such that

E e Y, where E is a cyclic projection in

Tyx = x and Tyy =0 (ZU'O is the weak operator closure

of U).
7Y ° - i if each cyclic projection in Z“ ° 1lies in 4.
If {I )} is a decreasing net in Z that is bounded below

with strong operator limit T, then {-T } is an

increasing net in 4 and -T is its strong operator limit
in # that bounds it from above (cf also Proposition 1.5).
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(ii) This follows directly from the remark after Lemma 1.6 by
noting that the only property of the von Neumann algebra A
that was used in the remark, is the order property possessed
by 4.

(iii) From Lemma 1.4 we know that sup {E,F} = R(E + F) and from
(ii) we know that R(E + F) € Z. Thus sup {E,F} € # vwhen
E and F are projections in #. By induction we can
easily show that the union of a finite family of projections
is in 4.
Since we have I - sup (I-E)-= igf E, from Corollary
1.2, the intersection of a finite family of projections in
4 is also in .

(iv) Let {Ea : a € 7} be any collection of projections in X.

Let F be the class of all finite subsets of 2. For

FeF let Ep=supE . Clearly Egp €4 (cf (iii)). The
ack 2

family {E; : F € 7} = together with the order relation
F, < EF2 if and only if F1 < F2, is an increasing net

with sup Ep = sup (sup Ea) = sup Ea‘
FeF FeF aef a€d

From Lemma 1.5 it is clear that {Ep, F € 7} is strong

operator convergent to the projection sup Ea' Hence by our

ae?d
assumption sup Ea € Y. Since inf Ea = I- sup (I- Ea)
aed ae? a€d
(cf Corollary 1.2) it follows that inf E € 4.
ae?

M R =T m
R(Ty)x R(Ty)(Ty)x

T x = x.
y
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*
Since Ty = Ty and y € N(Ty) one has

KT,y = (1 K, D)y
=y - NI, )y
=Y -y
= 0.

Thus Gx = x and Gy = 0 for each y € (I - E)H

where G = inf R(T ).
ye(I-E)H ¥

Ve. know that the range projection of an operator lies in
from part (ii) of this theorem. From part (iv) we know that
any intersection of an arbitrary set of projections lies in
U, thus G € 4.
As E 1is cyclic under 4’ with generating vector x
[4’x] = E(H) with x € G(H),

U'x c UG(H)

G’ (H)
C G(H).

Thus E(H) = [#’x] ¢ G(H) and E < G.
To get the other inequality we choose any y’ € H and let
y = (I- E)y’. Hence Gy = 0. Consequently G(I - E)y’ =0
and GIy’ - G Ey =0 for all y’ € H. It now follows that
G =GE and we have G < E. Thus E =G € 4.

m

From Lemma 1.7 each projection is the union of an orthogonal
family of cyclic projections and from part (iv) each union
of an arbitrary set of projections in # 1lies in #. It
now follows that each projection in Z“°°® 1lies in #. From
the spectral theorem (cf Theorem 1.10) we know that each
self-adjoint operator (which is the mnorm limit of
projections) in Z“°°, 1lies in 4.

Since 4*°
1 ° = u.

is a self-adjoint algebra comtaining ¥,
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Bemark

*

This theorem shows that a C -algebra is isomorphic to a von Neumann
algebra iff (i) of Definiton 2.1 is satisfied and if each cyclic
projection in Z“° lies in .

*

If 4 1is a C -algebra ve denote by 4 the self-adjoint operators
*

in % (i.e. Te€ u if T=T). By ”1 (resp (”h)l) wve denote

the unit ball in # (resp Hh). For any T € 4 it is easy to show

that T can be written as the difference of two positive operators
in % (ie. T7=7-T).

Lemma 2.3

If Te ”h there exist two positive operators T" and T in ”h
such that T=T - T and T'T = 0.

Proof
If A(T,I) is a commutative C*—algebra generated by T and I,
then  A(T,I) ~ C(¢(T)) (cf Lemma 1.8 (Gelfand-Naimark)). Let
f € C(¢(T)) now be the function corresponding to T. Since

f=f" - f with f° = max {f,0} € C(¢(T))

and f = -min {0,f} € C(s(T))

there exist positive operators T and T associated with f* and
f suchthat T=T - T and T'T = 0.

Lemma 2.4 ([4], Lemma 4.2)

Let % be a C*-algebra acting on a Hilbert space H, such that each
increasing net of operators in # that is bounded has its strong
operator limit in #. Suppose E 1is a cyclic projection in 7Y °
and x 1is a generating vector for E(H) under &’ with norm one.
If y is a unit vector in (I - E)(H) the following holds:
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(i) There is a sequence {A } in (Zlh)l such that A x — x
and Any — 0
(A, - A"l <21 and
+ 1-n N
(A, - A )7yl <2 where A = 0.
-1

n
. + .
(ii) If T =[I +k§1 (A4 - 4. 4)] , then {T } is a bounded

monotone decreasing sequence of positive elements of # and

y 2 +ymb .
T £§1(Ak - A 4))T" ¢ T for each n, wvhere T is the

strong operator limit of {T } in 4.

(iii)  For each j in {1,2,...,n}, {T5£§.(Ak - Ak_1)+)T5} is
=]

monotone increasing with n, bounded above by I and if
Cj is its strong operator limit then 0 ¢ Cj < I and {Cj}

is decreasing; it also follows that

b v +yrd _
P (- b )T« Gy = €,

and AT sc =@ - (A - AT s C
n n+l ~ k=1 k k+1 1’

(iv) {TbAnTi + €4} 1is monotone decreasing and bounded and
T}ATé € 4 where A is a weak operator limit of {A }.
(v) R(T) € 4, R(T)x = x and R(T)y =y.

(vi) Each maximal abelian (self-adjoint) subalgebra of # is
weak operator closed.

Proof
(i) From the Kaplansky density theorem ([2], Theorem 3.6.1) we

know that (Zlh)1 = (Zlh)1 where the closure is taken in the
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strong operator topology. It follows that there exists a
sequence {An} in (Zlh)l such that A x — x and

Any — 0, since

E ¢ (Zlh)1 = (Hh)l, Ex = x and Ey = 0.
We consider convergent subsequences {Anx} and {Any} such
1- 1-
that [[(A, - A )xll <e=2"" and [(A - A_{)yll < 27"

For each self-adjoint T it follows from Lemma 2.3 that T*
and T have orthogonal ranges, hence
IT2)? = T*2)|? + T 2>
thus ||T*z|| < ||Tz||.
It now follows for all n € N that
Iy - A 'l €27 and (A - Ay )yl < 2R

If R is positive it is clear from the spectral mapping
theorem ([12], Proposition 2.8) that ¢(I + R) C [1,0),
hence (I +R)™! exists in #. Thus T, exists in # as

it is defined in (ii).
If A is invertible and 0 < A< B we know (cf [5],
Proposition 4.2.8) that B is invertible and B! ¢ A°!.

n
Since I< T+ 3 (A - A ()"
k=1

ST+ (A - A )7
k=1 k k-1

ve now have 0 ¢ Tn+1 < Tn < I with

n !
Since {T } is decreasing and bounded below it follows from
Theorem 2.2 (i) that {Tn} converges strongly toa T € 4.
With u a given unit vector in H and m large enough,
Tm}u is close to T5u since the mapping A — A§ is

strong operator continuous on the unit ball of B(H)*
[cf Appendix, Lemma 2].
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n
Now if n < m, <Tm5£§1(Ak A Thew
S +y op 2 }
= <£§1(Ak - A ) ) T *u, T *w
m
R +yp b
= <T £§1(Ak - A )T e
m
Since % (A, - A ;)" =T:'- I it follows that T  and
k=1

m m
£ (A - A_.)" commute, hence T.! and % (A, - A, )T
G Aey) : n oo e A

commute. Thus

by *yp 3
<T, (kiz)l(Ak - A ) DT e

IA

m
<T(Z (A - A ) Nu,w
k=1

-1
<I (T,7" - Du,w

<(I- T)u,w

< <Iu,uw> .
. y 2 +ym d
Hence lim <T °( § (A - A )T v
M- k=1
n
-tz oy - ) HTw
k=1
< <Iu,w>

n
and TH( T (A - A_)")TH < T for each n e .
k=1

From (ii) it follows that

n n

Tb(kz.(Ak S pht etz - hr oo

=] k=1
for each j in {1,2,...,n}.

}, 3 +md . . .
Thus {T (ki)j(Ak - A {)'T*} is an increasing sequence
(over n) of operators in ¥ bounded above by I. Let

Cj € 4 be the strong operator limit of this sequence.
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Since a strong operator convergent sequence is weak operator
convergent one can easily show that 0 ¢ <ij,x> < <Ix,x>

for each x € H. Hence 0 ¢ Cj < I.

For each j and all n;

n n
T (A, - A )Y <T@ -4

thus {Cj} is a decreasing sequence.

Further for each n and m such that n < m

j, B o g B -
T (- AT T (2 (- by "1

n m
(S (A, - A, )F) «T( 2 (A - A,_)D)
(o ™ B kenst K K1

m
T( 2 (A - A 1)7)
k=1 k k" 1
m
= Tﬁ(kgl(Ak - Ak_1)+)T5 (Note that since Tmi and

n n

2 (A - A )" commute, so do ¥ and 3 (A - A7)

k=1 k=1

Thus TH(Z (A - A, )N +C . =0
us k=1 k k-1 n+l = Y¢°

From Lemma 2.3 A - A, = (A -A )" - (A;- A ;) and

n

Ao = 0 1is given. Hence kE (&4 - A ¢) =4, and
=1

by o )
T AnT + Cn+1 - Ak-l))T + Cn+1

"
-
o
—~~
=
I~
-
—~
o
e

Tiﬁgl[(Ak AN (Y L

¢+ (T [ - AT
1 Z e Ay

(iv) Let xe€H and n € N be given, then
by ot } }
(TPAT* + C g - (T4 T + Cpp0))x,x>

<-T§(-(A - An)-)Tbx’x> (from part (iii))

n+l

ab(d_ - A4) o 2 0

n+1
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and {TbAnTb + C .4} 1is monotone decreasing.

by o
Yoreover [IT*A T? + C |l

< NIT ALl + liC

<1+1=2.
It is well-known that for a self-adjoint operator S

n+1”

”S“ = sup|<Sx,x>|, hence {TbAnT5 + Cn+1} is bounded below

x||=1

by -2I and via Theorem 2.2 has a strong operator limit B
in 4. At the same time TiAT& + C 1is the weak operator

limit of {T5AHT} + Cn+1} wvhere C is the strong operator
limit of {Cj}' Thus TﬁAT} + C = B which implies

TiAT5 = B - C and hence TbATl € U.

Since T € 4, R(T) € ¥ (Theorem 2.2 (ii)). Ve show that

R(T)x = x. To show that R(T)y =y is exactly the same.

Since (4 - Ak_1)+x” < gl-k it is clear that

®

) (Ak - Ay 1)+x converges to some vector in H. If u is
k=1 )

any vector in H, then

@
<T(x + kz (A - AL )W
=1

®
=<x + 3 (4 - Ak_1)+x,Tu>.

k=1
This can now closely be approximated by:
n n -1
x+ S (A - A )%, [T+ TG -4 )7 ©
k=i K k-1/ kel K k-1

= <x,u> for large n with u in H.

@
Thus T(x + ¥ (4 - Ak_l)+ X) = x
k=1

and x € R(T)(H).
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(vi) Suppose A is a maximal abelian self-adjoint subalgebra of
4. If {A } 1is a bounded increasing net in 4, its strong

operator limit S 1lies in # and commutes with A. Hence
that limit lies in A, for if not, the algebra generated by
{4,8} will be an abelian self-adjoint sub- algebra of
containing A. This is contrary to the fact that A is a
maximal such algebra. We’ve now shown that A satisfies
the same conditions as #, hence it follows that everything
we’ve proved for # 1is applicable to A. Thus for this
part of the proof we may now assume that &4 is abelian.

Thus it follows from (iv) that AT = TﬁATl € 4. Since Ax =
x and x € R(T), x € R(AT). In addition AT = TA, hence
AT is self-adjoint. Since Ay =0, TAy =0. Thus
R(TA) € 4, R(TA)x = x and R(TA)y = 0. From Theorem 2.2

part (v) and (vi) it now follows that # = Z“°.

- ZU—O

Hence A and A is consequently weak operator closed.

Theorem 2.5 ([4], Lemma 4.3)
Vith the notations and assumptions of Lemma 2.4 it follows that:
(i) MAN lies in # where M and N are spectral projections
for T corresponding to bounded intervals with positive

left endpoints.

(ii) M AF and FAM are in # vhere F =R(T) and {6} isa

sequence of spectral projections for T corresponding to
bounded intervals with positive endpoints such that

M =F.
m
m

(iii)  FAFAF € .
(iv) FAFAFx = x; FAFAFy = 0.

