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ABSTRACT 

 

This dissertation proposes the development of a new quantile-based generalized logistic 

distribution GLDQB, by using the quantile function of the generalized logistic distribution (GLO) 

as the basic building block. This four-parameter distribution is highly flexible with respect to 

distributional shape in that it explains extensive levels of skewness and kurtosis through the 

inclusion of two shape parameters. The parameter space as well as the distributional shape 

properties are discussed at length. The distribution is characterized through its  -moments and 

an estimation algorithm is presented for estimating the distribution’s parameters with method 

of  -moments estimation. This new distribution is then used to fit and approximate the 

probability of a data set.  

 

Keywords: Generalized logistic distribution,  -moments, quantile function. 
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1 INTRODUCTION 

 

1.1 AIMS AND OBJECTIVES. 
 

The aim of this dissertation is the development of a new quantile-based generalized logistic 

distribution GLDQB. The methodology used is proved in Proposition 2.7.1 in Chapter 2, where 

the four-parameter quantile-based distribution is constructed by taking the sum of the quantile 

function of an asymmetric distribution on half infinite support and the quantile function of the 

reflected asymmetric distribution. The afore-mentioned methodology is utilized in Definition 

4.2.1 in Chapter 4. The distribution’s parameters are estimated with method of  -moments 

estimation. 

1.2 COMPOSITION OF DISSERTATION. 
 

Chapter 2 gives an overview of quantile functions highlighting the relationships between the 

probability-based functions and the quantile-based functions. Different quantile-based 

functions are defined as well as the various construction rules defined by Gilchrist (2000) and 

examples of quantile-based distributions are discussed. Descriptive functions of the location, 

spread and shape of quantile-based distributions through their conventional moments as well 

as  -moments developed by Hosking (1990) will be illustrated. Various measures of location, 

spread (MacGillivray & Balanda, 1988) and shape (Bowley, 1902; MacGillivray, 1986; 

MacGillivray & Balanda, 1988) will be examined.This chapter concludes with the proposition 

that provides the methodology used in the construction of the proposed quantile-based 

distribution. The distributional form is outlined whilst making use of the construction rules 

discussed by Gilchrist (2000). 

Chapter 3 lays emphasis on the building block that is used in the construction of the Freimer-

Mudholkar-Kollia-Lin (FMKL) Type of the GLD, introduced by Freimer et al. (1988). In addition, 
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the building block of the new quantile-based distribution is discussed. In particular, the 

functions, various measures and distributional properties are considered. 

In Chapter 4, Proposition 2.7.1 from Chapter 2 is used to construct the new quantile-based 

distribution.  The distribution is specified in terms of its quantile function in Definition 4.2.1 as 

well as its quantile-based functions in Eqs. (4.5) and (4.6). Moreover, the distribution is 

characterized in terms of the  -moments due to their simplicity as compared to the 

conventional moments. Various quantile-based measures and shape properties are analyzed in 

this chapter. The tail behavior of the distribution is discussed in this chapter. 

Chapter 5 highlights an estimation algorithm for estimating the distribution’s parameters with 

method of  -moments estimation. The new distribution is then used to fit and approximating 

the probability of a data set.  

1.3 CONTRIBUTIONS OF DISSERTATION. 
 

The new contributions of this dissertation are listed below. 

Chapter 4: 

 A new distribution is constructed and defined using Proposition 2.7.1 of Chapter 2 in 

Section 4.2. 

 Section 4.3 takes and in-depth look at the distributional properties and shape 

characteristics of the new quantile-based distribution. 

 The parameter space and support as well as the classes is defined for this distribution in 

Section 4.4 and 4.5. 

 The expressions of the moments of this distribution are defined and derived in Section 

4.6. 

 In Section 4.7, the new distribution is characterized through its  -moments. 

 The various expressions for the quantile-based measure of location, spread and shape 

are defined. 
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 Section 4.9 summarizes the values obtained for the density and the slope of the density 

curve. 

 

Chapter 5: 

 An estimation algorithm for estimating the distribution’s parameters with method of  -

moments estimation is presented in Section 5.1. 
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2 QUANTILE-BASED MODELLING 

2.1 INTRODUCTION. 
 

The main aim of the process of statistical modelling, is to find and define various functions and 

measures that can be used to model the probability laws or distribution of a random variable. 

Suppose that             is a set of real-valued random variables. If the data analysis 

intention is to model the cumulative distribution function,     , and the probability density 

function,     , then it is said to be probability-based or probability-centered. In this case, the 

set of data is assumed to be independent and      is considered continuous. 

However, in addition to the probability-based functions, Parzen (1979) discussed alternative 

functions and measures that can be used to model the distribution of a random variable. In his 

work, he established a set of functions that depend on the quantiles of a random variable, as 

well as a discussion on the modelling process through the use of these functions.  

In this chapter, an overview of quantiles is discussed in Section 2.2, highlighting the 

relationships between the probability-based functions and the quantile-based functions. 

Moreover, different quantile-based functions are defined. Section 2.3 defines the quantile-

based distributions as well as the rules that are used to construct these distributional models 

(Gilchrist, 2000). The section is concluded with examples of these type of distributions that 

have been modelled. 

Section 2.4 describes the conventional moments, both the central and non-central moments. 

These can be defined in terms of the quantile functions, making them applicable in describing 

the location, spread and shape of quantile-based distributions. 

The  -moments (Hosking, 1990) are defined and illustrated in Section 2.5. As with conventional 

moments, they can be used to describe and measure the location, spread and shape of a 

distribution. However, with  -moments the measurement is done through use of order 

statistics. The  -moment ratios will also be defined. Specifically the  -skewness and  -kurtosis, 

which are of great importance in explaining the shape of a distribution, will be represented. 
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In section 2.6, the quantile-based measures of location, spread and shape are highlighted. 

