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Summary

As functional traits are conserved at different phylo-
genetic depths, the ability to detect community
assembly processes can be conditional on the phylo-
genetic resolution; yet most previous work quantify-
ing their influence has focused on a single level of
phylogenetic resolution. Here, we have studied the
ecological assembly of bacterial communities from
an Antarctic wetland complex, applying null models
across different levels of phylogenetic resolution
(i.e. clustering ASVs into OTUs with decreasing
sequence identity thresholds). We found that the rela-
tive influence of the community assembly processes
varies with phylogenetic resolution. More specifi-
cally, selection processes seem to impose stronger
influence at finer (100% sequence similarity ASV)
than at coarser (99%–97% sequence similarity OTUs)
resolution. We identified environmental features
related with the ecological processes and propose a

conceptual model for the bacterial community
assembly in this Antarctic ecosystem. Briefly, eco-
evolutionary processes appear to be leading to differ-
ent but very closely related ASVs in lotic, lentic and
terrestrial environments. In all, this study shows that
assessing community assembly processes at differ-
ent phylogenetic resolutions is key to improve our
understanding of microbial ecology. More impor-
tantly, a failure to detect selection processes at
coarser phylogenetic resolution does not imply the
absence of such processes at finer resolutions.

Introduction

Understanding the processes governing community
assembly is a key topic in microbial ecology
(Vellend, 2016). It is now recognized that community
assembly is dictated by the interaction of four major eco-
logical and evolutionary processes (Vellend, 2010):
selection, dispersal, drift and speciation, which collec-
tively contribute to the assembly of microbial communities
(Lindström and Langenheder, 2012; Vellend et al., 2014;
Dini-Andreote et al., 2015; Stegen et al., 2015). Selection
refers to deterministic changes in community structure
due to fitness differences among organisms
(Vellend, 2010; Stegen et al., 2015), and both abiotic fea-
tures and biotic interactions relate to fitness. The type of
selection will depend on the spatial pattern of environ-
mental conditions. Homogeneous conditions will impose
consistent selective pressure leading to low phylogenetic
turnover, referred to as ‘homogeneous selection’ (Stegen
et al., 2013, 2015; Dini-Andreote et al., 2015). In contrast,
heterogeneous environmental conditions will promote
variable selective pressures causing high phylogenetic
turnover, referred to as ‘variable selection’. High dis-
persal rates can potentially promote biotic homogeniza-
tion (homogenizing dispersal) leading to low taxonomic
turnover; whereas low dispersal rates (dispersal limita-
tion) can in turn result in high taxonomic turnover due to
ecological drift (Vellend, 2010; Stegen et al., 2013,
2015). Finally, speciation is the evolution of new species.
Therefore, under this framework ‘species are added to
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communities via speciation and dispersal, and the rela-
tive abundances of these species are then shaped by
drift and selection, as well as ongoing dispersal, to drive
community dynamics’ (Vellend, 2010).

One of the approaches most commonly used to investi-
gate the relative influence of the ecological components of
community assembly process is that developed by Stegen
et al. (2013, 2015), which uses null models. However, it
has been proposed that the ability to detect assembly pro-
cesses can be conditional on the phylogenetic resolution
(Hanson et al., 2012), because functional traits are con-
served at different phylogenetic depths (Martiny
et al., 2015). For example, pH and salinity optimum are
usually shared among taxa within deep clades (Martiny
et al., 2015), therefore selection pressures related to these
features could be identified at coarser phylogenetic resolu-
tions. In contrast, long-term drought response and tempera-
ture preference are shallowly conserved (Martiny
et al., 2015), potentially allowing the detection of selection
pressures imposed by these features at finer phylogenetic
resolutions. Yet, only a single phylogenetic resolution
[mainly ASVs or 97% similarity operational taxonomic units
(OTUs)] is typically used for input data to investigate bacte-
rial assembly processes (Langenheder et al., 2017;
Logares et al., 2018, 2020; Allen et al., 2020; Danczak
et al., 2020; Huber et al., 2020; Ji et al., 2020; Kraemer
et al., 2020). For example, the use of null models with 97%
similarity OTUs revealed a predominance of selection pro-
cesses in grassland soils (Ji et al., 2020) and Antarctic
lakes (Logares et al., 2018), while assembly processes in
the Lake Kitkajärvi were apparently not dominated by any
particular process (Langenheder et al., 2017). Conversely,
the finer resolution of ASVs revealed strong selective pres-
sures in the South Pacific Gyre marine microbiome (Allen
et al., 2020), but weak selection and dispersal processes in
global surface waters (Logares et al., 2020). Furthermore,
using ASVs, selection was found to be the main assembly
force in the floodplain of the Paran�a River (Huber
et al., 2020); while dispersal processes dominated in East-
ern Canada lakes (Kraemer et al., 2020), and fractured
shale ecosystems displayed scenarios not dominated by
selection nor dispersal (Danczak et al., 2020). New frame-
works have allowed to quantify community assembly pro-
cesses within different phylogenetic groups (bins; Ning
et al., 2020) or clades (Fodelianakis et al., 2021). However,
it is still not clear whether the relative influence of these pro-
cesses in bacterial community assembly changes with
taxon phylogenetic resolution. Although previous studies of
arbuscular mycorrhizal fungi (Roy et al., 2019) and vascular
plants (Swenson et al., 2006) found that the relative influ-
ences of environmental selection can change with phyloge-
netic scale, studies are needed to evaluate if bacteria show
similar ecological patterns.