(v) u=1u"°,
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Proof

(1) Let S be a bounded interval with positive left endpoint
and let g(t) be t! for t in S and 0 for t in
R\S, so

t"! tes
0 ={o vems

From Lemma 2.4 (vi) a maximal abelian subalgebra A of ¥«
containing T is weak operator closed in B(H) and
therefore contains g(T). (g(T) makes semse via Theorem
1.18.) If M is the spectral projection for - T
corresponding to S it follows from Theorem 1.18 that
¥ = xs(T) since ve know that y_ € B(R). From

1 .
{f.t if tES

g(t)(t) = ,
0-t if t ¢S

0 if t ¢S
it follows that g(T)(T) = XS(T) = M.

{ 1 if teS

Since TAT € 4  (Lemma 2.4 (iv)) MAT € 4  because
MAT = g(T)TAT.
Similarly MAN € Z where N is another spectral projection
for T corresponding to a bounded interval with positive
left endpoint.

(ii) It is clear that there exists a sequence of projections
{6} as required: Since T is positive, T is

self-adjoint and we can apply Theorem 1.18. Choose

Ml = x(l’m)(T), Ho=x L (T) for n > 2.

n’n-1

Then clearly 2 H = X(o, )(T) = R(T). Ve show the last
n=

equality: Slnce A-x(o’m) =2 if 1€ (0,0) it follows
that T-x(o’m)(T) =T and this implies that R(T) is
lesser or equal to X(o,m)(T)‘ On the other hand from
TR(T) = T it follows that f(T)R(T) = £(T), first for £

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



45

a polynomial without constant term and then by tending to
the limit for any f € B(¢(T)). Thus £(0) = 0 and we have

X(o,0) DD = X[ 1 (D

Therefore X(o,m)(T) < R(T).

Hence x(o’m)(T) = R(T).

Consider now (M AM -+ M )(M AM + K )

MmAMnMnAMm + MmAMnMn + MnMnAMm + MnMn

M AM AM + M AM + M AM + M
m n om mon nom n
MY =X 2 - M ).
n n n n

¢ 1]
Since F =Y M € % we now show that M AFAM € Z and
=1 O m m

also MmAFAMm + MmAF + FAMm + Fel. This follows since

multiplication is separately continuous in the strong
operator topology

o
M AFAM =M A Y M AM
m m m nom

n=1
®
=n§1 HAM AM .
k
Let §; =n§1 H AM AM_ then {Sk} is an increasing sequence

of positive operators which is bounded above and from the
assumption om # its strong operator limit M AFAM  is

contained in #. The fact that
MmAFAMm + M AF + FAMm + F e U follows similarly.

Since F e 4 and from what we’ve just shown it follows
that M AF + FAMm € U.

Fron M [M AF + FAM ] = M AF + ¥ AM ~ the latter is also in

U.
MmAMm is in % and we can now conclude that MmAF € U.

(iii)  From (ii) we have (M _AF) (K AF)

X %k

FATM M AF
m m

FAMmAF € U.
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By using the same argument as in (ii) we now have

®
FAFAF = ¥ FAMmAF € U.
m=1

(iv) From Lemma 2.4 (v) we now have that Fx =x and Fy =y
hence since Ax = x and Ay = 0,
FAFAFx = x and FAFAFy = 0.

(v) From the conclusions of Theorem 2.2 and our proof thus far
ve see that for each cyclic projection E in Z%°% with
generating unit vector x and each unit vector y in
(I - E)(H) there is a self-adjoint operator FAFAF in ¥«
such that FAFAFx = x and FAFAFy = 0. This fulfills the
conditions stated in parts (v) and (vi) of Theorem 2.2, thus
U =u"°.

We can now prove our characterization of a von Neumann algebra in
terms of nets and normal states.

Theorem 2.6 ([4], Theorem 4.4)

*
A C -algebra *is *-isomorphic to a von Neumann algebra if and
only if it is a W -algebra.

Proof

Suppose « 1is *-isomorphic to a von Neumann algebra A. Thus there
exists a *-isomorphism ¢ : ¥ — A where A 1is a weak operator
closed self-adjoint subalgebra of some B(H).

If a<b in 1, *then b- a >0 and there exists a ¢ in «
such that b - a =c c.

p(b) - p(a) = p(b - a)

p(c.c), p(b) and p(a) € 4
p(c )y c)
. (p(c)) v(c).
But (p(c)) ¢(c) 20, thus p(b) - p(a) 2 0
and  ¢(b) 2 ¢(a).
Thus increasing nets in # are mapped onto increasing nets in A.
If {b,} is bounded above and b = sup b, then p(b) 2 p(b,) for

all o and if ¢(b ) < p(c) for some c € Z then p(b) < p(c).
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Thus ¢(b) 1is a least upper bound of {p(ba)}. The *-isomorphism

transforms increasing bounded nets onto such nets, also least upper

bounds onto least upper bounds and normal states onto normal states.
*

Thus % is a W -algebra in this case.

*
Conversely, suppose 4 is a W -algebra and ¢y =Y e r vhere

{n(a) : a € A} 1is the family of normal states of 4. Since {5(a)}
is separating for 4, ¢ is a * isomorphism from ¥ onto a
subalgebra of some B(H) (cf the Gelfand-Naimark-Segal construction
in Chapter 3 part I). Suppose {¢(Ab)} with b € B 1is a bounded

increasing net in p(¥) with strong operator limit B. Then {A.}
is a bounded increasing net in #. Since Z 1is a W*-algebra, {Ab}
has a least upper bound A in # and {7(a) (A))} tends to
n(a)(A) for each a in A (recall that each #(a) is normal).
If we write X, for x”(a) (cf Gelfand- Naimark- Segal)
{<p(Ay)x,,x,>} tends to <p(A)x, x>, but {<p(A))x,,x >} tends to
<Bx,,x,> as well. Thus <(p(4) - B)xa’xa> = 0 for each a in A.
Vith T invertible in ¥, {T*AbT} has T AT as least upper bound.
We show this: {T*AbT} is an increasing net, for if b1 < b2
*
<T Abij’x> = <Ab1Tx’Tx>
< <Ab2Tx,Tx>
*
= <$ Aszx,x:
) t%FS T AblT <T Asz. )

Ve also know that T AbT < T AT for all b. We show that T AT is
the least upper bound for T*AbT. If S e % such that T*AbT <S
for all b then (1) T ATI! ¢ (T°1) ST,
Hence Ay < (T‘l)*ST" for all b so A (T“)*ST'1 which implies
T'AT ¢ S. Since p is a * isomorphisu p(T A,T) = p(T) p(A)p(T)

*
and has p(T )Bp(T) as strong operator limit. Thus
<(p(d) - B)p(T)x,, p(T)x,> = 0 for each a in A  and each

invertible T in X.
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Vith S in « arbitrary; S + nl is an invertible element of ¥
for all large n, since one has that ¢(S + nI) C ¢(S) + {n}. Hence
if we choose n large emough O ¢ ¢(S + nI) and consequently
S + nI 1is invertible.

Thus  <(p(4) - B)p(S + nI)x_, ¢(5 + nI)xa> =0 .... () for all

large positive integers n.
But <(p(A) - B)p(S + nI)xa,w(S + nI)xa>

<(p(4) - B)(p(S) + np(I))x,, (p(S) + np(I))x,>

<(p(A) - B)p(S)x,, p(S)x> + <(p(A) - B)p(S)x,, np(I)x,>

- <o) - Bmp(D)x,, p(S)x)> + <o(A) - B)mp(D)x,, mp(T)xy)
(p(h) - Bo(S)x,, 9(S)x> + <(p(h) - Bp(S)xg, mep

+ <(p(A) - B)nx_, p(S)x,> + n? <(p(4) - B)x_ ,x>.

<(p(h) - B)p(S)xys #(S)x,> + 2 Re <(p(A) - B)p(S)xomx)

+n® <(p(h) - B)x,,x,>, (since z +Z =2 Re z).

And from (I) this equals zero when n is large.
But <(¢(A) - B)x,,x,> =0 and <(p(A) - B)p(S)x,, ¢(5)x,>
is independent of n, thus
<(p(A) - B)p(S)x,, ¢(S)x,> = 0 for each § in Z.
Since X, is a cyclic vector for the representation T, and
g = eA 7, one has that [z (S)x, : 5 € U = H.
ac€

Now <(y¢(A) - B) x,y> =0 forany x and y el = eAHa.
aeE

Hence it follows that ¢(A) - B = 0.
Thus ¢(A) = B. Hence ¢(¥) satisfies the conditions in Theorem 2.5

and ¢(%) = p(0)*°. Thus « is *-isomorphic to a von Neumann
algebra.

Ve now prove the following strengthened version of Theorem 2.6 when

U satisfies a certain "countability" assumption. This assumption is
always fulfilled if H 1is separable.
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Lemma 2.7 ([4], Lemma 4.5)

Let 4 be a C*-algebra acting on a Hilbert space. Suppose that each
bounded increasing sequence in # has its strong operator limit in
U and that each orthogonal family of non-zero projections in 4 1is
countable. Then # = Z“°.

Proof

By studying the proofs of Lemmas 2.2, 2.4 and 2.5 we note that the
only use of nets as opposed to sequences is to show that arbitrary
unions of projections in # 1lie in #. Thus we only have to show
that the union of an increasing net of projections in # is in ¥«
under the present assumptions. We show that the union F of an
arbitrary family {Fa : a € A} of projections in # lies in 4.

Let {E, : b€ B} be a maximal orthogonal family of non-zero
projections in #Z such that Eb < F for each b. By assumption B

is countable (possibly finite), so that we can denote the family
{E,} by {E1’E2""}' Since {EI,E1+E2,...} is an increasing

sequence of projections in &, its strong operator limit X En is
n

in 4. Let E=2% En’ ve must now prove that E = F. Since E < F,
n

sup{E,Fa} ¢<F for each a in A. The range projection of
%(E + Fa) is %sup{E,Fa} (cf Lemma 1.4) and is the strong operator
limit of the increasing sequence {[(E + Fa)/2]1/n} (cf Lemma 1.6).
Thus sup{E,Fa} is in « as is sup{E,Fa} - E. If sup{E,Fa} - E ¢
0 it can be added to {E‘,Ez,...} to form a larger orthogonal

family of non-zero projections in F. This contradicts the
maximality of {El’Ez""}' Thus sup{E,Fa} - E=0, and hence

Fa <E for each a in A. Since Eb < F for each b, we have

F=Ec¢e€l.
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Ve can now characterize countable decomposable von Neumann algebras.
Before we state the characterization we must first define countable
decomposable. A projection E in a von Neumann algebra A is said
to be countable decomposable relative to A when each orthogonal
family of non-zero subprojections of E in A, is countable. If I
is countable decomposable relative to A we say that A is
countable decomposable.

Theorem 2.8 ([4], Lemma 4.6)

A C*—algebra U is *-isomorphic to a countable decomposable von
Neumann algebra A if and only if each bounded increasing sequence
in Z has a least upper bound in 4, there is a separating family
of normal states of &« whose limits on such a sequence are their
values at the least upper bound, and each orthogonal family of
non- zero projections in # 1is countable.

Proof
Suppose ¥ is *-isomorphic to a countable decomposable von Neumann
algebra A acting on a Hilbert space H. Then as in the proof of
Theorem 2.6 bounded increasing sequences in 4 map onto such
sequences in A under the isomorphism and the least upper bound of
the image sequence in A is the image of an element of & that is
the least upper bound of the sequence in #. Hence vector states of
A composed with the isomorphism are normal states of # and the set
of such forms a separating family for #. This is true since if
o(T) = <Tx,x> and x| =1 (¢ 1is called a vector state) then
clearly ¢ 1is a normal state on A (Jlg|l =1 and ¢(T) > 0 if
T >0). Now if ¢ is the *-isomorphism from # to A, then clearly
7(a) = = p(¥(a))

= p-y(a) for each a in ¥« defines a normal state on Z.
We show that |9]| = 1.

|7(a)| = le(¥(2))]
el [Hell Nl

lall hence {fq]| < 1.

IA
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Also |1l 2 lle($(D)I - | <x,x>|
IITli b

[
Pt
i

If EIl and Em are orthogonal in # the isomorphism ¢ will map

them onto orthogonal elements in A since
¢(EH)W(Em) = w(EnEm) = V(O) = 0’
Because ¢(En)2 = p(Enz) = ¢(E)), projections will also be mapped

onto projections. Thus an orthogonal family of non-zero projections
in % maps onto such a family in A. Since A is countable
decomposable, the family of projections is countable.

To prove the converse, we use the same argument as in Theorem 2.6 and
apply it to a C*-algebra in 4 satisfying the given conditions, but
now we use sequences in stead of nets and the previous lemma. Thus
U is *-isomorphic to a von Neumann algebra A. From our assumption
ve know that orthogonal families of non-zero projections in « are
countable, thus A is countable decomposable.

Ve’ve now shown that countable decomposable von Neumann algebras can
also be characterized in terms of bounded increasing sequences and
separating families of normal states. In the next part of this
chapter we’re going to take a look at an example that shows that a
C*-algebra satisfying the order property, but not the separating
condition stated in Definition 2.1, is not a von Neumann algebra. Ve
will construct a commutative C*-algebra not isomorphic to any von
Neumann algebra.