Various measures of location, spread (MacGillivray & Balanda, 1988) and shape (Bowley, 1902; 

MacGillivray, 1986; MacGillivray & Balanda, 1988) will be explained. 

This chapter concludes with Section 2.7 in which the proposition that provides the 

methodology used in the construction of the proposed quantile-based distribution is 

represented. The distributional form is outlined in Section 2.7, making use of the construction 

rules discussed by Gilchrist (2000). 

2.2 QUANTILES. 
 

For a general distribution      which is continuous from the right, a quantile function      is 

defined as 

               {        }            

 

An important relationship is that, if        and      , then  

 

                            . 

 

Provided that   is a continuous random variable, then  

               {        }      

implying that the quantile function is equivalent to the inverse of the distribution function. 

It is then observed that            a composite function. 

It follows from the results above that various quantile-based functions are expressed in terms 

of the quantile function. 

 

 

 

 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



12 
 

 Quantile-density function. 

This function, also referred to as the sparsity function (Tukey, 1965), is acquired by 

taking the derivative of the quantile function in terms of p. It is defined as 

           
     

  
            .   (2.1) 

 

 Density quantile function. 

It was earlier stated that one of the consequences of a continuous random variable was 

that          . The density quantile function is obtained by taking derivatives of 

both sides of the equation. Therefore, 

  (    )

  
 

  

  
   

  (    )        

  (    )  
 

    
      (2.2) 

The density quantile function is thus the inverse of the quantile density function and can 

be denoted by      , since it is the density function expressed in terms of   instead of 

 . 

 

 Score function 

H ́jek and  ̌id ́k (1967, p19) defined this function as 

 

      
  (    )

 (    )
   (    )           (2.3) 

 

Seeing as  
  (    )

  
    (    )    , it then follows that              .  

In effect, the score function is the derivative of the density quantile function. 
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2.3 QUANTILE-BASED DISTRIBUTIONS. 
 

There are some real-valued random variables that cannot be defined in terms of probability-

based functions and measures. This is because there are no closed form expressions for either 

the distribution function,     , or and the probability density function,     .  

As a result, they are specified in terms of their quantile function,     , quantile density 

function ,    , and their density quantile function      . 

 

2.3.1 QUANTILE MODELLING RULES. 
 

The advantage of quantile-based modelling as compared to probability-based modelling is that 

the models can be constructed through the addition, multiplication and various other 

transformations of the quantile-based functions. Gilchrist (2000) emphasized certain 

construction rules that must be adhered to in the modelling process. These rules are implied for 

both discrete and continuous variables. 

The golden rule is that the quantile function of the model,     , should be non-decreasing for 

     . In the discrete case, it can have step increases. In this thesis the focus is on 

continuous variables. 

Two construction rules highlighted by Gilchrist (2000) are discussed below. 

 

 Reflection rule. 

 

If a random variable   has a quantile function     , the reflected quantile function is 

       , about the line    . Therefore         is the quantile function of   . 

If         then           and vice versa. It can be concluded that the 

distributions of    and   are reflections of one another 
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 Addition rule. 

 

Let   and   be two random variables defined by their non-decreasing quantile functions 

      and       respectively. Then                  , is also a non-decreasing 

and hence the quantile function of the random variable  . 

Similarly, since the derivative of the sum of two functions will be the sum of the 

derivatives of the functions, then the quantile density function of   will be       

           . This rule can be extended to cases with more than two variables. 

Now consider         with quantile function       and          with quantile 

function               . That is, let   and   have distributions that are reflective 

of each other. Then                                          

               and the distribution of   is symmetric. 

 

2.3.2 EXAMPLES OF QUANTILE-BASED DISTRIBUTIONS. 
 

Well-known examples of quantile-based distributions include Tukey’s lambda distribution 

(Tukey, 1960), various types of lambda distributions (Ramberg et al., 1979; Freimer et al., 1988; 

van Staden, 2013) and the Davies distribution (Hankin and Lee, 2006). Of particular interest is 

the generalized lambda distribution of which the Freimer-Mudholkar-Kollia-Lin type (GLDFMKL) 

(Freimer et al., 1988) will be of great importance in the modelling procedure. 

 

2.4 MOMENTS. 
The moments and the moment ratios are used to describe a distribution in terms of its location, 

spread and shape.  

The uncorrected moments of a given distribution are defined as 

  
  ∫          

 

 
,         (2.4)  
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where 

  
  ∫       

 

 
         (2.5) 

is the mean of the distribution, in effect   
   . 

In the same manner, the corrected or central moments are defined in terms of the quantile 

function as 

   ∫            
 

 
,        (2.6) 

where   =   , the variance of the distribution. 

It can be noted that the moments and the moment ratios of a quantile-based distribution are 

not always easily obtained, since the integrals in Eqs. (2.5) and (2.6) contain polynomial 

functions of     . Often closed-form expressions can only be obtained after extensive 

simplification. 

The skewness and kurtosis moment ratios are defined as    
  

   and    
  

  . These two 

functions are used to describe the shape of the distribution.  

 

2.5  -MOMENTS. 
 

 -moments as defined by Hosking (1990), are expectations of linear combinations of order 

statistics. They summarize the properties of a probability distribution in terms of location, scale 

and shape.  

Suppose that   is a real-valued random variable with a cumulative distribution function      

and quantile function     . Let                 be the order statistics of a random 

sample of size n.  