Bacterial phylogenetic diversity studies have typically
involved the clustering of sequences into OTUs with a
fixed threshold of 97% sequence identity, considered to
correspond approximately to species (Schloss and
Handelsman, 2004), although several authors have pro-
posed higher and sometimes dynamic cut-offs (Yarza
et al., 2014; Mysara et al., 2017; Edgar, 2018). The defini-
tion of bacterial species and its relevance as the most sig-
nificant unit in microbial ecology are still debated
(Rossell�o-M�ora and Amann, 2015). More recently, to
achieve a finer phylogenetic resolution, new methods have
been developed for modelling and correcting Illumina-
sequenced amplicon errors (Callahan et al., 2016, 2017)
that allowed the discrimination of amplicon sequence vari-
ants (ASVs), which may diverge from one another in only
one nucleotide. ASVs can then be clustered into OTUs
using fixed sequence identity thresholds in order to study
intra-species microdiversity (García-García et al., 2019).
This approach provides an opportunity to evaluate the
influences of ecological processes on bacterial community
assembly at different phylogenetic resolutions.

The Antarctic continent is subjected to extreme climatic
conditions (Hughes et al., 2015), potentially imposing
strong selection pressures to its microbial communities.
Cierva Point Wetland Complex (CPWC) is a macro-
biodiversity hotspot on the north-west coast of the Antarc-
tic Peninsula (Agraz et al., 1994; Antarctic Treaty
Secretariat, 2013; Wilhelm et al., 2016). Its complex, frag-
mented topography defines a mosaic of distinct environ-
mental units characterized by different combinations of
land cover, slope and orientation, most hosting a large
number of different environments (Agraz et al., 1994),
which in this study have been grouped into lentic, lotic
and terrestrial environments for simplicity. The complex is
completely covered by snow from April to December but
is mostly snow-free during the austral summer (Wilhelm
et al., 2016). It has been shown that slope angle deter-
mines the extent and direction of hydrological connectiv-
ity during snow melt or rain events in this system
(Mataloni et al., 2005, 2010). In addition, this protected
area hosts an increasingly large colony of gentoo pen-
guin (Pygoscelis papua) (Gonz�alez-Zevallos et al., 2013)
that contribute to nutrient input and may contribute to the
dispersal of microorganisms across the wetland complex.

Here, we aimed to study the relative influence of the eco-
logical processes shaping the CPWC bacterial met-
acommunity and how the assessment of these processes
may vary across different levels of phylogenetic resolution.
We used high-throughput sequencing of 16S rRNA genes
and applied the null models proposed by Stegen et al. (2013,
2015) to the phylogenetic data, implementing the approach
of García-García et al. (2019) by clustering ASVs into
OTUs with decreasing sequence identity thresholds
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(i.e. 99%, 98%, 97% and 94% similarity OTUs). We
hypothesize that the mosaic of different environments is
subject to spatially varying environmental conditions, which
will impose high variable selection in the different CPWC
microbiomes; that is, each environment will select for dif-
ferent taxa. In addition, we expect dispersal to be
enhanced across the different local communities during
the austral summer period by snow melt, rain events and
penguin movements, resulting in the homogenization of
the metacommunity (i.e. homogenizing dispersal). We
therefore expect to observe simultaneous influences of
variable selection and homogenizing dispersal. These
opposing forces may, however, lead to a situation in which
individual processes cannot be discerned because assem-
bly is not dominated by a single process. Furthermore, as
Hanson et al. (2012) suggested that the ability to detect
the ecological processes shaping microbial biogeographic
patterns can be conditional on the phylogenetic resolution
of the study, we hypothesize that finer phylogenetic resolu-
tions might unveil selection patterns not detected at the
coarser resolutions. Cohan (2001) defined an ecotype as
a population of bacterial cells, corresponding to a DNA
sequence cluster, adapted to a given ecological niche. As
ASVs (i.e. 100% similarity OTUs) can detect ecotypes
within the same species (García-García et al., 2019), and
ecotypes may partition niche space within the environment
(Martiny et al., 2006), we predict that ASV diversity pat-
terns would be more influenced by selection processes.