The commutative case: A counter example
A lattice is a Banach space E endowed with a partial order which
(1) is compatible with the algebraic operations in the following

way: if x <y then z+x<z+y (x,y5,2 € E) and if
@ € R* then ox < ay

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



52

(i) includes the sup (x,y) and the inf (x,y) if x,y € E.
Definition 2.9

A boundedly complete lattice is a lattice in which each non-empty
family of elements that has an upper bound, has a least upper bound.

OQur first theorem concerns the algebra of all complex valued
continuous functions on a compact Hausdorff space X, namely C(X).
It is clear that under the following order relation C(X) 1is a
lattice:

f<g iff f(x) < g(x) for every x € X.

Theorem 2.10 ([4], Theorem 3.1)

If C(X) 1is a boundedly complete lattice, then each open set in X
has an open closure.

Proof

Let ¢ be an open subset of X and @ its closure. Also let 7
be the family of functions f in C(X) such that 0 < f <1 (since
X is completely regular, F is non-empty) and f(p’) = 0 if
p’ £0.

Since C(X) 1is a boundedly complete lattice and 1 is an upper
bound for 7, F has a least upper bound say fo with f0 < 1.

If p € 0, there exists an f € 7 such that f(p) =1, so that

f,(p) =1 for each p in 0 (f <£f,¢1) and since £  is

continuous, f (p) =1 also for each p in 0. If p’ ¢ 0, then

there exists a g € C(X) such that 0<g<1 and g(p’) =0 and
g(q) =1 with qe & (X is compact Hausdorff and thus normal).
Hence g 1is an upper bound for ¥ which implies that fo <g.

Thus f  is 1 on 0 and zero on X\0. Since f_  is continuous

and f'l(%,%) = 0, 0 must be open.
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Ve now define a space X with the property that each open set has an
open closure as extremely disconnected. Ve also define a subset
vhich is both open and closed as clopen. The converse of Theorem
2.10 is also true.

Theorem 2.11 ([4], Theorem 3.2)

If X is an extremely disconnected compact Hausdorff space, then
C(X) 1is a boundedly complete lattice.

Proof
Let {f, :ac¢€ A} be a family of real valued functions in C(X)

wvhich is bounded from above by a constant. Ve must now show that
{fa} has a least upper bound, then C(X) will be a boundedly

complete lattice. We construct this least upper bound in five steps.

STEP 1
Ve firstly suppose that each fa is the characteristic function of

some clopen subset X_ of X. Ve will now show that U X is a
a acd @

clopen set with characteristic function sup{f, : a € A} which is
the least upper bound of {fa} in C(X). Ve will also show that the

interior of n Xa is also a clopen set with its characteristic
acA

function inf{f  : a € A}, the greatest lower bound of {f,} in
C(X).

Since X_ is clopen, U X, will be open. If Y =UX Y will
a " aeh 2 © e 2 ©

be closed. If g is an upper bound for {f }, then 1 < g(p) for

every p € UX. If a net (pA) in U X, converges to some p it
a€l a€A

follows from the continuity of g that g(pA) — g(p).
Thus 1 < g(p) for every p €Y . Hence sup{f, : a € A} is the
least upper bound of {f_ }.
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Clearly 1 - fa is the characteristic function on X\Xa. Let

f, = inf{f, : a € A} ’from the first part ve now have that 1 - f

which is the least upper bound of {1 - fa} is the characteristic

function of UA(X\Xa). Thus f, is the greatest lower bound of
aeE

{f.} and f_ 1is also the characteristic function of X \ U (X\X ).
a ° aeh 2

Since X \ U (X\X,) X\ (xz\lQAxa) (De Morgan)

acA
= int(n X))
aeA @
f, 1is the characteristic function of the int(n Xa)'

acd

STEP 2

We shov next that X, = X \ (U{xeX: £ (x) >A}) 1is a clopen
A aeh a

subset of X and also that if Y 1is a clopen subset of X, with
the property that fa(p) <A for all ae€eA and p €Y, then

YC XA'
Since XA is the complement in X of the closure of the union of
open subsets of X, XA will be open. But since X is an extremely

disconnected space, the closure of open subsets are also open, thus
X) will also be closed. Thus XA is a clopen set.

If pe X), then for every a in A
p¢{xeX:f(x)>1}, thus f.(p) <A
We have assumed that Y is a subset with fa(p) <A for all a in
A, thus Y C X\f '(d,0) so that £.'(2,0) € X\Y for all a e A.
As Y is open, X\Y is closed.
Thus gteJAf;(,\,m)) C X\Y and thus Y C X,.
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be the characteristic function of X,, thus e;(x) =1 if

x € Xy, and eA(x) =0 if x € X\X;. We know that {fa} is bounded

from above, let k be the constant that bounds {fa} from above and

such that
(i)
(ii)

(iii)

-k < fa’ for some a’ € A. Ve now prove that

ey =0 for 1 <-k and ey =1 for 1 > k;

I

ey < ey, if A <X and

eA = inf{e/\,:/\l > A}-

(Hence {e,} is the spectral resolution for some f which we will

later sho

(1)

(ii)

w is contained in C(X).)

If A <-k and p€ XA

then p ¢ {x e X : f '(x) > A}.

But -k ¢ fa’, thus from 1 < -k it follows that
{xeX: £ (x)> A} = X.

Thus X, = \X = ¢ and e

If >k and peX
then f (p) ¢ A for all ace A Dbecause {fa} is

"
(o]

bounded from above by k.
Thus X is a clopen set where all fa’s take values not

greater than A. From step 2 we know that X = XA‘

Hence eA =1.

If 2 <N
then {x € X : f (x) >} Cc{xeX:f (x)> A}.

Thus XAI b} XA

and the result follows.
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(iii) Since e) < ey, if A <A’ (from (ii))
ey ¢ inf{e),:1" > A} .
If YA iss a set with characteristic function
inf{eA,:A’ > A} then XA C YA‘

Since inf{e),:A’ > A} is the characteristic function for

YA’ YA C XA” for each 1A’ > 1.
Thus if pe Y, fa(p) <A’ for each a in A and each
A7 > A

Hence fa(p) ¢4 forall a in A and Y, is a clopen
set on which all fa take values not exceeding A (cf step 1).

X

m

From step 2 we have YA e
and ey = inf{eA,:A’ > A}.

STEP 4

k

Ve now show that J Ade, converges in norm to a function f in
-k

C(X) and that X, is the largest clopen set on vhich all £, take

values not exceeding A.
Let 7 = {Ao,...,An} and £ = {po,...,pm} be two partitions of

[-k,k] with |P| and |£] the lengths of the largest subintervals,

Aj’ € [Aj_l,Aj) and uj’ € [“j-l’”j)' If {70,...,7r} is their

common refinement and 7j’ € [7j_1,7j) then

n T r
./ - - / - < |P| ¥ -
.%2:;1 /\J (e/\j e/\j-l) k=1 Tk (e7k e7k-1)| - l Ikzl(e'rk e’)’k-l)

= 171 (e, - e,) < 7.

n r
Y - - ’ - < .
Hence 951 AJ (e/\j e)j_l) 31 Tk (e7k e7k_1)“ < |7

k
r

I

n
Similarly 951 /.l,j(e#j - e#j_l) -kfl 7k(e7k - e7k-l)” 1L} .
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The triangle inequality gives the following:

n
EHCRECIN ng ke, - e, ISP+ 1Ll

Thus the family of approximating Riemann sums to Jk AdeA, indexed
-k

by their corresponding partitions of [-k,k] and the set of these
partitions partially ordered by refinement, forms a Cauchy net in the
norm topology on C(X). Since C(X) 1is complete in the norm
topology it follows that the Cauchy net converges in the norm to a
real valued function f in C(X). Since each approximating Riemann
sum has range in [-k,k], f also has range in [-k,k].

a
Thus f = J AdeA vhen k < a.
-a
Suppose now that k < a and A € [-a,a]. If {Ao,...,An} is a

partition of [-a,a] with A as some A, such that

n
=% Ai(e,. - e
g i=1 ( A Aj-l)
is close to f in norm, then |[fe, - ge)|| is small and
k
ge, = E ,\J(e,‘J - eAj_l) (e/\k < €); for j > k)
k
k
=4 (e - e )
But e} =0 if A <-k and -a <-k hence e, = 0.

Thus ge) < AeA and now feA < AeA.

I[£(1 - e)) - g(1 - €))]l is also small and subsequently

g(l- e)) =g- ge

n
= ¥ Xi(e, - e
j=k+1 J( 4j Aj'l)
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n
> X A (ey. - ey,
j=k+1 AT T

= /‘(eI‘n - e/‘k)

= A(e, - ¢y)

But ey = 1 if 21>k and a > k thus e, = 1.
Hence g(1 - e)) 2 A(1- e)) and thus (1 - e)) 2 A(1- ¢).

Let Y, =X\ Z, with Z, = £'((},0)). Since £7'((1,0)) is the

inverse image of an open set and f is continmuous, f!((d,x)) is
open. Since X 1is extremely disconnected ZA will be a clopen set.

Thus X \ ZA is a clopen subset of X on which f takes values not

exceeding A.

If Y is another clopen subset of X on which f takes values not
exceeding ) then
YCX\f'!((A,0)) from STEP 2.
Thus £7!((1,0)) C X\Y.
Since Y is open, X\Y will be closed.
Thus ZA CX\Y and YC Y.

Ve’ve nov proved that Y, is the largest clopen set in X on which

f takes values not exceeding A.

Ve’ve shown that feA < AeA, hence f takes values not exceeding A

on XA and thus XA C YA'

As e, = inf {eA,:A’ > A}, X, is the largest clopen set in X

contained in n X{. Now A’ < f(p) if p € X\X{ since
A>h A A

f(1 - e)) so that X\X{ ¢ f-1((A,0)) if X’ > A

[Pay

A (1 - eA)
Thus X\ZA CX{ so Y, CX{ when A" >} and Y, isa clopen set

contained in N X; but X is the largest clopen set in X
A7>A

contained in N XA , thus YA C XA'
A7>A
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Hence Y, = XA and consequently XA is the largest clopen set on

vhich f takes values not exceeding A.

STEP 5
Ve now only have to show that f is the least upper bound of {f }.

If £(p) < fa(p) for some p € X and a € A, choose 1,A’ such

that f(p) <A <A <f (p). Let Y-= f 1 (-0,A) N f;l()’,m).

Since f and fa are continuous and X 1is extremely disconnected,
Y is a clopen set containing p such that f(q) < A and £ (q) >4
for each q in Y. Thus peYC XA from STEP 4.

But pe{xeX:f (x)>A} thus p¢X,.

Thus a contradiction and fa <f for each a in A, so f 1is an

upper bound for {f_}.

Ve must now finally show that f is a least upper bound. If g is
another upper bound for {fa} and g(p) < f(p) for some p in X,

then again there exists a 1 and a clopen set Y containing p
such that g(q) < A < f(q) for each q in Y. Since f < g for

all ain A, Y 1is a clopen set on which all fa take values not
exceeding A. From STEP 2 we know that p e Y C XA and from STEP 4
ve nov have f(p) <A since on X, f doesn’t take values

exceeding ). This contradicts the fact that A < f(q) for each ¢q
(also p) in Y. Thus f < g and f 1is the least upper bound of

{f,} in C(X).
It now follows that C(X) is a boundedly complete lattice.

In the following lemma a few conditions on a compact Hausdorff space
that are equivalent to the extremely disconnectedness of the space
vill be given. In the second part we’ll see that a totally
disconnected Hausdorff space X = is extremely disconnected if the
family of clopen subsets of X 1is a complete lattice. (Recall that
X is totally disconnected if each pair of points can be separated by
clopen sets.)
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Lemma 2.12 ([4], Lemma 3.3)
Let X be a compact Hausdorff space.

(1) X is extremely disconnected if and omnly if each pair of
disjoint open sets have disjoint closures.

(ii) X 1is extremely disconnected if and only if it satisfies the
following two conditionms:

(a) X 1is totally disconnected
(b) the family C of clopen subsets of X partially
ordered by inclusion is a complete lattice.

Proof
(1) Suppose 01 and 02 are disjoint open subsets of X and

X is extremely disconnected. Since 02 is open, X\O2 is

closed. Thus 01 C X\O2 and hence 02 C X\Ol.
Ve know that X is extremely disconnected, so that 01 is

open and X\U1 is closed. Hence 02 C X\O1 which means

0 no = 4.

1 2
Thus if X is extremely disconnected, each pair of disjoint
open sets have disjoint closures. To prove the opposite of
(i) we now suppose that disjoint open subsets of X have
disjoint closures. Let 0 be an open subset of X. Then
0 and X\0 are disjoint open subsets of X. By our
assumption 0 and the closure say F of X\0 is disjoint,
but X =F u 0.
Hence 0 is the complement of F in X (0 = X\F) and 0
is open. Thus each open subset has an open closure and X
is thus extremely disconnected.
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Assume that X is totally disconnected and C is a
complete lattice. Since X is a compact Hausdorff space in
vhich points can be separated by clopen subsets of X, a
standard compactness argument shows that a point can be
separated from a closed (compact) subset of X by clopen
sets:

If x¢Y (Y cX is closed) there exists for each y € Y
disjoint clopen neighbourhoods Vy and Uy of x and y.