The  -moments can be defined in terms of the order statistics as  

      ∑ (     (
   

 
)         )

   
    .      (2.7) 
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However, Hosking (1990) compiled results in terms of the quantile function by making use of 

the definition of expectation of an order statistic, David (1981), given as 

        
  

            
∫  (    )

   
(      )

   
     

 

 
 .    (2.8) 

 

Lemma 2.5.1. Hosking (1990). The rth order L-moment can be obtained in terms of its quantile 

function as  

   ∫         
  

 
     ,         (2.9) 

where 

   
     ∑ (       (

 
 
) (

   
 

)   ) 
          (2.10) 

is the r
th

 order shifted Legendre polynomial.  

Note that    
             

       and   
      , while ∫   

  

 
        for r>0.   

All the  -moments of a real-valued random variable exist if and only if the random variable has 

a finite mean. The distribution is then uniquely defined by the L-moments (Hosking, 1990).  

The first order  -moment,  1, is referred to as the  -location. It is equivalent to the mean.  2 is 

the second order  -moment. It is referred to as the  -scale, as it is a measure of scale.  

As shown in Gilchrist (2000), the  -moments of an order greater than two are usually 

susceptible to large variability. For this reason they are transformed into  -moment ratios so 

that they are independent of the measurement units of the random variable. Therefore 

   
  

  
         ,          (2.11)  

where    is the   -skewness and    is the  -kurtosis. These two quantities are measures of 

skewness and kurtosis respectively and are bounded by the constraints 

         and  
 

 
    

         ,       (2.12) 
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proven by Hosking (1990) and Jones (2004). 

 

2.6 QUANTILE-BASED MEASURES OF LOCATION, SPREAD AND SHAPE. 
 

These are functions that are based on the quantiles of a distribution. Unlike the conventional 

moments or the  -moments, they always exist for all parameter values of a distribution. 

Various measures of location, spread and shape will be considered. 

Location. 

Given the property of robustness that is upheld by the median, it is considered an appropriate 

measure of location. The median is defined as 

    (
 

 
) .          (2.13) 

Spread. 

MacGillivray & Balanda (1988) showed that the spread function can be defined as 

                       
 

 
    .      (2.14) 

Since        it follows that             . As a result,       , proving that it is a 

valid measure of spread. 

Special cases of the spread function include the inter-quartile range (IQR) and the inter-decile 

range, for which the values of   are 
 

 
 and 

 

  
 respectively. 

Shape. 

              

The first functional is an asymmetry functional that was defined in MacGillivray (1986) as 

     
              (

 

 
)

           
 

               

    
          

 

 
      .  (2.15) 
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As can be seen, the functional is a function of the difference between the quantile function 

evaluated at   and    , and twice the median in the numerator. It is however scaled by 

the spread function in the denominator. As the numerator difference increases, the 

functional value increases. As a result, King & MacGillivray (2007, Theorem 6) showed that 

the  -functional is bounded by -1 and 1. A special case of      is Bowley’s quartile-based 

measure of skewness (Bowley, 1902). This is obtained by setting   
 

 
 in Eq. (2.15). 

 

 Ratio-of-spread functions. 

As introduced by MacGillivray & Balanda (1988), the ratio-of-spread functions is a measure 

of kurtosis. It is used to describe the position of the probability mass in the tails of the 

distribution. This is measured for any pairs of values   and  . This function is denoted as 

       
    

    
          

 

 
     .        (2.16) 

Since        for  
 

 
    , it follows that Eqs. (2.15) and (2.16) are also positive. 

2.7 PROPOSITION: QUANTILE-BASED DISTRIBUTIONS. 
 

This proposition provides the procedure for the formation of four-parameter quantile-based 

families of distributions. 

 

PROPOSITION 2.7.1. 

Suppose that   is a real-valued random variable that is asymmetric with a bounded or half-

infinite support. Let         denote the quantile function of the standard distribution of  , 

with the shape parameter,  , set as   . 

Consider     , such that the standard distribution of   is simply the reflection of the 

standard distribution of  , about the line    . 

Notably, the quantile function of    is                   , where the shape parameter 

 , is set as   . 

A random variable    that is characterized by the quantile function with the form 
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(                  ),     (2.17) 

 

where   is a location parameter,     is a scale parameter,    and    are shape parameters, 

is a quantile-based distribution.   

 

Example 2.7.1. 

Assume that   has a standard generalized Pareto distribution (GPD) with quantile function 

given as         
        

 
 , and support given as [     for     and *  

 

 
) for    .  

As a result of Proposition 2.7.1,      has a standard reflected GPD with quantile function 

given by                    
    

 
. Let      denote the shape parameter of the 

GPD, and let      denote the shape parameter of the reflected GPD.  

Then the quantile function of   can be constructed by taking the sum of         and         

as stated in the proposition, and further modifying the result by adding a location parameter 

and a scale parameter as in Eq. (2.17). 

Therefore,  

        
 

 
(
     

  
 

         

  
).      (2.18) 

 

The result in Eq. (2.18) is the Freimer-Mudholkar-Kollia-Lin (FMKL) Type of the GLD that was 

introduced by Freimer et al. (1988) and denoted as GLDFMKL, with      and     .  

Although not shown by Freimer et al. (1988), it is noted that the quantile function of the 

standard generalized Pareto distribution is used as the building block in constructing the 

quantile function of the GLDFMKL. Note that if      , then the GLDFMKL simplifies to the 

symmetric Tukey lambda distribution with single shape parameter  . The GLDFMKL has no 

closed-form expression for its cumulative distribution function      or its probability density 

function     .  It is therefore defined by its quantile function. See King (1999) and van Staden 

(2013) for detailed discussions on the GLDFMKL.  
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3 DESCRIPTION OF THE BUILDING BLOCKS 

3.1 INTRODUCTION.  

This chapter lays emphasis on the building blocks that will be used in the modelling process of 

the proposed model. The distributional properties and functions will be defined and studied.  