Results

Bacterial community composition and structure

Sampling at CPWC (ca. area: 1 km2) was carried out
over the early 2018 Antarctic summer. A total of

64 samples were collected from three types of environ-
ments: lentic environments (ponds/lakes: 22 samples),
lotic environments (streams, seepages and wet rocks:
18 samples) and terrestrial environments (soils, mosses
and snow: 24 samples) (Fig. 1, Supporting Information
Table S1). Since we clustered ASVs into OTUs with
decreasing sequence identity thresholds, we will refer to
100% similarity OTUs as ‘ASV’, 99% similarity OTUs as
‘OTU99’, 98% similarity OTUs as ‘OTU98’, 97% similar-
ity OTUs as ‘OTU97’ and 94% similarity OTUs as
‘OTU94’.

Rarefaction curves for normalized ASVs counts for the
majority of the samples (62 out of 64) reached a plateau,
suggesting that the sequencing depth captured most of
the diversity of the local communities (Supporting Informa-
tion Fig. S1). The mean Shannon diversity values were
similar in all three environments at each phylogenetic reso-
lution (global Kruskal–Wallis tests: all P > 0.05, Supporting
Information Fig. S2); whereas lentic environments showed
higher mean number of taxa (richness) than lotic environ-
ments at OTU99, OTU98 and OTU94 resolutions (global
Kruskal–Wallis tests: all P < 0.05; pairwise Wilcoxon Tests:
all P < 0.04). The metacommunity of the CPWC was domi-
nated by Proteobacteria (30%), Bacteroidota (27%),
Actinobacteriota (21%) and Firmicutes (12%) (Supporting
Information Fig. S3).

As required by the null modelling approach, we tested
the phylogenetic signal at each taxonomic resolution
before applying the null models. The OTU94 data did not
show a phylogenetic signal (Supporting Information
Fig. S4), and this resolution was therefore excluded from
subsequent downstream analyses. The permutational
analysis of variance (PERMANOVA) analyses based on
phylogenetic dissimilarity (βMNTD) showed that the bacte-
rial assemblages from lentic and lotic environments were

Fig. 1. Location of sampled sites within the
CPWC. Modified from Ramos Marín (2018).
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significantly different from those of terrestrial environments
(all P < 0.01, detailed R2 and P values are included in
Supplementary Table S2) at each phylogenetic resolution,
although this was not clearly visualized in the principal
coordinate plots (Fig. 2). Overall, βMNTD values were
quite low (0.08, 0.06, 0.05 and 0.04 on average for ASV,
OTU99, OTU98 and OTU97 levels respectively,
Supporting Information Fig. S5), reflecting the general low
phylogenetic variability between the local communities.
There were no significant differences in community hetero-
geneity between environments at each phylogenetic reso-
lution (beta dispersion, all P > 0.1). In addition, no
relationships were observed between phylogenetic

dissimilarity (βMNTD) and geographic distance among
samples (Mantel tests, P > 0.1 for all phylogenetic
resolutions).

Assembly processes of the bacterial metacommunity

ASV, OTU99, OTU98 and OTU97 showed significant
positive correlations over short phylogenetic distances
(Mantel correlograms, Supporting Information Fig. S4),
indicating that closely related taxa at these phylogenetic
resolutions shared similar environmental optima.

The null models make use of βNTI (β-nearest taxon)
and RCbray (Raup–Crick metric using Bray–Curtis
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dissimilarities) indices to quantify the degree to which
observed phylogenetic and taxonomic turnover respec-
tively, deviate from the null model expectation. Remark-
ably, a significantly lower mean βNTI value was observed
for ASV data, an intermediate value for OTU99 data and
higher mean βNTI values for OTU98 and OTU97 data
(global Kruskal–Wallis test: P < 0.001; significant
pairwise Wilcoxon Tests: P < 0.001, Fig. 3A). The

opposite trend was observed for RCbray values (global
Kruskal–Wallis test: P < 0.001; significant pairwise
Wilcoxon Tests: P < 0.004, Fig. 3B).