Now {Uy : y € Y} is an open covering for Y and since Y

is compact there exist LAEREREN N €Y such that

{Uy. | y; € Y}Iil=1 covers Y. Let V =nYV and
i

n
U=UU_, then <clearly V and U are disjoint and
i=1 7i

clopen subsets containing x and Y respectively.

This in particular implies that each open set in X is the
union of clopen sets. Let 0l and 02 be disjoint open

subsets of X and let Cj be {X,€C|X ¢ Uj} for j
in {1,2}. Cl is a complete lattice by assumption and has
a least upper bound, say X1 in C.

If X, € 62 then X\Xo is a clopen subset containing 01'
Hence X\XO contains each element of Cl.

Thus Xl C X\XO and XO C X\Xl.

Since 02 = U 62 (C2 ={X,eC:X ¢ 02}), 02 C X\Xl.

But X\Xl is clopen so that 02 C X\Xl.
As X1 is the least upper bound of Cl = {Xo €C: XO C 01}

it follows that 01 C Xl and X1 is clopen thus 0l

[ [m]

X.
1

Thus 01 n 02 = ¢. From (i) it now follows that X is

extremely disconnected.
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To prove the converse of (ii) we now assume that X is
extremely disconnected. From Theorem 2.10 we know that
C(X) 1is a boundedly complete lattice. If we consider the
characteristic functions associated with the clopen subsets
of X it can easily be shown that C is also a complete
lattice. Since X 1is extremely disconnected, X is also
totally disconnected.

*
Ve will now construct a commutative C -algebra that is not
isomorphic to a von Neumann algebri, although it satisfies the first
condition of the definition of a W -algebra (cf Definition 2.1).

Definition 2.13

(1) In a topological space X, a subset is said to be meager
when it is a subset of a countable union of subsets of X
each of which is nowhere dense (M ¢ X 1is nowhere dense if
its closure M has no interior points) in X.

(ii) An open subset of X is said to be regular when it
coincides with the interior of its closure.

It is clear from our definition that a countable union of meager sets
is meager and a subset of a meager set is meager. (0,1) is an
example of a regular set in R since the interior of [0,1] is
(0,1) but (-1,0) U (0,1) 1is not a regular set in R because the
interior of [-1,1] is (-1,1) and not the above-mentioned set.

Lemma 2.14

Let X be a topological space and F be the family of all Borel
sets in X. We call S1 ~ S2 in F if S1 differs from S2 by a

meager set (i.e. SI\S2 U S2\Sl is meager). Then ~ is an

equivalence relation.
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Proof
If $,5,5 €éF clearly § ~S and if S ~S then S ~ S .
1 2 3 1 1 1 2 2 1

Ve show that if Sl ~ S2 and 32 ~ 53 then Sl ~ Sa'

Since SI\S3 U SS\S1
= Sl\(S2 U Sa) u (S2 n Sa)\sx U (S1 n Sz)\S3 U S}(Sl U Sz)
C SI\S2 U Sz\Sl U S2\S3 U Ss\S2

the result follows.

Lemma 2.15 ([4], Lemma 3.4)
Let X be a complete metric space.

(1) The interior of the closure of an open set and the interior
of the complement of a regular open set in X are regular.

(ii) Each open subset of X differs from a regular open subset
on a meager set.

(iii)  Fach Borel subset of X differs from a regular open subset
on a meager (Borel) set.

(iv) There is a unique regular open subset of X that differs
from a given Borel set on a meager (Borel) set.

(v) Let 7, be the family of regular open subsets of X

partially ordered by inclusion. Then ?6 is a complete

lattice.

(vi) Let F be the family of Borel subsets of X and X be the
o-ideal of meager Borel subsets of X (a countable union of
sets in K is in A and the intersection of a set in X
with any set F is in MH). Let F/H be the family of
equivalence classes of sets in F ‘under the relation
S~S when S and S’ differ by a meager set. Vith [
and £’ in F/H define L < £’ when S CS’ for some §
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in £ and S’ in £’. The < 1is a partial ordering of
F/H (the quotient of inclusion on F by the ideal X).
Each £ in 7F/M contains precisely one regular open set
and the mapping that assigns to each £ in F/H the
regular open set it contains, is an order isomorphism of

F/M onto F . The partially ordered set F/d is a

complete lattice.

(vii) The algebra EKX) of bounded Borel functions on X is a
commutative C -algebra and the family kb of functions in

B(X) that vanish on the complement of a meager Borel set is
a closed ideal in B(X) and B(X) /4, is a commutative

*
C -algebra.

(viii) Let Y be a compact Hausdorff space such that
B(X)/H, = C(Y) (cf Lemma 1.8 Gelfand-Naimark). Then Y is

totally disconnected and the family of clopen subsets Y
partially ordered by inclusion is a complete lattice. Y is
extremely disconnected and  C(Y) and B(X)/ﬂb are

boundedly complete lattices.

Proof
(1) Let Y be a closed subset of X and 0 be its interior.
Since 0 is an open subset of X contained in 0, 0 is
contained in the greatest open subset of X contained in 0
being the interior of 0 say 0, Since 0 ¢ 0CcY and

UO is an open subset of X, 00 is contained in the

interior 0 of Y. Thus 0 =0 0 is the interior of 0

0’
and hence 0 is regular.

For the second part let Y = interior (X\0) with 0 still
a regular open set. From the proof above it is clear that
the interior of X\0 is regular. Thus the interior of the
complement of a regular open set in X is regular.
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Let 0 be an open subset of X and 00 the interior of
0. Then (0,\0) v (0\O)

0,\0 (0 €0

0\0.

0\0 is a closed nowhere dense set (has no interior points).
Hence 0 and 00 differ on a meager subset of X, thus

¢
a

0 ~0, and from (i) we know that 0, is regular.

Let 7’ be the family of Borel subsets of X that differs
from a regular open set on a meager (Borel) set. If S € 7’
and 0  is a regular open set such that S~ 10, (S differs

from 0, on a meager set) then

[(RS\E0)] U [(X)\XS)]

= (5\0,) U (0,\5) is meager.

Thus X\S ~ X\UO and from (i) the interior 01 of X\OO
is regular and 01 ~ X\U0 ~ X\S.

Thus X\S is a Borel set that differs from Ul on a meager

set. Thus X\S € 7.
Suppose {Sj} are in F’/. Let Oj be a regular open set
.~ 0., AD. AS.) = M. i
such that SJ 0J Then (SJ\DJ) U (OJ\SJ) j 1s meager
and by direct computation
[¢1] @ o ® ®
[(U S)\(U 0)] U [(U 0;)\(U $))] ¢ UM, .
:1 J:]_ :1 J:l J:l
@
As U M. is meager, we have
j=t

o

®
UsS. ~Uo..
jt 3=t

@®
From (i) ve know that the interior 0 of (u Uj) is
J=1

® @
regular and 0 ~ U 0; ~ U S..
° et et
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o
Thus U S. e€eF and 7’ 1is a o-algebra containing the
j=1

open sets and contained in F (the Borel subsets of X).
Since F is the smallest o-algebra of such nature, it
follows that F = 7.

Thus each Borel subset of X differs from a regular open
subset on a meager (Borel) set.

If Se7F (aBorel set) and S ~ 0l and S ~ 02 vith l]l

and U2 regular open sets, then 0l ~ 02. Since Q2 is

closed, it follows that if some p € 01 and p ¢ 02 then
some open set 0 containing p does not meet 02 and
0n0 cO0\O.
1 12
But 01\02 is meager and we know that meager sets in a
complete metric space have empty interior. Ve have a

contradiction, so 01 C 02 and []1 is also contained in

the interior 02 of 02. Thus 01 C 02. Symmetrically it
follows that 02 C 01. Thus l]1 = 02 and there is a unique

regular open subset of X that differs from a given Borel
set on a meager (Borel) set.

Suppose 0a € TO for a in A. Let 0l be the interior

of (U0). Then 0 is regular from (i) since U 0, is
ach 2 ! aeh 2

open. Clearly by using the definition of an interior set,
Ul is an upper bound for {0, : a € A}. If 0 €7 is

another upper bound for this set then U 0a C 0 and the

interior 0 of 0 contains 01. Thus 01 is the least
upper bound of {0a :a €A} and fo is a complete lattice

(?6 contains its least upper bound).
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It now follows that the set of lower bounds of {0,} also

has a least upper bound say 00 and 00 is the greatest

lover bound of {0,}.

Since S C S for every S € £ we have

L <L for every L in F/A.
If £<L and L’ < L'’ thereexista SCT and TCR
for § in £, T in £’ and R in £’’, then S CR
and £ < L7,
Suppose L < L’ and £’ <L with £ and £’ in F/A.
Then there are an Sl and S2 in £ and an S; and S;

in £’ such that S1 C S; and S; C S2.
Let M be (SI\S2) U (S2\Sl) and
M’ be (S;\S;) U (S;\S;).
Since S1 ~ 82 and SI ~ S;, M, M and M U M’ are
meager and Sl UN= 82 UM, S; UM = S; U M.
Thus S; UM UN-= S; UM UM
C S2 UM UM

S1 UM UM

C S; UM U M.
Hence S; UM UN-= S1 UM UM from which it follows that
Sl and SI differ by a meager set.

Thus S; ~ Sl and £ = £’. This proves that < 1is a

partial ordering of 7/H. From (iii) and (iv) we know that
each § in 7 differs from a unique regular open set 0
by a meager set. Thus the equivalence class L of S
containing 0 has no other regular open sets. This implies
that the mapping that assigns £ to 0 is a bijection. If
L’ is another equivalence class and 0’ is the regular
open set it contains, then if 0 C 0/, L < L’ Dby the
definition of <.
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Conversely, to complete the proof of our order isomorphism
ve must still prove that if £ < £/ them 0C 0’. If
L < L’ then by definition of the relation < there exist
meager sets M’ and M in A such that

QuMCO uUNM.
Thus 0 C 0’ U M’ so that

0\0’ ¢ 0\0’ ¢ ¥
Since 0\0’ 1is open and M’ is meager
0\0’ = ¢, that is 0 C 0.

Hence 0 is contained in the interior 0/ of 0/. Ve’ve

now proved that the mapping £ — 0 for ZF/A onto F, is

an order isomorphism and from (v) we know, that 7 = is a

complete lattice. Thus ZF/A is a complete lattice.

(vii) Let B(X) be the algebra of bounded Borel functions on X.
If ve define the norm [[f|| = sup [f(x)] on B(X) it is

clear that B(X) becomes a Banach algebra. The operation
of complex conjugation of functions is an adjoint operation
in B(X). EE| = | 1£12 0= 0 I£] 02 = BEN2

Tgus B(X) with the given norm and adjoint operation is a
C -algebra. If fl and f2 vanish outside the meager -sets

Ml and M2, then fl + f2 vanishes outside M1 ) M2 vhere
M1 u M2 is a meager subset of X. Further ffl vanishes
outside M1 for each f in B(X).

Thus M, as defined above is an ideal in B(X). Let f
€ . Then there exists a sequence {f } C A  such that

£ - £l —%ﬂ 0. Let M  be the meager set such that

@®
f (x) =0 for each x € X\M . Clearly UM  is meager.
n n n=l B

® [+1]
We show that f vanishes on X\ UM =n (X\H,) .
n=1 n=1

Choose € > 0 arbitrarily. Then there exists an n such

that for all n 2 n, £ - £l <e.
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o
Thus if we choose x in n (X\H ) then

n=1
1£(x)] < [£(x) - £, (x)] + [£,(x)]

< € for all n > n.

0 which shows that f € ﬂo and ﬂo is a

[Fa

Thus £(x)

closed (two-sided) ideal in B(X). VWith the supremum norm
and complex fonjugation as involution, B(X) is a
commutative C -algebra.

Now let f +M and g+ M be in B(X)/kb.

Then (f + M) (g + M)

fg + M

gf + ¥ (B(X) is commutative)
(g + M)-(f + ¥).

Hence B(X)/ﬂb is a commutative C -algebra.

(viii) Let L be in F/A and e be the characteristic function
of a set in L (clearly e € B(X)).
Define n(L) to be the projection in B(X)/kb which is the

image of e under the quotient mapping from B(X) to
B(X)/4,. If e’ corresponds to another set in L, then by

definition of sets in £, e - e’ € ﬂo so that e and e’
have the same image in B(X)/ﬂb. Thus n(L£) 1is well-

defined.

Ve show that # 1is order preserving:

If L£< L’ there exist sets S in L and S’ in [’
such that S € S’. VWith e and e’ the characteristic
functions of S and S’ respectively and since S C S5’ we
have e < e’ so that g(L) < 7(L’). (Note that the
quotient map preserves order.) Let E be a projection in

B(X)/Jl0 and f an element of B(X) mapping onto E. Then
f2 - f maps onto E? - E ¢ K
Thus f2 - f vanishes outside some meager Borel set M.
- [f(p) peX\
Let e(p) = { 0 peEN .
On B(X) we’ll have e?(p) - e(p) = £2(p) - f(p) = 0.
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Hence in B(X), e 1is an idempotent and consequently e
is the characteristic function of a set S in 7.

If £ in F/K 1is the equivalence class of S then
7(L) = E. Hence we’ve proved that 5 is an order
preserving mapping of F¥/A onto the set ? of projections
in B(X)/A,.