Section 3.2 examines the family of distributions from which the proposed model will obtain its 

form. This family is the generalized lambda distribution, from which a specific type will be 

considered for the construction process. 

The Freimer-Mudholkar-Kollia-Lin (FMKL) Type of the GLD was introduced by Freimer et al. 

(1988). In particular, the construction form for this specific distribution is noted in Section 3.3. 

The building block for this model, which is the generalized Pareto distribution (Pickands, 1975), 

is documented in Section 3.4.  

An analysis of the various functions that characterize the distribution, both the probability-

based functions as well as the quantile-based functions are expressed. In addition, the 

conventional moments and the  -moments expressions are given as well.  

Similarly, the building block for the proposed model is also given an in-depth look in the final 

section of this chapter. The generalized logistic distribution (Hosking, 1986, 1990) is detailed in 

terms of the probability-based functions as well as the quantile-based functions.  

Likewise, the conventional moments and the  -moments expressions are given.  

3.2 GENERALIZED LAMBDA DISTRIBUTION. 

 

The generalized lambda distribution (GLD) was originally proposed by Ramberg & Schmeiser 

(1972, 1974) as a generalization of Tukey’s one parameter lambda distribution (Tukey, 1960). 

The generalization was initiated from a need to generate univariate random variates for Monte-

Carlo studies. 

This is a very broad family of continuous univariate probability distributions. The GLD is 

extremely versatile in its shape, and as a result, has been widely used to model a broad range of 

data.  
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The GLD is a four parameter distribution, defined through its quantile function. The quantile 

function of the Ramber-Schmeiser Type of the GLD denoted GLDRS, is 

 

        
           

  
            ,       (3.1) 

 

where   ,   ,    and    are the location, scale and shape parameters respectively. 

 

Karian & Dudewicz (2000, 2010) presented an in-depth study on this family of distributions, 

including its various functions, probabilistic properties and parameter estimation. Also see the 

doctoral theses of King (1999) and van Staden (2013) for additional results for the GLDRS. 

Some of the areas where the GLDRS has been applied are in actuarial science (Balasooriya & 

Low, 2008), biochemistry (Ramos-Fernández et al., 2008), computer science (Gautama & van 

Gemund, 2006), economics (Pacáková & Sipková, 2007), epidemiology (Ferguson et al., 2002; 

Ghani et al., 2003), forestry (Ivkovic & Rozenberg, 2004), inventory modelling (Lau et al., 2002; 

Achary & Geetha; 2007), queuing theory (Robinson & Chen, 2003) and signal processing 

(Karvanen et al., 2002)  

 

3.2.1 FREIMER-MUDHOLKAR-KOLLIA-LIN TYPE (GLDFMKL). 

 

The Freimer-Mudholkar-Kollia-Lin (FMKL) Type of the GLD was introduced by Freimer et al. 

(1988) and denoted as GLDFMKL. As with the GLDRS, this distribution has no closed-form 

expression for its cumulative distribution function,     , and its probability density function, 

    .  It is therefore defined by the quantile function 

 

        
 

  
(
     

  
 

         

  
)  .     (3.2) 
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The quantile density function and density quantile function of the GLDFMKL are respectively 

     
(               )

  
   ,       (3.3) 

 

and  

 

      
  

(               )
   .       (3.4) 

 

Building process. 

Quantile modelling as described by Gilchrist (2000) can be done using a set of construction 

rules that were clearly outlined in Section 2.3.1.  

The construction procedure for the GLDFMKL was outlined in Example 2.7.1, utilizing Proposition 

2.7.1 that will be used in the modelling process of the new proposed quantile-based logistic 

distribution in this dissertation. 

Although not shown by Freimer et al. (1988), it is noted that the quantile function of the 

standard generalized Pareto distribution (GPD) is used as the building block of quantile function 

of the GLDFMKL, as clearly shown in the Example 2.7.1.  

The standard GPD is defined by the quantile function 

     
        

 
            ,        (3.5) 

with its reflected counterpart as  

        
    

 
            .      (3.6) 

   

The parameter   is the shape parameter of the GPD. This distribution is studied in Section 3.4, 

with the distributional properties highlighted. 
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3.3 GENERALIZED PARETO DISTRIBUTION. 

 

The generalized Pareto distribution (GPD) is a three parameter distribution that was first 

introduced by Pickands (1975). It has a location, scale and shape parameter. This distribution is 

used in reliability studies, modelling environment extreme events such as flooding, and in cases 

where the exponential distribution may be used but in which some robustness is required 

against heavy or lighter tailed alternatives (Hosking & Wallis, 1987). 

 

3.3.1 Definition and Special cases.  

 

The GPD is characterized by a location parameter,  , scale parameter,    , and shape 

parameter,  . The GPD can be defined in terms of its cumulative distribution function,    , 

probability density function,     , quantile function     , quantile density function      and 

its density quantile function      . 

Definition 3.4.1 Let X be a real-valued random variable, where   
              

 
 and Y is a 

random variable with a standard exponential distribution. X is said to have a generalized Pareto 

distribution, denoted by             , if it is defined by the following functions: 

Cumulative distribution function, 

     

{
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     ( 
   

 
)      

       (3.7) 

Probability density function, 
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       (3.8) 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



24 
 

and Quantile function, 

 

     {    
  

 

 
(        )     

      [   ]        
      (3.9) 

 

with support [              and *    
 

 
+         . 

 

 

Theorem 3.4.1. If             , then its quantile density function is  

 

                                 (3.10) 

 

and density quantile function is 

 

      
        

 
           .     (3.11) 

    

Proof: The expressions in Eqs. (3.10) and (3.11) are directly obtained using      
     

  
 and       

      
 

    
    

 

Special cases of the GPD occur for the following values of  : 

 

 The exponential distribution is obtained as a limiting case of the GPD for    . 

     results in the GLD reducing to the Uniform distribution with support [     ]. 