Based on these two indices we quantified the relative
influence of homogeneous selection, variable selection,
homogenizing dispersal and dispersal limitation for each
phylogenetic resolution (Table 1). The term
‘undominated’ was used when neither selection nor
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dispersal was the dominant assembly process (Stegen
et al., 2015). Strikingly, we observed different relative
contributions of the ecological processes influencing bac-
terial community assembly, depending on the phyloge-
netic resolution (Fig. 3C). The relative influence of
homogeneous selection increased at finer resolutions
(i.e. increasing sequence identity thresholds), while the
‘undominated’ component showed the opposite pattern.
Accordingly, the metacommunity structure based on the
coarser resolution (i.e. OTU97) revealed a system not
dominated by any particular process; while homoge-
neous selection (>60% contribution) strongly influenced
the bacterial community structure at the ASV level.

Environmental factors contributing to assembly
processes

The factors imposing selection and dispersal limitations
were identified, independently for each phylogenetic res-
olution, using a distance-based redundancy analysis
(dbRDA) model selection procedure with either βNTI
(Fig. 4) or RCbray (Fig. 5) matrices as the response vari-
ables (for environmental data see Supporting
Information Table S3). Using βNTI distances, the contri-
bution of the measured environmental factors in shaping
the βNTI values increased toward finer phylogenetic res-
olutions, and pH was consistently identified as a system
feature related to selection processes across all resolu-
tions (Fig. 4). More specifically, PERMANOVA analysis
showed that βNTI-OTU97 variation was significantly
(though weakly) explained by pH (R2 = 0.08, P = 0.002);
the βNTI-OTU98 variation was significantly explained by
pH (R2 = 0.08, P = 0.001) and conductivity (R2 = 0.04,
P = 0.022); the βNTI-OTU99 variation was significantly
explained by pH (R2 = 0.11, P = 0.001), conductivity
(R2 = 0.04, P = 0.021) and slope (R2 = 0.03,
P = 0.046); and the βNTI-ASV variation was significantly
explained by pH (R2 = 0.20, P = 0.001), conductivity
(R2 = 0.09, P = 0.001) and penguin impact (R2 = 0.05,
P = 0.006).

Using RCbray distances, we found that there was dis-
persal limitation between the different environments
across all phylogenetic resolutions (Fig. 5). PER-
MANOVA analyses confirmed that RCbray variation was

significantly (though weakly) explained by the type of
environment (R2 = 0.10, R2 = 0.10, R2 = 0.10,
R2 = 0.12 (all P = 0.001) for OTU97, OTU98, OTU99
and ASV data respectively). Penguin impact (R2 = 0.06,
R2 = 0.04, R2 = 0.05 (all P < 0.002) for OTU97, OTU98
and OTU99 levels respectively) and conductivity
(R2 = 0.04, P = 0.003 for OTU97 data) significantly
(though weakly) explained RCbray variation.

Discussion

Community assembly processes vary across levels of
phylogenetic resolution

Our work has demonstrated that the relative influence of
different assembly processes changes across the ASV-
OTU97 levels, in agreement with Hanson et al. (2012).
These results are also in line with the work by Roy
et al. (2019), which suggests that the relative influence of
the ecological drivers of phylogenetic beta diversity pat-
terns of arbuscular mycorrhizal fungi varies with taxon
phylogenetic resolution. The shift in null model outcomes
was most striking for the phylogenetically informed ana-
lyses (i.e. βNTI), with significant deviations from the sto-
chastic expectation becoming much more common
toward the finer levels of phylogenetic resolution. This
corroborated our hypothesis, as finer phylogenetic resolu-
tions unveiled selection processes within the CPWC not
detected at the coarser resolutions.

The strong influence of selection processes at the ASV
level appears to reflect environmental filters/constraints
acting at this finer sub-species level, which is supported
by the high phylogenetic signal of ASVs (Supporting
Information Fig. S4). As ASVs can represent ecotypes
within species (García-García et al., 2019) and display
niche partitioning (Martiny et al., 2006), we propose that
the CPWC ASV patterns may reflect a significant influ-
ence of microevolutionary processes in the assembly of
this bacterial metacommunity. As the 16S rRNA genes
are too conserved to detect recent evolutionary changes
(see Chase et al., 2021 and references therein) further
studies are needed to corroborate this.

Conversely, the differences in phylogenetic signal pat-
terns across phylogenetic resolutions contradict the

Table 1. Microbial community assembly processes according to Stegen et al. (2013, 2015).