If E and E/ are in ? and E < E’, there are sets [
and £’ in F/M such that 75(L) =E and n(L’) = E’.
By the definition of 7% there are sets S and S’ in [
and £’ whose characteristic functions e and e’ map
onto E on E’ respectively.
Thus 2(e - e’e) maps onto 2E - 2E’E
and 2E - 2E'E =E’ - 2 E'E+E- E + E
(E’)? - 2E’E + (E)? - E/ + E
(" - E)? - (E - E)

= 0.
Hence (e - e’e) is 0 on X\M’ for some meager set M’.
It follows that S\S’ C M’ so that S C S’ UM (S €.
Since S’ UM e L'y, LK< L.
If (L) =9(L’) =E then £< L/ and L’ < L.
Thus £ = £/ from (vi).
Hence 7 is a one-to-one mapping and since g is order

preserving it follows that 77! is also order preserving.
We know from  (vii) that B(X)/ﬂb is a commutative

C*-algebra. It follows from Lemma 1.8 that B(X)/K, ~ C(Y)

for some compact Hausdorff space Y. If ¢ is the
isomorphism of B(X)/k6 onto C(Y) then 4.7 is an order

isomorphism of F/Hd with the set 7’ of idempotents in
C(Y). Ve know from (vi) that F/M is a complete lattice,
hence 7P’ 1is a complete lattice. Each continuous function
in B(X) 1is approximable in norm by step functions as close
as we wish. Since each f € B(X) is a linear combination
of four positive functions we only have to show this for a
positive function. Let ¢ = ”%ﬂ and define g = CXg
0

vhere E = {x : f(x) > c}.
Then ||f - glﬂ <c and 0 ¢ g, < f.
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If we use the same argument for 0 < f - g we can find a

I£-8ll

0<g, ¢f-g suchthat I(f - g,) - g ll ¢ —g— <35 .

By induction we obtain a simple function &, such that

0<g, <f- (g1+...+gn_1) and
c
£ - (gl g |l < & T If we  choose
- n .
f = B, * -t By then ||f - fn” — 0 and f is a

simple function. Thus linear combinations of idempotents
lie dense in B(X), in B(X)/A; and in C(Y). Hence Y

is totally disconnected. From Lemma 2.12 we have that Y
is extremely disconnected and from Theorem 2.11 it follows
that Cc(Y) is a boundedly complete lattice. From
B(X)/H, = C(Y) wve have that B(X)/K, is a boundedly

complete lattice.
Theorem 2.16 ([4], Theorem 3.5)

With the notation of our previous lemma assume that X is [0,1]
and let q be a state of C(Y).

. ‘
(i) Suppose q(sup e ) = X q(e)) vwhemever {e} is a
n n=1

countable family of orthogonal idempotents in C(Y) (i.e.
e re;, =0 unless n =n').

®
Then q(sup f ) < ¥ q(f)) for each countable set {f }
n n=1
of idempotents f ~ in C(Y).

(ii) Enumerate the open intervals in [0,1] with rational end-
points and let fl’fz"" be the idempotents in C(Y) that

are the images of their characteristic functions in B(X)
under the composition of the quotient mapping of B(X) onto
B(X)/K, and the isomorphism of B(X)/A, with C(Y). For
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each j in {1,2,...}, let e; be an idempotent in C(Y)
such that 0 < e, < f.. Then sup e. =1.
J J j J

(iii) With the notation of (ii) and a positive € given, e; can
be chosen such that q(ej) < 27§ €. Moreover this will show

*
that C(Y) has no normal states. (Hence the C -algebra
C(Y) 1is not isomorphic to any abelian von Neumann algebra,
although Y is extremely disconnected.)

Proof
(1) Let f; = fl and
fﬁ =  sup {fl,f2,...,fn} - sup {fl""’fn-l} for
n={2,3,...}. If m<mn, then f < sup {fl""’fn-l} S0
that £/ < sup {fg"“’fn-l} from which it follows that
f&. fﬁ = 0. Moreover f; + f; + f; + oo.. 4 fé
= f1 + sup {fl,f2} - f1 + Sup {fl,f2,f3} - sup {fx’fz} +oae
+ sup {fl""’fn} - sup {fl’fg""’fn-l}
= sup {fl’fg""’fn} for each n in {1,2,...}.
Since £ < sup {f;,f;,...,fﬁ} for all n and fﬁ-fﬁ =0
we have f; + f; R fﬁ < sup {f;,f;,...,fﬁ}.
Conversely f: + f; + ...t fﬁ is an upper bound for
f;,...,fﬁ, but sup {f;,f;,...,fﬁ} is the smallest upper
bound for f;,...,fﬁ .

Thus sup {f;,f;,...,fﬁ} < f; + f; ool + fﬁ.
n
Thus sup{f;,f;,...,fﬁ} =i§1 f{ = sup {fl""’fn} for each

n = {1,2,...} so that sup f/ = sup f .
n n

2]
Now q(sup {fl,f2,...}) = q(sup {f;,f;,...}) =X q (fﬁ).
n=1
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Now sup {f‘,f2,...,fn} < f1 + f2 + ... + f_ so that

n
m
n§1 Q(f;l) = q(sup {f19f2,°--’fm})
m
<% q(f)
n=1
o)
<E q(f)
n=1
@ ®
Thus q(sup {fl,f2,...}) = 21 q(f]) < 21 q(fy)-
n= n=

(ii) With the notation and results of the last part of Lemma 2.15

in mind, let (¢-n)"(ej) be Cj. From (iii) in the

previous lemma Kj contains a regular open set Uj. Let

1]
0=u Oj. If p € [0,1]\0, there is some open interval
J=1

(a,b) with rational endpoints that contains p and does
not meet 0. Let L be the equivalence class of (a,b) in

F/H and £5 = (4-n)(L).

Since (g-9)"! is an order isomorphism it follows from
0 < e < fj that Ej < L. Now (a,b) is regular and from

Lemma 2.15 (iv) (a,b) is the only regular set in L. Since
Lj < £ it follows from Lemma 2.15 (vi) that 0. C (a,b).

J
1]
This contradicts the fact that (a,b) and U Oj are
=1
disjoint.
Hence 0 = [0,1], from which it is clear that sup ey = 1.
J -
(Note that e = ¢()(0j + H,) thus sgp e; = $(1 + H)) = 1.)

(iii) Ve construct this sequence of idempotents €; in C(X) by

using the fact that C(Y) contains no minimal nom-zero
idempotents. In fact if f were minimal it would have
followved that £ = (¢-7)"!(f) 1is minimal in F/A (recall
that (¢-9)°! is an order isomorphism). This would have
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implied that the regular open set 0 in L is non-empty
and minimal in TO. This contradicts the fact that 0

contains some open interval  (a,b) (which is clearly
regular) as a proper subset. Now let f be any non-zero
idempotent in C(Y). Then there exists an idempotent f’
in  C(Y) such that 0 < f’<f. Clearly O0<f- f/ < f
also holds and one of q(f’) and q(f - f’) is not greater
than %q(f). Suppose this is true for q(f’), then we can

choose an f’’ € C(Y) such that 0 < f’” <f’ <f and
q(f’’) < %q(f’) gzliq(f). Continuing in this way, we can

find an idempotent f € C(Y) such that 0 < f < f and
q(f) < €. Now if we apply this argument for each idempotent
fj € C(Y) we can find an idempotent e such that

0 < ej < fj and q(ej) < 273 ¢, Suppose q is normal,

then it follows from part (i) of this proof that:

1 =4q(1) = q(sup e) Sj§ a(e;)

Thus € > 1, but this is a contradiction since € was
chosen arbitrarily. Hence C(Y) has no normal states.
(Recall that normality of states defined after Definition
2.1 is equivalent to the assumption on q in (i), (cf [11],
Section 5.2). If C(Y) were isomorphic to a weak operator
closed subalgebra of B(H) (for some Hilbert space H),
then A (and hence C(Y)) would have had many normal
states. In fact, any vector state on A4 (i.e. p 1is a
vector state of A if there exists a unit vector x € H
such that p(T) = <Tx,x>), is normal.

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



(L]

CHAPTER 3 : SAKAI’S CHARACTERIZATION

Ig chapter two we showed that a necessary and sufficient condition for a
C*-algebra to be isomorphic to a von Neumann algebra is for it to be a
v -algegra. In this chapter we present another "abstract" characterization
for a C -algebra to be isomorphic to a von Neumann algebra.

It is well-known that if A 1is a von Neumann algebra and A, 1is the

Banach space of all s-weak continuous (cf Appendix for a definition) limear
*
functionals on 4, then A = (4) (i.e. A 1is the Banach space dual of

A¢). So any von Neumann algebra A4 has a predual A,. In 1956 Sakai

proved that it is exactly those C*-algebras that are dual spaces of Banach
spaces which are isomorphic to von Neumann algebras (cf [8]). In 1957
Tomiyama gave an elegant proof of this dual space characterization by using
the Gelfand- Naimark-Segal construction together with results on so-called
conditional expectations (cf [13]). In this chapter we present a version
of Tomiyama’s proof of Sakai’s characterization. Eor this result we need a
few results on the universal representation of a C -algebra Z.

I The universal representation

By a representation of # on a Hilbert space H we mean a
*_homomorphism 71 from # into B(H). If 1 1is one-to-one, we
call it a faithful representation. By means of the Gelfand-Naimark-
Segal construction we can associate with each state ¢ on 4 a
representation T of 4 on a Hilbert space Hp and a unit cyclic

vector x¢ for r¢, so that
T) = T Teld.
p(T) = <o (Mx x> (1€ L)

Let ¥ be the state space of #% and consider the family
{(TW,H¢):¢ € 8}. If ve let H=e H and define = : 4 — B(H) by
peld
(T) (0 ¢) = « (T)¢  then if follows that 1« is a faithful
ped 4 peld 4 ¥

representation of # on H. By means of this representation « is
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*

isometric -isomorphic to a norm closed *-subalgebra of B(H). We
cgll this representation the universal representation for a
C -algebra % (cf [5], Remark 4.5.7).

One of the important merits of the universal representation =, among
other representations is that any bounded linear functional ¢ on
r(#) 1is weak operator continuous; This result will follow after the
following lemma. If B 1is a C -algebra of operators on a Hilbert
space H, we call a state ¢ on B a vector state if there exists
a unit vector x € H such that ¢(T) = <Tx,x> (T € B).

Lemma 3.1

*
Let (1,H1) be the universal representation of a C -algebra 4.

*
Each state of the C -algebra (%) 1is a vector state.

Proof
Let y € ¥, then there exists a unique unit vector x‘p such that

p(T) = <xW(T)x¢ ,x >.  If we let wx(T) = <Ix,x> (T € B(H)), then

12
P =Wy Ty If wve let y = eqyp vhere Yy = 0 for p#y¢ and
y pE
Yp = %y then ¢ = LML Hence each state of # has the form LML

vith y a unit vector in H_. Now, let w be any state on 1(U)

and define v on U by p(T) = w(x(T)). Since
lell = ¢(X) = w((x(I)) = |Iv]l (cf [5], Theorem 4.3.2) it is clear
that ¢ is a state on 4. Hence, by the above arguments there
exists a unit vector y in H_ such that w(x(T)) = <x(T)y,y>.

Remark

This lemma actually shows more. In fact it can be seen from the
proof that the mapping ¢ — p-7°! carries the state space of «
onto the state space of 7(#) in a one-to-one manner.
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Proposition 3.2 ([6], Proposition 10.1.1)

Let r be the universal representation of #. FEach bounded linear
functional p on (¥ is weak operator continuous and extends
uniquely to a weak operator continuous linear functional 5 on

r@)%° with o]l = |17l

Moreover, the mapping 49:p — p 1is a Banach space isomorphism from

the dual space x(u)* onto (r(Z)¥ % ).

Proof
From Lemma 3.1 each state of #(Z) is a vector state w (for some

x € H) which is weak operator continuous. Hence w_ extends to a

vector state w_ on (@)™ °.

(Note  # (T) = <Tx,x> = lim <7(T )x,x> where {r(T)} c (@)
n-o

converges to T € r(ﬂ)w'o in the weak operator topology.) From
[2] it follows that each bounded linear functional p on (%) can
be written as a linear combination of at most four states on =(¥).
Since these states are vector states, /) extends to the

corresponding linear combination p of vector states on ()% °.
Moreover 7 is weak operator continuous (all vector states are)
vhich also implies that the extension is unique.

We show that ||p|| = ||pl|]. Clearly |o|| < ||7l]. Consider the weak

operator closed set {T € r()¥° : |15(D)| < lIoll}- It is clear that
this set contains r(ﬂ)l. Then since (1r(21)1)”-0 = (r(ZI)V'O)1 (by

the Kaplansky density theorem cf [2], Theorem 3.6.1), it follows that

the set also contains (x(zz)""’)l. Thus |5} < lloll-

Define 7 : 7(2) — (x(@)" %)% by 1(p) = 5.

Ve show that 9 1is onto. If w € (r(H)V'O)*, let p = v|1(”),

*
then p € 7(4) (o-veak continuous linear functionals are norm
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continuous) and since 7 and w coincide on 7(#) and both are

o-veak continuous on 7(#)¥ ° it follows that 7 = w. (Note that
is a 1linear combination of vector states which are ¢-weak
continuous.) Now it is clear that 7 is a Banach space isomorphism.