 For    , this distribution becomes the Pareto distribution. 
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3.3.2 MOMENTS. 

The moments for the GPD are obtained by noting that  *(  
  

 
)
 

+  
 

    
, if       . 

Therefore, the     moment exists if   
 

 
 . The expressions for the mean, variance, skewness 

moment ratio and kurtosis moment ratio are presented below. 

       
 

   
       (3.12) 

         

       
  

            
     (3.13) 

        

            
            

 
 

    
     (3.14) 

     

            
                

            
       (3.15) 

     

3.3.3  -MOMENTS. 

 

The  -moments for the GPD are defined for     . The first four  -moments are given in 

Hosking (1986) as follows 

 

     
 

   
 ,         (3.16)  

 

   
 

          
 ,         (3.17) 

 

   
      

               
 ,        (3.18) 

 

   
           

                    
 ,        (3.19) 

 

with 
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         (3.20) 

 

the general expression for the rth order L-moment. Hosking (1986) also gave the general 

formula for the rth order L-moment ratio, 

   
              

              
.  

In particular, the L-skewness and L-kurtosis ratios are expressed as 

   
     

     
  and     

          

          
,     (3.21) 

respectively. 

3.4 GENERALIZED LOGISTIC DISTRIBUTION. 

 

The generalized logistic distribution (GLO) was first studied and documented in Hosking (1986). 

The GLO is the generalized distribution that is obtained from the two parameter Logistic 

distribution by including a shape parameter that accommodates the presence of skewness. The 

GLO differs from other generalizations of the logistic distribution, such as those documented in 

Azzalini (1985),  Johnson et al. (1995), Dubey (1969) and Gumbel (1944). As indicated by 

Hosking & Wallis (1997), it is a reparametrized form of the log-logistic distribution of Ahmad et 

al. (1988). The functional form of the GLO’s distribution is similar to that of the GPD and the 

generalized extreme-value distribution, Hosking (1986). 

 

3.4.1 Definition and Special cases.  

 

The GLO is characterized by the location parameter, , shape parameter,    , and shape 

parameter,  . Following the results in Hosking (1986), the GLO can be defined in terms of its 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



27 
 

cumulative distribution function,     , probability density function,     , quantile function, 

    , quantile density function,     , and its density quantile function,      . 

 

Definition 3.5.1 Let X be a real-valued random variable. X is said to have a generalized logistic 

distribution, denoted by             , if it is defined by the following functions: 

Cumulative distribution function, 

     

{
 
 

 
 

    

 

  .   (
   

 
)/

 
 

     

 

     * (
   

 
)+
      

        (3.22) 

Probability density function, 

     

{
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(     * (
   

 
)+)

       

       (3.23) 

and Quantile function, 

     {    
  

 

 
(  (

   

 
)
 

)     

      *
 

   
+        

      (3.24)  

 

with support *  
 

 
  )           ,               and (     

 

 
+         . 

 

Theorem 3.5.1 If             , then its quantile density function is  

 

     
         

    
                    (3.25) 
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and density quantile function is 

 

      
    

         
           .      (3.26) 

Proof: The expressions in Eqs. (3.25) and (3.26) are directly obtained using      
     

  
 and       

      
 

    
    

 

A special case of the distribution occurs when    , where the GLO becomes the logistic 

distribution.  

 

3.4.2 MOMENTS. 

 

The results of the conventional moments for the GLO have not featured anywhere else other 

than in Hosking (1986). The expressions for the mean, variance, skewness moment ratio and 

kurtosis moment ratio are presented below. 

 

           
 

 
              (3.27)  

          
        

  

           (3.28) 

             
                      

  

      
  

 
 

       (3.29) 

            
               

     
  

      
   

       (3.30) 

 

where                   . 
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3.4.3  -MOMENTS. 

 

As indicated in Section 2.5, all the  -moments of a real-valued random variable exist if and only 

if the random variable has a finite mean. The distribution is then uniquely defined by the  -

moments (Hosking, 1990). The  -moments and  -moment ratios for the GLO were first 

introduced by Hosking (1986). 

 

Theorem 3.5.3. If              with         then  

     
 

 
(               ) ,      (3.31) 

                  ,        (3.32) 

     ,          (3.33) 

and 

   
       

 
           (3.34) 

Proof: See Hosking (1986) for the results in Eqs. (3.31) - (3.34). There is no general expression 

that has been obtained for   or   . Individual expressions can be obtained from Eq. (2.9) and 

Eq. (2.11) respectively.   
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4 QUANTILE-BASED GENERALIZED LOGISTIC DISTRIBUTION 

4.1 INTRODUCTION. 

 

This chapter discusses the quantile-based generalized logistic distribution (GLOQB) and the 

modelling process utilized to construct this distribution. As indicated in Chapters 2 and 3, the 

construction rules that have been outlined in Gilchrist (2000) will be used in this modelling 

process. In Section 4.2, the outline of the model form as well as the building block will be 

considered. It was stated in Chapter 3 that the GLO will be used as the building block of the 

proposed distribution, the GLOQB.  The specific construction rules and the final quantile-based 

functions are defined in this section. These include the quantile function, the quantile density 

function and the density quantile functions.  

Section 4.3 takes an in-depth look at the probability density function (pdf) curves of the 

proposed quantile-based model. The different shapes of the pdfs attained for different shape 

parameter values are examined. Various properties of the GLOQB are noted from the probability 

density curves such as reflection of the distribution when the position of the shape parameters 

are interchanged in the quantile function structure. 