βNTI RCbray Interpretation Assembly process

<�2 � Less than expected phylogenetic turnover Homogeneous selection
>+2 � Greater than expected phylogenetic turnover Variable selection
<|2| <�0.95 Less than expected taxonomic turnover Homogenizing dispersal
<|2| >+0.95 Greater than expected taxonomic turnover Dispersal limitation
<|2| <|0.95| Neither selection nor dispersal is the dominant

process
Undominated
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hypothesis of a consistent level of niche conservatism
from finer (i.e. species) to broader (i.e. phylum) resolution
(Lu et al., 2016). This indicates a lack of ecological
coherence across deep prokaryotic evolutionary relation-
ships, consistent with previous theoretical arguments
(Stegen et al., 2012). The weaker phylogenetic signal at
the OTU98 and OTU97 levels could have prevented the
phylogenetic null models from detecting selection at
these resolutions. However, the RCbray null model is not
sensitive to the phylogenetic signal, and we would expect
that if selection was strong there would be a consistent
deviation from the associated stochastic expectation
(i.e. consistently significant values of RCbray at the
OTU98 and OTU97 levels). Therefore, the lack of

consistent deviation from either βNTI or RCbray null
models at these levels indicates that no single process
dominated community assembly when communities were
analyzed at such coarser resolutions.

Environmental variables related to selection processes

We hypothesized that the mosaic of different environ-
ments from the CPWC would lead to spatially heteroge-
neous environmental conditions, and impose high
variable selection, with each environment selecting for
different taxa. However, we did not detect variable selec-
tion, and therefore rejected our hypothesis. Instead, we
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observed homogeneous selection at all phylogenetic res-
olutions in concordance with overlapping environmental
conditions between the environments (Supporting
Information Fig. S6).

Across all phylogenetic resolutions, pH was identified
as a variable imposing selection, which agrees with previ-
ous observations showing that pH preference is a trait
that is relatively deeply conserved (Martiny et al., 2015).
At the ASV level, conductivity appeared to have a selec-
tive role influencing bacterial phylogenetic turnover. The
presence of a colony of gentoo penguins in the vicinity
also appeared to affect bacterial turnover. Penguin guano
modifies the environment by increasing conductivity and

nutrient content, especially ammonia-N inputs, and thus
rising pH (Mataloni et al., 2005, 2010; Allende and
Mataloni, 2013). These results highlight the importance of
the interactions between the microbial communities and
the macrofauna within this Antarctic wetland complex.

However, the low variance of βNTI explained by pH,
conductivity and penguin impact in the dbRDA (Fig. 4A)
and PERMANOVA tests suggest that, although these
features impose selection on the metacommunity, one or
more other environmental variables – not measured in
this work – would be responsible for the strong homoge-
neous selection detected at the ASV level. Also, βNTI
variance may be poorly explained due to the temporal
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(PERMANOVA, P < 0.01, detailed R2 and P values are included in Supplementary Table S2). Env., environments.
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resolution of the environmental data. That is, single-date
measurements (i.e. spatial sampling design) may provide
an incomplete representation of selection pressures.
Nonetheless, we observed a very strong signal of homo-
geneous selection. As Antarctica is the coldest continent
(Kirby et al., 2014), the extremely low temperature could
be imposing strong homogeneous selection in this sys-
tem, preventing community phylogenetic divergence
despite the heterogeneous landscape of the CPWC. Fur-
thermore, temperature preference is a trait shallowly con-
served (Martiny et al., 2015), and could be influencing
community assembly processes at the finer phylogenetic
resolution of ASVs.
A strong signal of homogenous selection was also

observed in Antarctic bacterial communities from lakes
on the Vestfold Hills region, Eastern Antarctica (Logares
et al., 2018). In this case, despite the lakes having very
heterogeneous physicochemical conditions, salinity was
shown to be the homogenizing force. Salinity preference
is a trait relatively deeply conserved (Martiny
et al., 2015), such that microbial communities inhabiting
marine and freshwater habitats are phylogenetically dis-
tinct at several phylogenetic resolutions (Paver
et al., 2018). As more studies of bacterial meta-
communities accumulate across Antarctica it will become
possible to evaluate any dominant patterns in key envi-
ronmental variables, types of influential assembly pro-
cesses and how patterns change across levels of
phylogenetic resolution.