Proposition 3.3 ([6], Proposition 10.1.21)

*
Let 1 be the universal representation of the C -algebra # and for

* -
per() let 7 e (r(@)¥ %4 be the unique extension of p (cf

Proposition 3.2). Then for each T € x(U)V-O the mapping
T:2@) — ¢ defined by T(p) = B(T) is a bounded linear
functional on (%) . Moreover the mapping T — T 1is an isometric

_ *k
isomorphism from r(&)¥ © onto the bidual space (%) . Its
restiiction to r(4) is the canonical embedding of (¥4) into
(%) .

Proof
It is well-known that any von Neumann algebra has a predual. In fact

it can be seen from [10] that for the algebra r(#)" ° the mapping

$p ¢ (r(@)"°)4 — € defined by #y(v) = w(I) is a bounded linear

functional on  (r(%)* °)4. Moreover, the mapping S : T — 2

defines an isometric isomorphism from (T(”)w—o) onto the dual space

—_— ]
(@)% %y of (r(@)™°). In Proposition 3.2 we have shown that

* — w-
the mapping 7 :p — p from 7(%) onto  (x ()" 0)* is an

. . N . w-0 * **k
isometric isomophism. Now let a : (x(%)" ")y — 7(¥) be the

adjoint operator of 7 (i.e. a(¢¥) = ¢ where p(p) = ¥(10)
= ¢(p)).

Since 9 is an isometric isomorphism, a is one. If we comsider
the composition a-f : T — p it is an isometric isomorphism from

(@ onto 7(2)" where py(p) = ¥(7) = (D).
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*%

Clearly a-ﬂlx(y) x(d) — 1Y) is the canonical imbedding for if
*
Tex(@) then (a-6)(T) = oy where pp(s) = p(1) (€ 1(@)").

Remark 3.4

The result above may be misleading if it i%:not understood in the
correct way. For instance let # be the C -algebra £°. Then it
wvas shown in Example 1.20 that there exists a representation ¢ from
¢® into some B(H) such that §(1)"° = #(#). Hence £° is a
von Neumann algebra. For the universal representation 1« of £,

this is surely not the case that (@)Y ° = x(u). For if

r(@)¥ ° = 7(#) then it would follow from the above theorem that 4,
*%

7(4) and () are as Banach spaces the same! Hence ¢° will be

reflexive - a contradiction.

Remark 3.5

Note that from now on if we write «% for a C*-algebra it will always
mean that # is represented as a closed *-subalgebra of some B(H)
under the universal representation. (So we shall always write # in
stead of 7(%).)

Tomiyama’s proof

Ve’ve already mentioned that Tomiyama gave an elegant proof for
Sakai’s characterization. Apart from the universal representation,
Tomiyama used conditional expectations which he generalised from
commutative measure spaces to non- commutative measure spaces.

Definition 3.6

A linear mapping ¢ from a C*-algebra U into another C*-algebra B
is said to be positive if ¢(H) > 0 when He . If B is also a
subalgebra of #, ¢(I) =I and ¢(BAC) = By(A)C when B,C € B and
A el then ¢y is said to be a conditional expectation from #Z onto
B.
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Proposition 3.7

If

is a conditional expectation from # onto B (B 1is a

subalgebra of #) then ¢ 1is a projection of norm one from # onto

B.

Proof

By means of the Gelfand-Naimark Theorem (cf Lemma 1.8) it can be
shown that each self-adjoint element of # is the difference of two

positive elements of 4. Hence ¢ maps self-adjoint elements onto

self-adjoint elements and ¢ is hermitian (adjoint-preserving).

For each A in # and B in B

0
thus 0

oA A

(A-B) (A- B)

p((A- B) (A-B)) (v ig positive)
p(AA) - (A B) - p(B 4) + ¢(BB)

p(A A) - p(A)B- B p(d) + B B.

If we replace* B by g(A) we get:* .
0<p(AA) - o(A)o(A) - o(A) v(A) + ¢(A) ¢(A)

PO - p(A)p(h).

Thus (A )p(d) < p(A AZ; wvhich holds for each A jn U. Tt can
easily be shown that <A Ax,x> ¢ <||A||?Ix,x> hence A A < [|A]?I and
it follows that

0 < p(A)p(h) < p(A"R)
and  [lp(A)] < JIAI and [y

|AII*T

<
< 1.

Since ¢(I) = I, |¢l =1 and

p(B)

p(B-I-I)
By(I)-I (¢ a conditional expectation)
= B for each B in B.

Thus p(p(A)) = ¢(A) and ¢ 1is idempotent.

Hence ¢

is a projection of norm one mapping # onto B.

Ve give a few examples of conditional expectationms.

(1)

Let % be a C*-algebra and p any state on 4. Define
3(T) = p(T)I. Then & is a conditional expectation on
B = {S:5 = AI, X € (}.

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



81

Clearly since p is positive, & will be positive and
$(I) = p(I)I = [plIT = I.

If S =AI then @&(ST) = §(AIT)

Ap(T)I

A3 (T)

AT (T)

Se(T).

Hence & is a conditional expectation.

0]

There are surely other non-trivial examples.

(ii) Let A be a finite von Neumann algebra (i.e. I is a
finite projection). Then it is well-known that there exists
a unique central valued trace & : A — Z vwhere Z=AN A
which satisfies all the properties of a conditional
expectation (cf [10]).

Theorem 3.8 ([4], Lemma 5.1)

* *
Let B be a C -subalgebra of the C -algebra # and let Y be an

idempotent bounded linear mapping of 4 onto B  such that
"WOH =1. Let Z"°% be the weak operator closure of ¥, then %

is a positive linear mapping of # onto B such that po(I) =1
and Yo extends uniquely to a weakly continuous idempotent linear

mapping ¢ of 4" ° onto B“° such that g =1 and p is a
positive linear mapping.

Proof
Since Yo is onto, we can choose an A € 4 such that ¢0(A) = B.

As p, is idempotent we have v, (B) = wo(po(A)) =y, (A) =B. In
particular ¢0(I) =I. If p 1is a state on B it follows from
p(I) = |lpll = 1 (cf Appendix, Lemma 1) that  (p-p )(I) = p(I) = 1.
Since |[lp-p )l < loll Nl ll = 1 onme has from the same reference that

Py, is a state on /.
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Suppose H € ZI+, then p(gao(H)) >0 for each state p on B.
Since goo(H) € B it follows from ([5], Theorem 4.3.4) that
pO(H) € B'. Thus Py is a positive, linear mapping from Z onto

B.

Let «w be a o¢-weakly continuous linear functional on B. Since a
s-weakly continuous functional is norm continuous it follows that
v-p, is a bounded linear functional on #. Hence by Proposition 3.2

-y, is  o-weakly continuous on 4. Since it is clear from

Proposition 3.2 that the os-weakly and weak operator topologies
coincide under the universal representation on 4 and B, we have
that bo U — B 1is o-weakly continuous:

If Ta — T o-veakly in ¥ we know that for each x in H

v 9,(T,) — e 9o (T) (0 (T) = <Tx,x> is o-weakly continuous).

Hence ¢ (T,) — ¢ (T) weakly, hence o-weakly. Since Y= "
and B”Y -=B"° 4 and B is o-weakly dense in Z* % and B*°
respectively. Thus p, can uniquely be extended to a mapping ¢

from 7 ° into B © which is o¢-weakly continuous.
Ve now show that |lg|| = [l l =1, since [lpll =1 we only have to

prove that |y = 1. Clearly since ¢ is an extemsion of y ,

1= lgoll < llell-

Since p is  o¢-weakly operator continuous the set
S={Teld”Y:|p) <1} 1is weak operator closed. Now for any
TEe ZI1 it follows that |l¢(T)| = ||;00(T)|| < ||ga0|| IIT} < 1.  Thus

lll c S. Hence it follows from Kaplansky’s density theorem ([2],
Theorem 3.6.1) that (270'“’)l = (Z_ll)a'u cS.
Thus |lpll = sup [le(T)l| <1 and g} = llg |l = 1.

[IT]<1

Ted” Y
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BV— 0 C aw- (0]

Since , ¢+¢ 1is well-defined, o-weakly continuous and

coincides on « with o'l = ¥y = ¢|”. Since the ¢-weak continuous

mappings y¢-y¢y and ¢ coincides on 4 and # is o-weakly dense in

I—IV- 0 Z‘IV- o . 7W- 0

it is clear that y-p=p on Since is a von

7W- 0 zW-0y ¥
Neumann algebra omne has that £ = U )k - Hence from
Banach- Alauglo ([9]) the unit ball of Z*°° is (@ °, (@ °),)
compact, hence o-weakly compact. Since Bl C ”1 and gl =1,

maps the ¢-weak compact set (Z_Iw'o)l onto a o¢-weak compact (hence

closed) subset of B*"® that contains Bl. From Kaplansky it
follows that (Bl)""0 = (Bw'o)1 It is now easy to see that
p(ﬂw-o) - BW—O.

Since |yl =1 and ¢(I) =1 it can be shown in a similar way as

for Yo that ¢ is positive.

Remark 3.9

It is important to notice that ¢ is the identity on B¥ °. It is
clear at the beginning of the proof of Theorem 3.8 that ¢ (B) =B

for each B € B. If we take B € B" © then there exists a sequence
B~ converging to B o-weakly. Since ¢ 1is o¢-weakly continuous

from 4% onto B* ® it is clear that y(B) = B.

*
Recall that a linear functional p on a C -algebra # 1is positive
if p(A) > 0 for any positive element A of 4.

Lemma 3.10 ([12], I, Lemma 9.5)

*
If p is a positive linear functional on a C -algebra #, then

* - * * *
p(B'A) = p(A'B) and |p(B A)|* < p(A A)p(B B).

Proof
It follows by direct computation that
* 3 *
4BA =3 i" (A + i"B) (A + i"B)
n=0

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



and

*
4AB

84

3
=% i% (4 + iB)(A + iUB) .

n=0

* —
Hence p(B A) = p(A B).

Since for any A € C,

o

< p((AA*+ B) (AA + B))
[A120(4 4) + 2 Re(/‘ﬂ(A B)) +» (B*B)

< p(TR) 1417 + 2p(AB)] |A] + p(B'B)
it follows that the *discriminan£ of the parabola in |4} is
negative. Hence |p(A B)|%? = [p(B A)|?
*

< p(AA)p(B'B).

Definition 3.11

A state
element

*
p of a C -algebra is said to be definite on a self-adjoint
A of ¥ when p(A%) = p(A)2.

The following two properties of a definite state will be crucial in

this chapter.

Proposition 3.12

Let

*
be a C -algebra and suppose a state p is definite on a

self-adjoint A € # . Then A - p(A)I 1is in the kernel of p and

p(AB) = p(BA) for each B € 4.

Proof

The proof will follow by direct computation.

Consider

p((A - p(A)T)?)
p(A)? - 2p(A)% + p(A)?
0.

Thus p((A - p(A)I)?) = 0 and since p(A - p(A)I) is real it is
clear that p(A - p(A)I) =

Now if

Bel, then it follows from Lemma 3.10 that

p(B(A - p(A)I)) = p((A-p(A)I)B) = 0 from which it is clear that
p(BA) = p(B)p(4) = p(AB).
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The following important fact will be used in the next proposition.
Lemma 3.13

For all T and S in B(H) and each projection E it follows that
IBT(I - E) + (I - E) SE[| = max {||ET(I - E)|I; [I(T - E)SE[}.

Proof
Let x be a unit vector in H, then
|IET(I - E)x + (I - E)SEx]?
= ||[ET(I - E)x||> + ||(I - E)SEx||> (E and I - E are orthogonal).
IET(T - E)I* II(T - E)x||* + [I(T - E)SE|? ||Ex||?
(I-E and E are idempotent)
max {||ET(I - E)|I?, |I(I - E)SE|?*}
since [|(I - E)x||? + ||Ex]|? = 1.

IN

I

On the other hand |ET(I - E)||
sup {|[ET(I - E)yll : [lyll ¢ 1}
sup {||ET(I - E)zl| : z = (I - E)y : [lz]] < 1}
IIET (I - E) + (I - E)SE|
(since (I - E)SE(I - E)(H) = (I - E)S(E - E*)(H) = {0}).
Similarly |[|(I - E)SE|| < ||[ET(I - E) + (I - E)SE|
thus max {||ET(I - E)||; /(T - E)SE{}}
< ||[ET(I - E) + (I - E)SE|| from which equality follows.

I

Proposition 3.14 ([4], Lemma 5.2)

Vith the notation and assumptions of Theorem 3.8, let E be a
projection in B*"©® and x be a unit vector either in E(H) or in
(I - E)H. Then:

(1) v ¢ 1is a state of Z"° vhich is definite on E.

(ii) Eg(EA)E = Ep(AE)E = Ep(A)E, Ep(EAE)E = Ep(A)E and
(I- E)p(BA)(I- E) = (I- E)p(AE)(I- E) =0 for each A

in I"°°.
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(iii)  p(BAE) = Eg(A)E for each A in Z"°.