From Section 4.3 stems the various domains of the support of the GLOQB that are clearly 

outlined in Section 4.4. Section 4.5 presents a classification scheme for the GLOQB in terms of 

possible distributional shapes attainable by the density curve of the GLOQB, contingent on 

specific pairings of the shape parameters    and   . 

The conventional moments of the GLOQB are obtained in Section 4.6. Due to the complicated 

nature of the moments, only the first uncorrected moment (the mean) as well as the second 

order corrected moment (the variance) are obtained. Higher order moments, howbeit 

complicated, can be obtained after extensive simplification. Because of the complexity of the 

moments’ expressions, it is more expedient to characterize the GLOQB with alternative 

measures. Specifically, from the results of Hosking (1986, 1990), the L-moments of the GLOQB 

will be explored in Section 4.7. These will be used to obtain functions that explicate the 

location, scale, skewness and kurtosis. A formula that can be used to obtain L-moments for 
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    will be generated, and be extended to derive the first four L-moments as well as the L-

skewness and L-kurtosis. 

Section 4.8 focuses on quantile-based measures of location, spread and shape. Various 

functions such as the spread function (MacGillivray & Balanda, 1988), skewness functionals 

(MacGillivray, 1986; King, 1999) and the ratio-of-spread functions (MacGillivray & Balanda, 

1988) will be attained for the GLOQB. Section 4.9 takes a look at the behavior of the GLOQB when 

the location and spread parameters change whilst holding all the other parameters constant. 

The final exploration of the GLOQB will be with regards to the tail behavior in Section 4.10. The 

values that the density curve approaches in various classes as well as the slope of the density 

curve are examined and noted. 

 

4.2 GENESIS. 

 

The quantile function of the generalized logistic distribution (GLO) is used as the basic building 

block in the proposed derivation of the quantile-based generalized logistic distribution, as 

mentioned in Chapter 3. 

The GLO was first introduced by Hosking (1986). This is a distribution with a location, scale and 

a single shape parameter. 

Following Hosking (1986), the quantile function of the standard GLO is given by 

 

     
 

 
(  (

   

 
)
 

)     .       (4.1) 

 

As shown by Gilchrist (2000), the distribution with quantile function         is the reflection 

of the distribution with quantile function     . Therefore, the quantile function of the reflected 

standard GLO is 

     
 

 
((

 

   
)
 

  )     .        (4.2) 
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The limiting case, when     , is the logistic distribution. 

The probability density functions of the standard GLO are shown in Figure 4.2.1. The density 

curve of the GLO is J-shaped for     , unimodal for        and reversed J-shaped for 

   . The GLO is positively (negatively) skewed for       . Changing the sign of   causes a 

reflection of the GLO’s density curve. That is, the distributional shape of the GLO with shape 

parameter   is the same as the distributional shape of the reflected GLO with shape parameter 

  . 

 

 

Figure 4.2.1:  The probability density curves for the GLO, with     ,   , and                      

 

The quantile function of the Freimer-Mudholkar-Kollia-Lin Type of GLD (GLDFMKL) in Eq. (2.18) 

was constructed using Proposition 2.7.1 in Chapter 2. As shown, the model form was as follows 

 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



33 
 

        
 

   
(               ) 

              
 

   
(                  )    (4.3) 

where            is the quantile function of the reflected standard GPD with shape 

parameter    and         is the quantile function of the standard GPD with shape parameter 

  .  

The form in Eq. (4.3) will be adapted in the construction of the proposed quantile-based 

distribution, the GLOQB. The quantile function of the GLOQB will thus be attained by taking the 

sum of Eq. (4.1), setting      , and Eq. (4.2) with      . The same model form that was 

conveyed in Eq. (4.3) will be maintained. 

 

Definition 4.2.1. Let X be a real-valued random variable. X is said to have a quantile-based 

generalized logistic distribution, denoted as                     , if it has the quantile 

function 

 

        
 

  
.
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)
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)
  

  )/       ,  (4.4) 

 

where    is a location parameter,    is a scale parameter and    and    are shape 

parameters.  

 

Similar to the GLDFMKL, the GLOQB will also be defined in terms of its quantile-based functions as 

it has no closed-form expressions for its cumulative distribution function,     , and its 

probability density function,     . 

 

Theorem 4.2.2 If                      , then its quantile density function is  
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)                 (4.5)  
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and density quantile function is 

 

              ((
 

   
)
  

 (
   

 
)
  

)
  

           .   (4.6) 

    

Proof: The expressions in Eq. (4.5) and (4.6) are directly obtained using      
     

  
 and 

       
 

    
    

 

Akin to the        , the       is symmetric when      .  In particular, when        , 

      reduces to the symmetric logistic distribution.  

The plots of the probability density curves for various values of the shape parameters           

will be disclosed and studied in Section 4.3. 

4.3 PROBABILITY DENSITY CURVES. 

 

The probability density curves for the       are illustrated in Figures 4.3.1-4.3.4 for selected 

values of    and   . Without loss of generality,      and     . 

 

Figure 4.3.1:  The probability density curves for the GLOQB, with      ,     ,        and    
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Figure 4.3.2:  The probability density curves for the GLOQB, with      ,     ,           and    

        

 

Figure 4.3.3:  The probability density curves for the GLOQB, with       ,     ,             and 
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Figure 4.3.4:  The probability density curves for the GLOQB, with      ,     ,      and      

 

As can be seen from Figures 4.3.1-4.3.4, the density curves take on various shapes that are 

dependent on the combinations of the shape parameters    and   . In particular, the following 

shape characteristics for different shape parameter values are obtained: 

 

 The       is symmetric for       , positively skewed for       and negatively skewed for 

     . This can be clearly seen when examining Figure 4.3.1, where        . The solid line 

curve indicates positive skewness when      . Similarly, when       , the dot-dashed line 

indicates a negative skewness in the pdf of the      . The dashed line reveals a symmetric 

distribution for          . 