Dispersal within the CPWC

We expected dispersal to be enhanced across the differ-
ent local communities, resulting in the homogenization of
the metacommunity. During the short austral summer,
most of the area of the CPWC is snow-free due to gla-
cial/snow melt and rain events (Wilhelm et al., 2016),
contributing to the dissemination of microorganisms. Pre-
vious studies showed that slope angle and direction
determine the shape of the hydrological network and the
extent of the connectivity of this wetland complex
(Mataloni et al., 2005, 2010). In turn, the presence of
penguins over the breeding season (Gonz�alez-Zevallos
et al., 2013) potentially adds to the dispersal of microor-
ganisms. Yet, in contrast to our expectations, we did not
detect homogenizing dispersal but a relatively constant
contribution of dispersal limitation. Since CPWC is
completely covered by snow from April to December, dis-
persal could be heavily restricted during most of the year
between the three environments sampled (i.e. lotic, lentic
and terrestrial). Thus, the high taxonomic turnover (high
RCbray values) and low phylogenetic turnover (low βNTI
values) detected at the ASV level could be reflecting the

action of dispersal limitation coupled with diversification
processes (Zhou and Ning, 2017). In winter the consis-
tent snow-cover insulates the ground surface from the
colder air temperatures, which can reach down to approx-
imately �20�C (Ramos Marín, 2018). This thermal insula-
tion has been shown to allow bacteria growth below the
snowpack (Brooks et al., 1998), and could enable micro-
evolution in the isolated communities from CPWC. Previ-
ous experimental studies with bacteria from Arctic
permafrost have demonstrated the physiological potential
for genome replication at temperatures down to �20�C
(Amato et al., 2010; Tuorto et al., 2014).

Conceptual model of ecological processes influencing
community assembly in the CPWC

The observed differences in community assembly pro-
cesses at different phylogenetic resolutions have led us
to propose and discuss a conceptual model describing
these differences (Fig. 6). Specifically, we hypothesize
that the strong influence of homogeneous selection
(i.e. low bacterial phylogenetic turnover) detected at the
ASV level can potentially be interpreted as microevolu-
tionary processes affecting community assembly through
diversification (Nemergut et al., 2013; Zhou and
Ning, 2017). Indeed, microevolution appears to occur
within local communities with extremely low or zero dis-
persal rates (Leibold et al., 2004; Georgiades and
Raoult, 2011; Stegen et al., 2013). Thus, dispersal limita-
tion likely imposed by the snow-covered landscape could
be acting in concert with drift and diversification
(Nemergut et al., 2013; Stegen et al., 2013; Zhou and
Ning, 2017) to generate different but very closely related
ASVs across environments. This is supported by the lack

Lentic Terrestrial

Lotic

Dispersal Limitation

(snow-covered landscape)
+ drift + diversification

Homogeneous Selection
(pH, conductivity, penguin impact)

Different but very closely related ASVs
across environments

Fig. 6. A conceptual model of community assembly: dispersal limita-
tion likely imposed by the snow-covered landscape could be acting
in concert with drift and diversification, which together with the strong
homogeneous selection generate different but very closely related
ASVs across environments.
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of separation between the three bacterial communities
based on βNTI-ASV (Fig. 4A), the clear separation of
these communities based on RCbray-ASV (Fig. 5A), and
the strong signal of homogeneous selection for ASVs.
Moreover, in line with our conceptual model for CPWC,
Cavicchioli (2015) suggested that the geographic isola-
tion and strong selection imposed by hypersalinity and
low temperatures controlled the evolutionary develop-
ment of the microbial communities from the Deep Lake,
Vestfold Hills, Eastern Antarctica.

Caveats

Ecological processes occur along a continuum of space
and time (Hanson et al., 2012), yet our sampling repre-
sents a snapshot in time of this isolated system in the
Antarctic continent. Despite CPWC being accessible only
during the austral summer, we may expect temporal
changes in the assembly processes related to changes
in the system hydrology over this season. A sampling
design encompassing both spatial and temporal scales
would provide more insights into the mechanisms of com-
munity assembly in this Antarctic wetland complex. Also,
we should be aware that ASV data could be over-
estimating diversity, and therefore detecting a strong (but
not necessarily real) selection effect, as not enough liter-
ature and genomic data to date allow us to fully under-
stand intragenomic rDNA sequence polymorphisms
(Lavrinienko et al., 2020; Okazaki et al., 2021).

Conclusions

Here, we investigated the community assembly pro-
cesses applying null models (Stegen et al., 2013, 2015)
at different levels of phylogenetic resolution. We found
that, as suggested by Hanson et al. (2012), the relative
influence of the processes that shape bacterial communi-
ties change with phylogenetic resolution. More specifi-
cally, we observed that selection processes seem to be
more important at finer (i.e. ASV level) than at coarser
(i.e. OTU99, OTU98 and OTU97 levels) resolution, which
may suggest that microevolutionary processes are shap-
ing the bacterial metacommunity from CPWC. Indeed, a
recent study has demonstrated that both ecological and
evolutionary processes can alter the diversity of a soil
microbiome on annual timescales (Chase et al., 2021).
To further quantify the relative contribution of evolutionary
processes to microbial community assembly, the path for-
ward involves using emerging sequencing and bioinfor-
matic tools combined with simulation modelling to test
and update refined hypotheses. In all, this study shows
that assessing community assembly processes at differ-
ent phylogenetic resolutions is key to improve our under-
standing of microbial ecology.