(iv) p(EA(T - E)) = (I - E)p(EA(I - E))E + Ep(EA(I - E))(I - E)
for each A in Z"°°.

(v) (I - E)p(EA(I - E))E = 0.

(vi) g(EA) = Ep(A) and y(AE) = p(A)E for each A in Z¥°.
Proof
(1) v (T) = <Ix,x> by definition and since p(I) = ¢0(I) =1
(39T = W, (p(D) = ¥ (D) = <Ixo = [ixf? = 1.
Let T > 0, from Lemma 3.8 ¢ is a positive linear mapping

of Z"° onto B ® so that
v o (1) = v (p(T))
= <p(T)x,x>
>0 since yp 1is a positive mapping.
Thus v _-p 1is a state of 7*°° (cf Appendix, Lemma 1). As

E? = E, the states p of Z" ° that are definite on E
are those such that p(E) = p(E?) = p(E)? and that is
precisely those that take the value 0 or 1 at E.
Since E € B*® and ¢ is idempotent with range
there exists an A € Z* ° such that y(4) = E.

Thus  ¢(E) = p(p(4)) = ¢*(4) = p(A) = E and now
(v 9) (E) = v (p(E)) = v (E).
When x € (I - E)H, (wx-y)(E)

BV— 0,

v (E)
<Ex,x>
0 because x € (I - E)H
and wvhen x € E(H), (v -¢)B = <Ex,x>

but <Ex,x> = ||x]|2 =1 if x € E(H).
Thus vhen x € E(H), (v -9)E = 1. Thus w -p is definite

on E when x is a unit vector in either E(H) or
(I - E)H.
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o

* —-
(ii)  Since w_-p is a state on the C -algebra Z° which is

definite on E, it follows from the proof of Proposition
3.12 that w_-p(EA) = w_-¢(E) . v _-p(A)

=W (B) - (vep) ().

Hence for all x € E(H) one has

<p(EA)x,x> = <p(A)x,x>.
Now if x € H arbitrary then Ex € E(H) and it follows
that <Ep(EA)Ex,x>
<p(EA)Ex,Ex>
<p(A)Ex,Ex>
<Ep(4)Ex,x>
From this it follows that Ep(EA)E = Ep(A)E.
Since wx-¢(EA) = w ¢(AE) (cf (i) and Proposition 3.12) it

is clear that we also have Ep(EA)E = Ey(AE)E = Ep(A)E.
Vith x a unit vector in (I - E)H, from w_-p(EA) =0 we

have <p(EA)x,x> = 0 and this holds for all x € (I - E)H.
Now (I - E)g(EA)(I - E) = 0.
Similarly (I - E)p(AE)(I - E) = 0.
Hence Ep(AE)E = Egy(A)E and (I - E)p(AE)(I - E) = 0 for
all A in Z%°°. Thus

Ep(EAE)E = Ep(E(AE))E = Ep(AE)E = Ep(A)E.

(iii) Ve firstly show that -][A||E < EAE < JJA|[E
| <EAEx,x>| = |<AEx,Ex>|
[[AEx|| ||Ex|] (Cauchy-Schwarz)
AN HIEx||?
= ||A|| <Ex,Ex>
1Al <Ex,x>
<||A||Ex,x>

<
<

I

Thus <-||A||Ex,x> < <EAEx,x> < <||A||[Ex,x> and it follows that
~JAIIE ¢ BAE ¢ [IA][E.
Since ¢ is a positive linear mapping we have that
-JIAIE = - ||Allp(E) < o(EAE) < |IAllp(E) = [IAJIE.
For x € (I - E)i it follows that
| <p(EAE)x,x>| < <||A]|Ex,x> = 0.

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



(iv)

(v)

88

Thus <p(EAE)x,x> = 0 for all x € (I - E)H.

If x € H arbitrary, then x = Ex + (I - E)x

so ¢(EAE)x = p(EAE)Ex + 0 thus* p(EAE) = ¢£EAE)E.
Now similarly one has p(EA E) = ¢(EAE)E for all

¥ _ aw-0
A eld” .

* * * *
Thus ¢(EAE) = [p(EA E)] = [p(EA g)E]*
= E[p(EA E)]

Thus p(EAE) = Ep(EAE) = Ep(EAE)E.

So that ¢(EAE) = Ep(EAE)E = Ep(A)E follows from (ii).

Since (I - E)p(EA(I - E))(I - E)
= p(EA(L - E)) - p(EA(T - E))E - Ep(EA(T - E))( - E)
we have
p(EA(I - E)) = Ep(EA(T - E))E + (I - E)p(EA(I - E))E +
Ep(EA(I - E))(I- E) + (I - E)p(EA(I - E))(I - E).
But Eg(EA(I - E))E
= Ep(EA)E - Ep(EAE)E = Ep(A)E - Ep(A)E (from (iii))
=0
and (I - E)p(EA(I - E))(I - E)
= (I- E)p(EA)(I- E) - (I - E)p(EAE)(I - E) (¢ linear).
But (I - E)p(EA)(I - E) =0 (from (ii)).
Thus (I - E)p(EA(I - E))(I - E)
- - (1- E)p(BAE) (I - E)
- p(EAE) + p(EAE)E + Ep(EAE) - Ep(EAE)E
-Ep(A)E + Ep(A)E + Ep(A)E - Ep(A)E
= 0.
Thus ¢(FA(I - E))
= (I - E)p(EA(T - E))E + Ep(EA(I - E))(I - E).

Suppose (I - E)p(EA(I - E))E # 0, then for all large
positive integers n, ||[Eg(EA(I - E))(I - E)||
¢ |In(I - E)p(EA(T - E))E|.
Hence n||(I - E)p(EA(I - E))E|
= max {|[n(I - E)p(EA(I - E))E||; ||Ep(EA(L - E))(I - E)|i}
= ||Ep(EA(T - E))(I - E) + n(I - E)p(EA(I - E))E|
[cf Lemma 3.13]
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= |[Ep(EA(I - E))(I - E) + (I - E)p(EA(I - E))E
+(n - 1)(I - E)p(EA(T - E))E|
= |lp(EA(T - E)) + (n - 1)(I - E)p(EA(T - E))E|
(from (iv))
= |lp(EA(I - E)) + (n - 1)p(I - E)p?(BA(I - E))p(E)]
(cf Remark 3.9)
= lp[EA(T - E) + (n - 1)(I - E)p(EA(I - E))E]]|
(p 1is linear)
< |IEA(T - E) + (n- 1)(I - E)p(BA(T - E))E|
(lell < 1)
= max {JEA(L - E)l; ll(n- 1)(I- E)p(EA(T - E))E||}
= (n- 1) ||(I - E)p(EA(I - E))E|| since EA(I- E) =0
(recall for n large enough
IBA(I - E)|| < [f(n - 1)(T - E)p(BA(T - E))E[).
This is a contradiction since n 1is a positive integer.
Thus (I - E)yp(EA(T - E))E = O.

(vi) From (iv) and (v) we have
p(EA(T - E) Ew(EA( - B))(I - E).
Thus for each A in Z"° we have from (iii) that
p(A) = p(EAE) + p(EA(T - E))
+ p((I - E)AE) + p((I - E)A(I - E))
= Eg(EAE)E + Ep(EA(I - E))(I - E) + (I - E)p((I - E)AE)E
+ (I- B)p((I- E)A(T - E))(I - E)
so that Ep(A) = E2p(EAE)E + E2p(EA(I - E))(I- E) + 0 + 0
Eg(EAE)E + Ep(EA(I - E))(I - E)
p(EAE) + p(EA(I - E))
p(EAE) + p(EA) - p(EAE)
, = ¢(E4).
Sincs [g(A)]* = ¢(A) and Ef(Al = p(EA)* iﬁ is clear that
Eg(A')) = p(EA) and so [Ep(A)] = [p(EA)] .
Thus p(A)E = p(AE).

Theorem 3.15 ([4], Theorem 5.3)

Vith the notations and assumptions of Theorem 3.8, Y from #Z onto

B and ¢ from Z*° onto B™° are conditional expectations.
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From Theorem 3.8, ¢ 1is a positive linear mapping from
and p(I) = pO(I) =1. Since ¢, maps Z onto B and is the

Bw— 0

90

7 ° onto

restriction of ¢ to &, it will follow that % is a conditional

expectation from # onto B if we can prove that ¢ is a
conditional expectation from Z° ° onto B* °
Ve now have to show that ¢(BA) = Byp(A) and ¢(AB) = ¢(A)B for each

A in

HV

© and B in B"°. TFirst let B be a self-adjoint

element in the von Neumann algebra B"°. Let €>0 be given;

from the spectral theory there is a finite orthogonal family
{E1 Ez""’En} of projections in B¥° and real scalars
al,az ..,an such that

B - 5 a;Ell < €/(2Al) with A in n°

j=1

It now follows that
llp(BA) - B¢(A)H

< llo(BA) - w((2 ;B + Ilso((2 2;E5)4) - Be(A)]

I

1=1 j=1

34 - J(glajEj)Au . ||J(§1 a;B;)p(A) - Bp(A)]

(from llel = 1 and Proposition 3.14(vi))

< |l(B —JE a;E)A|l + H(§§ a;E5) - Ble(A)]l
< g A1+ oy oW1
<3 o A (le(Ol < JaD)
= €.
Thus ¢(BA) = By(A) and similarly we can prove that ¢(AB) = p(A)B.

Since any B € B¥ 9 is a linear combination of self-adjoint elements

in B¥©

H

the general case follows.

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



91

Theorem 3.16 ([4], Theorem 5.4)

*
Suppose the C -algebra # is the norm dual of a Banach space .
* *k
7 is the natural injection of %, into % (= (Uy) ) and U

acting on H is the universal representation of «.

* %
(1) If v 1is an element of #Z , then v-p = A for a unique A
in 4.

(ii) Let A — A be the natural isometric isomorphism between
7° and 4 obtained in Proposition 3.3. Let ¢(A) be
the unique element obtained in (i) such that A.q = p(A).
Then ¢ is a conditional expectation from Z* ° onto X.

(iii) If X=yp1(0) then K is a weak operator closed two-sided
ideal in %% and X = Z*° for some central projection

P in Z°.

(iv)  &"°{@ - P) = #(I - P), hence Z(I - P) is a von Neumann
algebra.

(v) U is *-isomorphic to the von Neuman algebra #(I - P).

Proof
(1) Suppose § € (Zl*)1 then since 5 1is an isometry
[(w-m) Nl < llvll ()l
= vl gl

<liel (el € 1)

Hence wv-7 1is a bounded linear functional on 4,. By
assumption 4 1is the norm dual of #,. Thus there exists a

unique A in 4 such that v-p = A.
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(ii) Suppose that A € Z. Ve show that ¢(A) = A. Choose
§ € Uy, then p(A)(§) = (A-n)(£)

K(n(&))
n(¢) (A) .
A(f) (” = Uy )-

Hence ¢(A) = A for each A € 4. Then clearly ¢ is a
zjw- 0

linear mapping from onto #. ¢ 1is idempotent for
if Aed™% y(A) € and it follows that p(p(A)) = p(A).
Ve now show that |y| = 1:

It Be ("% , then Be @), and

le(B) (Nl = 1(B-1) (O]
= |[n(¢)B|l
<l 1B
< el

* %
Hence |lp(B)}] <1 for all B e (4 )l This implies that

lell < 1. Since p(I) = 1 it follows that |y| = 1.
Theorem 3.15 now implies that 7 is a conditional
expectation for Z" % onto .

(iii) Ve first show that X is weak operator closed. We know
that A € X if and only if ¢(A) = 0, thus if and only if
(A-q)(¢) =0 for all ¢ in Uy, hence if and only if

7(6)(A) =0 for all ¢ edy. Now 1q(é) e and U

acting on H is the universal representation of 4, so -
that there are vectors x(§) and y(¢) in H such that
fl(é) = VX(f) y(g)l”. Thus A € X if and Only if

M

wx({),y({)(A) =0 for all ¢ in #,. Since the null space
of Vx(f),y({) is weak operator closed, it follows that X
is weak operator closed (note that Ve (€),7(£) is weak

operator continuous). Since ] is a conditional
expectation form Z" ° onto #, ¢(BAC) = Bp(A)C for each
A in Z"° and B, C in #. Thus if A€ X, 0 = Bp(A)C
= yp(BAC) and thus BAC € X.

By weak operator continuity of left (and then right)
multiplication BAC € X for B, C € Z"° and A € X.
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a3

Hence K is a weak operator closed two-sided ideal in Z.
From Lemma 1.19 there is central projection P in Z such
that £ = Z" °p.

Since ¢ is idempotent, p(A - p(A)) = p(4) - p(p(4))
= p(A) - o(A) = .

Thus A - p(A) € X for each A in Z¥°,
Now A - p(A) € Z"°P, say A - p(A) = SP with S e Z"°
then (A - p(A))P = SPP = SP = A - p(A) (P a projection).
Thus from A - ¢(A) = (A - p(A))P it follows that

A- AP = p(4) - p(A)P

A(I-P)=p@A)(T-P) edI-P).
Hence Z" °(I - P) = u(I- P).