 

 The pdf of the       with parameters               is the reflection of the pdf of 

      with parameters               , about the line     . This proof, as depicted in 

Karian & Dudewicz (2000, 2010), takes into account that          It can be seen that 

the quantile function in Eq. (4.4) is a function of                . Therefore, 
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Considering the reflection         , the reflected quantile function can also be 

constructed as above. 

                        
 

  
.

 

  
((

 

   
)
  

  )  
 

  
((

   

 
)
  

  )/  

           

Therefore, the two distributions are reflected about the line     , when the shape 

parameters are interchanged. 

From Figure 4.3.2, the pdf of the GLOQB with         and     , indicated by the 

dotted line, is the reflection of the pdf of the GLOQB with      and        , shown 

with a dot-dashed line, about the line    . 

 

 The pdf of the       with parameters               is the same as the pdf of       with 

parameters                . The results follow using the same approach as in the reflective 

case above. From Figure 4.3.3, the pdf of the GLOQB with     ,         and       , 

indicated by the dashed line, has the same distributional shape as the pdf of the GLOQB with 

     ,        and        , shown with a dot-dashed line. Note that in Figure 4.3.3, in 

order to distinguish between the two density curves, the values of the corresponding location 

parameters are not equal, but set to zero and one respectively. 

 

 It should also be noted that the pdf of the GLOQB has a J-shape when      and      , and 

also when       and     . This can be seen in Figure 4.3.4 where, for      and 

      (dashed line), the curve has a J-shape to the right, while the curve takes on a J-shape 

to the left (also referred to as a reversed J-shape) when       and      (dot-dashed line). 

The probability density curve remains unimodal for all other combinations of    and   . 

 

From the probability density curves represented and discussed above, it is clear that the GLOQB 

is highly flexible with respect to distributional shapes as well as the support that is attainable. 

These will be examined in Sections 4.4 and 4.5. 
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4.4 PARAMETER SPACE AND SUPPORT. 

 

The parameter space of the       can be divided into four distinct regions that are based on 

the shape parameters and the support in each region. According to the values listed in Table 

4.4.1, the divisions are based on the different pairings of values that the two shape parameters 

   and    can take on. This        -space of the       is depicted in Figure 4.5.1. Note that 

the dotted line, where      , indicates symmetric distributions. When        , the 

      reduces to the logistic distribution which is indicated at the origin of the        -space. 

 

Table 4.4.1:  Parameter space and support of the GLOQB, in terms of Regions I, II, III and IV 

Region Shape parameter values Support 

Region 1                      

 

Region 2               
(      

 

   
(
 

  
 

 

  
) )  

Region 3                      

 

Region 4               
(   

 

   
(
 

  
 

 

  
)   ) 

 

 

4.5 CLASSES. 

 

An alternative classification scheme can be used for the GLOQB, in which the        -space 

is divided into four classes based on the distributional shape obtained by the density curve 

of the GLOQB. In this section, these four classes are presented and graphical examples of 

density curves from each class are given. 
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Figure 4.5.1:  The parameter space of the GLOQB in terms of Regions 1(a), 1(b), 2, 3(a), 3(b) and 4. The dashed line  

      indicates symmetric distributions. The Logistic distribution is attained when        .  

 

 

Figure 4.5.2:  The parameter space of the GLOQB in terms of Classes  ,   ,     and   .  
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4.5.1 CLASS  . 

Consider the distributional shapes of the       from Figure 4.5.1.1 below. The values of    are 

fixed whilst the values of    are changed. In this class,         in Region 1,         in 

Region 3, and         and     or      and         in Region 2. 

As noted from the probability density curves, they are unimodal and positively skewed. The 

closer the value of   to   , the less positively skewed the distribution is. In addition, this region 

contains members of the       with infinite support for         in Region 1 and 

        in Region 3, and half infinite support for         and     and for      

and        from Region 4. 

 

 
 

  

Figure 4.5.1.1.   Probability density functions of members of the GLOQB from Class  , all with      and      
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4.5.2 CLASS   . 

Subsequently, Class    is characterized by distributions that depict negative skewness. This is an 

effect of         in Region 1,         in Region 3 and         and      as well 

as       and        in Region 2. The distributional shape is still unimodal, while the 

      maintains an infinite support for         and         in Regions 1 and 3 

respectively, and half infinite support for Region 2 of Class II, in effect, for         

and      and for       and       . This is evident from the curves in Figure 4.5.1.2.  

 

 
 

 
 

Figure 4.5.1.2. Probability density functions of members of the GLOQB from Class   , all with      and      
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4.5.3 CLASS    . 

The distributional shape in this class is J-shaped, as illustrated in Figure 4.5.1.3. It arises when 

     and      . The tail behavior for Class III will be discussed in Section 4.9. Since Class III 

falls inside Region 2, the       has half-infinite support in this class.  

 

Figure 4.5.1.3. Probability density functions of members of the GLOQB from Class    , all with      and     . 

 

4.5.4 CLASS   . 

The distributional shape in Class IV is reversed J-shaped, occurring when       and     . 

Distributions from this class, which is part of Region 4, have half-infinite support. Examples of 

density curves from Class IV are shown in Figure 4.5.1.4. 

 

 

Figure 4.5.1.4. Probability density functions of members of the GLOQB from Class   , all with      and       
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4.6 MOMENTS OF THE GLOQB. 