Experimental procedures

Study site, sampling and environmental data

Cierva Point (64�090 S, 60� 570 W) encompasses the
ASPA (Antarctic Specially Protected Area) No. 134 (Agraz
et al., 1994; Antarctic Treaty Secretariat, 2013). The area
shows a mild, humid climate (mean annual air temperature
ca. �3.2�C; Wilhelm et al., 2016). Remarkably, its mean
annual ground temperature (ca. –0.95�C) is within the
highest range of the continent (Obu et al., 2020), with an
annual precipitation ranging from 400 to 1100 mm
(Wilhelm et al., 2016).

Location of sampling sites was established using a
global positioning systems equipment (GPS eTrex, Gar-
min International, Olathe, KS, USA). The slope of each
sampling site was calculated with a field laser clinometer
(Scout DX 1000 ARC, Bushnell, Overland Park, KS,
USA). To assess the degree of penguin impact, a scale
of use intensity with six nominal levels was established
according to the abundance and permanence of gentoo
penguins (Pygoscelis papua) or signs thereof
(e.g. feathers or faeces), where 0 corresponds to the
absence of penguins or signs and 5 to nesting areas with
high abundance and permanence of penguins. At soil
sites, composite samples were collected in sterile Whirl-
Pak bags and frozen at �20�C for transport and further
analysis. Soil pH and conductivity (both 1:2.5 water sus-
pension) were analyzed at the Soil Institute, National
Institute of Agricultural Technology (INTA, Hurlingham,
Buenos Aires, Argentina), following standard protocols
described in Mortola et al. (2019). For lentic and lotic
environments, water pH and conductivity were measured
in situ using a pHmeter (HI98108, Hanna Instruments,
Woonsocket, RI, USA) and a multiparametric probe
(Sension 156, Hach, Loveland, CO, USA). At moss sites,
interstitial water was obtained by aseptically squeezing
the mosses in situ (Oloo et al., 2016), followed by water
pH and conductivity measure. Snow was collected in
500 ml sterile pots, retained frozen and transported to the
laboratory, where the parameters were measured on
freshly melted snow.

Composite soil samples were transferred to sterile
cryovials (ExtraGene, Taichung City, Taiwan) and pre-
served with 1 ml LifeGuard soil preservation solution
(Qiagen, Hilden, Germany) at 4�C until further
processing. Aliquots of approximately 200 ml of water
samples from lentic water bodies and mosses were
sequentially filtered through a 55 μm mesh size net, and
3 and 0.22 μm sterile nitrocellulose membranes
(Nalgene, Rochester, NY, USA). The surface of rocks
from lentic and lotic sampling sites was scraped using
one sterile toothbrush per site. The detached biofilm was
suspended in approximately 30 ml of 0.22 μm-filtered dis-
tilled water and sequentially filtered as described above.
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Approximately 250 ml of coloured snow were allowed to
melt and also sequentially filtered. The 0.22 μm mem-
branes were preserved in sterile cryovials with 3.5 ml
RNAlater stabilization solution (Sigma-Aldrich, St. Louis,
MO, USA) at 4�C until further processing.

DNA extraction and amplicon sequencing

DNA was extracted from 0.5 g of soil samples or half
0.22 μm membranes using the PowerSoil DNA isolation
kit (Qiagen). A two-Step PCR was performed with
primers 337F and 805R (Klindworth et al., 2013) for the
16S rRNA gene (V3–V4 regions). Amplicons were
sequenced using Illumina MiSeq 2 x 300 paired-end
reads approach (Caporaso et al., 2012) at Applied Bio-
logical Materials (BC, Canada).