If Ael and 0# A then A ¢ K (since A = p(A) #0).
Thus A ¢ Z" °P hence A # AP and A - AP # 0.
Since P 1is a central projection it commutes with # and
the mapping A — A(I - P) of % onto 4(I - P) is a
*- homomorphism

(AI-P)] =(@-PA =4"T-P) - p)
and since it follows from A # 0 that A - AP # 0, the
mapping is one-to-one and hence a *-isomorphism from ¥
onto #(I - P). From (iv) we know that

%1 - p) = 41I- P).

Thus # is *-isomorphic to the von Neumann algebra
(X - P) acting on (I - P)(H).

From this result and the fact that (8‘)* = ([7],
Example 2.10-6) we now have that ﬁm is *-isomorphic to a
von Neumann algebra. Hence any C -algebra with a predual
will be *-isomorphic to a von Neumann algebra. Hence with
this more abstract characterization it is much easier to
prove that certain C*-algebras are isomorphic to von Neumann
algebras.
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APPENDIX
LOCALLY CONVEX TOPOLOGIES ON A VON NEUMANN ALGEBRA (cf [11])

Let A be a von Neumann algebra i.e. A 1is a *-subalgebra of B(H),
containing an identity I € A such that A = A’’. As stated in Chapter 1,
this is the equivalent of saying that A 1is a *-subalgebra of B(H) which
is closed in the weak operator topology on B(H) (the double commutant
theorem). The weak operator topology on A is the topology generated by
the family of seminorms

TeA—— |(Tx,y)| x,y €H.

If A, is the linear hull of the set of all weak operator continuous

functionals on A, then this weak operator topology is nothing but the
0(4,4,)-topology. The strong operator topology on 4 is the locally

convex topology determined by the family of seminorms
Ted—— ||Tx]] x € H.

The o-weak operator topology on A4 is the locally convex topology
determined by the family of seminorms

@ [¢1] [+1}
Ted— 3 (Tx_,y. ) vwhere % |x |2 <+o and ¥ |y |I? <+ .
n’’n n n
n= n=1 n=1

Let A, be the set of all s-weak continuous linear functionals on A. It

@®
can be shown that every f € A, is of the form £(T) =% (Ix ,y ) for
n=1

® [+ 1]
some sequences (x_), (y.) CH with ¥ [x |2 <+o and ¥ |y ||? < + o
n n neg D peq D

and that the o-weak operator topology on A is exactly the o(A,4)

topology on A. The locally convex topology determined by the family of
seminorms

® o
Ted— (T T )?, T fIx)l? < +a
n=1
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vhere (xn) is a sequence in H, is called the o-strong operator topology

on A The topology given by the norm ||T|| is called the norm topology on
A. If "<" means the left-hand side is finer than the right-hand side,
the relation between these various operator topologies defined on A 1is as
follows:

norm < g-strong < o-weak

A A
strong < weak

It can be shown that the ¢-strong and strong (resp. o-weak and weak)
operator topologies coincide on bounded parts of A. Comnsider A, and A4

as defined above. Then, by using the general duality theory of Banach
spaces it can be shown that Ay is a closed subspace of the conjugate

E 3
space A of A and A, is demse in Ay with respect to the norm

topology. Furthermore, A is isometrically isomorphic to the conjugate
space of the Banach space Ay under the natural correspondence

Ted— Te (A*)* vhere T(v) = w(T) for every w € Ay. We call U,

the predual of A. Since A 1is a convex subset of B(H) there is a
well-known result in the duality theory of Bamach spaces from which it
follows that the closures of A 1in all these locally convex topologies are
the same. Since A 1is weak operator closed, it is closed in all these
locally convex topologies on A. For the proof of these statements we
refer to ([2], Sections 3.1 to 3.4) and [12].

One merit of all the locally convex topologies defined above, is that
multiplication is separately continuous. This means that the mappings
TeAdA—— TS €A, Ted—— ST € A are continuous for every S € A. Ve
show this for the weak operator topology on A (the proofs for the others
are similar). If T, —— 0 weakly, one has that | (T x,y)| — 0 for
*
every x,y € H ({Ta} a net in A). Thus I(Tax,S y)| — 0 for every
*
x,S y € H. Hence ](STax,y)I —— 0 for every x,y € H. This proves that
STa —s 0 weakly. The same procedure is wused to show that

TeAdA—— TS € A 1is weak operator continuous. Another merit of the weak
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and o-weak topology on A is that the mapping T e A — T* €ed is
continuous. The proof of this proceeds as above. This is not true in the
strong and ¢-strong operator topologies. The following is also true:
Multiplication is jointly continuous on bounded parts in the strong
operator topology on A. Moreover if T, — T, SA —— § and "S)" <k

for all ) then the relation
(5,1, - SD)xll < k IN(T, - Dxll + (S, - $)Tx]

implies that (T,S) € Al — 1S € 4 is contimuous where A is a
uniformly bounded subset of A.

Lemma 1 ([5], Theorem 4.3.2)

* )
If D is a self-adjoint subspace of a C -algebra # and contains the unit
I of 4, a linear functional p on D is positive if and only if p is
bounded and ||p|| = p(I).

Proof

Let p be positive, a be a scalar vith |a] =1 and A be in D such
that ap(A) > 0. Let H be the real part of aA. Then [|H| < ||A],
B ¢ [ET < AT and (AT - 2 0.

Hence ||Allp(I) - p(H) = p(|IAIIL - H) 20,

thus [p(A)] = p(ad) = p(a4)

ﬂ(%A ),

p(z(ad + 3d))

p (1)

p(T)IIA]l-
Hence p is bounded and ||p}] = p(I) follows easily.

I

Conversely if we suppose p is bounded with ||p|| = p(I) we only have to
consider the case where |lp|| = 1. With A in D, let p(A) = a + ib.
With s> 0 and small, o(I- sA) ={1- st:tes(A)}C [0,1]. Since
o(A) CR", |II- sA] =x(I- sA) <1 with r(I- sA) the spectral radius
of I - sA.

1-sag<|1-s(a+ib)| =]|p(I- sA)| <1, hence a > 0. With B in D

defined as A - al + inbI for each integer n it follows that
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*
IBII* = BB, Il = lI(A - al + inbI). (A - aI - inbI)]|

I(A - aI)? + n?b2I||
A - aIj|? + n?b?
since p(B)) = p(A - al + inbI)

Al

p(A) - a + inb

a + ib - a + inb
ib(1 + n)

|ib(1 + n)|?

|-b2(1 + 2n + n?)]

b%(1 + 2n + n?).

n?)b? = [p(B,)|* < |lA - aI||* + n?b?

2
Thus |p(8,)|

Hence (1 + 2n

-+

and (1 + 2n)b? < ||A - aI|? for n =1,2,...
Thus b =0 and p(d) = a

v

0 and consequently p is positive.
Lemma 2 ([5], Proposition 5.3.2)

Each continuous real or complex valued function f is strong operator
continuous on bounded sets of (self-adjoint or normal) operators on the
Hilbert space H.

Proof
Ve may assume that the bounded set of normal operators under consideration
is contained in the ball of radius r. If T0 is a normal operator in this

ball, € >0 and X yeeeXp is a set of vectors in H, we want to find
Vectors y ...,y and a positive § such that [[(£(T) - £(T ))x.ll < €
if (T - To)yj” < 4§ where T is normal and ||T}] < r, to prove

continuity.
Ve only have to show this for a single vector Xy because we can do it

for X yeeesXy by increasing the y’s successively. If we now replace ¢

X
by GHXOH" and ||(£(T) - f(To))”xZ”“ < ”iou then |[(£(T) - £(T ))x,ll <€,

hence we may assume that onu = 1.
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From the Weierstrass approximation theorem ([9], Theorem 36A) there exists
a polynomial p in z and Z, such that |f - p"D(o r) < §. (D(0,r) is a
b

closed disk in € with center 0 and radius r). Since multiplication on
bounded sets of operators and the adjoint operation on the set of normal
operators (cf [5], Remark 3.4.15) is strong operator continuous, there
exist vectors Y oeeo¥p and a § >0 such that [[(p(T) - p(T,))x,|l < g

if (T - To)yj" <6 and T is normal with ||T|] < r. Ve have
IEET) - £X )l < NET - p(M)x )l + 1((T) - p(T,))x,l
¢ IR(T,) - £(T0))x,|
(D) - oD lIx I + 5 + () - £CTI lix,]
I£(T) - p(D) + 5 + lIp(T,) - £(T)l
20lf - pllpo,r) * 5 < €.
The fact that both [£(T) - p(D)]l and [Ip(Ty) - (Tl < I - plpo, )

1} iIN

I

follows from the Gelfand;Naimark theorem (cf Lemma 1.8) where T is
represented by z and T by Z and f(T) and p(T) are respectively
represented by fla(T) and pla(T). Since the Gelfand-Naimark

representation is an isometry we have ||[f(T) - p(T)|| = |If - P",(T).
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CHARACTERIZATION THEOREMS IN VON NEUMAN ALGEBRAS
by
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SUMMARY

The aim of this thesis is to study the characterization theorems in von
Neumann algebras. This class of operator algebras was defined for the
first time in 1930 by J von Neumann in terms of a representation on a
Hilbert space.

After the studies of Gelfand, Naimark and Segal, von Neumann algebras were
defined as *-subalgebras of bounded operators on a Hilbert space which are
weak operator closed. Von Neumann himself was intrigued by the question
how to characterize von Neumann algebras in a more abstract, hence
representation- independent way. By studying the features of von Neumann
algebras, Kadison and Sakai almost simultaneously solved this problem in
the mid-fifties.

Chapter one contains important results on projections and operators that
are needed to prove the characterization theorems later. The well-known
spectral theory and a few important facts on Borel calculus are also stated
here. By using a theorem of Baire we extend the Gelfand-Naimark
*_jsomorphism to a *-homomorphism between all the bounded complex Borel
functions on the spectrum of an operator T and the von Neumann algebra
generated by T and I.
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In the secgnd chapter Kadison’s characterization is discussed. He proved
that a C -algebra with the properties that an increasing net of
self-adjoint operators bounded from above, has a least upper bound and
secondly that the normal states separate the algebra, is a von Neumann
algebra. Ve also show that both these conditions are necessary by giving a
counter example in the case where only the first condition is satisfied.
Kadison constructed this complicated example.

In the last chapter Sakai’s characterization stating that a C*-algebra U
with a predual is a von Neumann algebra, is discussed. An interesting
proof by Tomiyama based on the universal representation and conditional
expectations (projections of norm one) is given. We conclude this thesis
with results on locally convex topologies and a few lemmas in the Appendix.
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KARAKTERISERINGSTELLINGS IN VON NEUMANN ALGEBRAS
deur
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Leier: Dr A Stroh
Departement: VWiskunde en Toegepaste Wiskunde
Graad: MSc

O0PSOMMING

Die doel van hierdie verhandeling is om verskillende karakterisering-
stellings in von Neumann algebras te bestudeer. Hierdie klas van
operator-algebras was vir die eerste keer in 1930 deur J. von Neumann in
terme van ’n representasie op ’n Hilbert-ruimte gedefinieer.

Na Gelfand, Naimark en Segal se onderskeie bestuderings van representasies
is von Neumann algebras gedefinieer as *-deelalgebras van begrensde
operatore op Hilbert-ruimtes wat swak operator geslote is. Von Neumann
self was reeds gefasineer met die vraag hoe om von Neumann algebras
representasie- onafhanklik, dit wil sé op ’n meer abstrakte manier te
karakteriseer. In die middel vyftigs het Kadison en Sakai bykans
gelyktydig hierdie probleem opgelos na bestudering van die eienskappe eie
aan von Neumann algebras.

Hoofstuk 1 bevat belangrike resultate in verband met projeksies en
operatore wat benodig word om die karakteriseringstellings te bewys. Die
bekende spektraalstelling en belangrike resultate van Borel-calculus word
ook hier weergegee. Met behulp van ’n stelling van Baire brei oms die
Gelfand-Naimark *-isomorfisme wuit na ’n *-homomorfisme tussen alle
begrensde komplekse Borel-funksies op die spektrum van ’n operator T en
die von Neumann algebra voortgebring deur T en I.
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In die tweede hgofstuk vord Kadison se karakterisering bespreek. Hy het
bewys dat ’n C -algebra met die eienskappe dat ’n toenemende net van
selftoegevoegde operatore wat van bo begrens is, ’n kleinste bogrens besit
en tveedens dat die normale state die algebra skei, ’n von Neumann algebra
is. Ons toon verder aan dat beide hierdie eienskappe noodsaaklik is deur
’n teenvoorbeeld te gee wat nie ’n von Neumann algebra is nie, alhoewel aan
die eerste voorwaarde voldoen word. Hierdie ingewikkelde voorbeeld is deur
Kadison gekonstrueer.

In die laaste hoofstuk word Sakai se karakterisering bespreek.  Sakai
definieer ’n von Neumann algebra as ’n C*-algebra met ’n preduaal. ’n
Interessante bewys hiervoor wat gebaseer is op die universele representasie
en projeksies van norm een deur Tomiyama word gegee. Die verhandeling word
afgesluit met ’n bylae waarin resultate oor lokaal konvekse topologieé en
'n paar lemmas gegee word.
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