Sequence data processing

Primer sequences were removed with Cutadapt 1.18
(Martin, 2011). ASVs were determined using DADA2
v1.16.0 (Callahan et al., 2016) with default parameters,
unless specified otherwise. Briefly, forward reads were
quality-filtered and trimmed using the DADA2 function
filterAndTrim (options maxEE = 2, minLen = 175,
truncLen = 250). Error rate models were fitted using
the function learnErrors. ASVs were then inferred for
each sample using the functions derepFastq and
dada. An ASV table was created using
makeSequenceTable. Chimeric sequences were
removed using removeBimeraDenovo, which resulted
in a table with 5336 ASVs. ASVs were classified using
assignTaxonomy with the SILVA database (version
138, Quast et al., 2013). Unassigned ASVs or classi-
fied as chloroplasts or mitochondria were removed.
The resulting count table with no singletons was nor-
malized to an equal sampling depth of 6284 reads per
sample using rarefy_even_depth function from phyl-
oseq package (McMurdie and Holmes, 2013). A total of
402 176 total reads and 3960 ASVs were retained for
further analysis. These ASVs were clustered into OTUs
with decreasing sequence identity thresholds (i.e. 99%,
98%, 97% and 94% similarity OTUs) using the
Opticlust algorithm in Mothur software following Gar-
cía-García et al. (2019), which resulted in OTU tables
with (a) 723 OTU99, (b) 438 OTU98, (c) 312 OTU97
and (d) 160 OTU94, and 402 176 reads each. Phyloge-
netic trees for ASVs and OTUs were constructed using
qiime2 (Bolyen et al., 2019) with the q2-phylogeny plu-
gin (align-to-tree-mafft-fasttree pipeline). The sequence
data obtained in this work were deposited at NCBI
BioProject database (ID PRJNA719989, 64 sequence
data links, https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA719989).

Statistical analyses

Community structure. Weighted βMNTD distance matri-
ces were calculated with comdistnt function from picante
package (Kembel et al., 2010) in R (R Core Team, 2018).
Differences in phylogenetic compositions between sam-
ples were visualized with principal coordinates analysis
(PCoA) using vegan package (Oksanen et al., 2019). Dif-
ferences between environments were tested with PER-
MANOVA (Anderson, 2001) using adonis_pairwise
function with FDR correction for multiple comparisons
(metagMisc package; Mikryukov, 2020). Homogeneity of
multivariate dispersion (beta dispersion; Anderson, 2006)
was evaluated with the former function. The relationship
between geographic distance and phylogenetic dissimi-
larity (βMNTD) was studied with the Mantel test.

Phylogenetic signal. A Mantel correlogram (mantel.cor-
relog function from vegan package) was used to test for
phylogenetic signal, based on Pearson correlation coeffi-
cients between taxa differences in environmental optima
and phylogenetic distances. Significance tests for each of
30 phylogenetic distance classes were based on 999 per-
mutations, no distance class cut-off and a progressive
Bonferroni correction (Legendre and Legendre, 1998).
Environmental optimum for abundant taxa (i.e. relative
abundance >1% in any sample) were estimated by
means of canonical correspondence analysis with
explanatory pH, log-transformed conductivity, slope and
penguin impact values, and type of environment as a
dummy variable. Permutation tests of the overall analysis
and the first two canonical axes showed significant
canonical relationships (P < 0.05). Taxa scores on the
first two canonical axes were used as synthetic descrip-
tors of their ecological optima (Borcard et al., 2018), and
used for calculating Euclidean distances in order to esti-
mate between-taxa environmental optimum differences
following Llames et al. (2017). Between-taxa cophenetic
distances were calculated using cophenetic.phylo func-
tion from ape package (Paradis and Schliep, 2019).
These analyses were performed for each taxonomic res-
olution independently.

Assembly processes. The null model approach proposed
by Stegen et al. (2013, 2015) was applied to investigate
bacterial community assembly processes across phylo-
genetic resolutions. βNTI and RCbray indices were calcu-
lated based on entire-community null model analysis with
the qpen function from iCAMP package (Ning
et al., 2020). Differences in mean βNTI or RCbray values
between taxonomic resolutions were evaluated with
global Kruskal–Wallis test and Mann–Whitney post hoc
pairwise comparisons applying Bonferroni correction.
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Environmental features related with assembly processes.
The quantitative environmental features (pH, log-
transformed conductivity, slope and penguin impact) and
the qualitative environmental feature (type of environ-
ment) were tested as explanatory variables in a dbRDA
model selection procedure with either βNTI or RCbray

matrices as the response variables, independently for
each taxonomic resolution. Both βNTI and RCbray dis-
tance matrices were normalized to vary between 0 and
1 according to Stegen et al. (2013) before stepwise
model selection (ordistep function, argument
direction = ‘both’, P < 0.05). The features that signifi-
cantly explained variation in βNTI were considered as
environmental variables imposing selection. The features
not related to βNTI that explained variation in RCbray rep-
resented environmental variables that impose dispersal
limitation. The contribution of each significant feature in
shaping the βNTI or RCbray values were quantified with
PERMANOVA, as implemented in the adonis function
(vegan package).
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