 

Although the GLOQB is a valid distribution for all values of    and   , the    order moment of 

the GLOQB only exists if  
 

 
    

 

 
      

 

 
    

 

 
. Thus, only if  

 

 
    

 

 
      

 

 
 

   
 

 
, the mean, variance, skewness moment ratio and kurtosis moment ratio for the GLOQB 

exist. Furthermore, the moments of a quantile-based distribution are not easily obtained and 

the resulting expressions are not simple. In the case of the GLOQB, the measure of location,  , 

and the measure of spread,   , will be obtained after extensive simplification. The first central 

moment is the mean of the GLOQB. Substituting Eq. (4.4) into Eq. (2.4) and setting r=1, then  
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where the final results above are obtained after extensive simplification. 

The second noncentral moment can be used to obtain the variance of the GLOQB. This is 

because           
     

    . Therefore by substituting Eq. (4.4) into Eq. (2.4) and setting r=2, 

then  
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The variance of the GLOQB is then obtained as follows: 
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       (4.9) 

The moments of the GLO in Eqs. (3.27) - (3.30) are more complicated in form and not as easily 

obtained as the  -moments listed in Eqs. (3.31) - (3.34). As a result, it is expected that the  -

moments that will be obtained in the next section will be much simpler in form than the 

conventional moments. This will lead to the use of the method of  -moments estimation in 

obtaining the parameters of the GLOQB in Chapter 5. 

4.7   -MOMENTS OF THE GLOQB. 

 

As explained in Chapter 2,  -moments as defined by Hosking (1990), are expectations of linear 

combinations of order statistics. As seen in Eq. (2.9) in Chapter 2, the  -moments are defined in 

terms of the quantile function, rendering this method applicable for the GLOQB.  

In the case of the GLOQB, the first four  -moments as well as the  -skewness and the  -kurtosis 

will be derived in Theorem 4.7.  

Theorem 4.7.  

If                      with         and         then  
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where     [ ] is the Cosec function. 
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Proof:  

Using Eq. (2.9) and   
       from Lemma 2.5.1,   
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where the final results above are obtained (after simplification) using 

           ∫                                   
 

 
 .    (4.14) 

Note that the integral only converges if         and         .  

For  -moments of an order greater than one, the quantile function of the GLOQB in Eq. (4.4) can 

be rewritten as  
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Using Eq. (4.15),   
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The final results above are obtained (after simplification) using 

 

           ∫               
              

      
 

∏       
           

      
        

 

 
.   (4.17) 

In order to obtain L2, the  -scale, use     and the values of     and     in Eq. (4.16) 

above. Therefore, 
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In the same way, expressions for    and    are obtained by substitution of the respective 

values of r and k into Eq. (4.16). 

Consequently,   

 

  =
 

  
(         (  

 )           (  
 ))      (4.18) 

and  
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 )             (     
 ))        (4.19) 

 

 -moment ratios of the GLOQB are obtained by using Eqs. (4.18) and (4.19) and substituting 

them into Eq. (2.11).  Subsequently, 
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and 
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The         space covered by the GLOQB is shown by the shaded area in Figure 4.7 below. The 

lower boundary at    
 

 
    

    , is indicated by the solid curve and given by the GLO. The 

dashed curve at    
 

 
    

    , is the lower boundary for all probability distributions. The 

logistic distribution, with        , has        =(  
 

 
). From Figure 4.7 it follows that the 

minimum value for    obtainable by the GLOQB is    
 

 
, in effect, the L-kurtosis value for the 

logistic distribution. Note that the logistic distribution is a leptokurtic distribution with heavier 

tails than the normal distribution. Hence the GLOQB is a leptokurtic family of distributions. The 

GLOQB is symmetric if                 , positively skewed if                  and 

negatively skewed when                  . 
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Figure 4.7. L-Moment ratio diagram for the GLOQB. 

 

4.8 QUANTILE-BASED MEASURES OF LOCATION, SPREAD AND SHAPE. 

 

Unlike the conventional moments or the  -moments, quantile-based measures of location, 

spread and shape exist for all parameter values of a distribution.  

Theorem 4.8. The median, spread function (MacGillivray and Balanda, 1988),  -functional 

(MacGillivray, 1986) and ratio-of-spread functions (MacGillivray and Balanda, 1988) of 
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Proof: The expressions in Eqs. (4.22) - (4.25) are attained by substituting Eq. (4.4) into Eq. (2.13) 

- (2.16) respectively and simplifying. 

 

4.9 LOCATION AND SPREAD. 

In this section the effect of changing the values of the location and spread parameters, 

whilst holding the two shape parameters constant, is considered. For the location, an 

increase in the value of    leads to an increase in the location position of the density curve. 

As can be seen in Figure 4.9(a), an increase in the value of    shifts the position of the 

density function to the right. Similarly a decrease in the location parameter leads to a shift 

towards the left side of the x-axis. As for the scale, an increase in the value of    results in a 

decrease in the spread of the GLOQB, as illustrated in Figure 4.9(b). This inverse relationship 

is evident from the expressions of the variance in Eq. (4.9) and of   , the  -scale, in Eq. 

(4.11).  

  

Figure 4.9. Probability density functions of members of the GLOQB with varying location and spread. In (a),           

            , where an increase in the value of   leads to an increase in the value of the position of the location of the 

distribution. In (b), ,                       , with an increase in the value of    resulting in a decrease in the spread of the 

GLOQB.   

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



51 
 

4.10 TAIL BEHAVIOUR. 

 

The tail behavior of the density curve of a distribution is typically evaluated through the 

probability density function,     . However, in the case of the quantile-based distributions, 

the tail behavior is evaluated through the density quantile function,      , since no closed-

form expression of the probability density function exists. The investigation involves 

determining the value that the density curve approaches at the endpoints, that is at the left 

and right tail. This is explored through computing             and            . The 

expression for       for the GLOQB was given in Eq. (4.6). In addition, the slope of the 

density curve at these two tails is also evaluated to determine the behavior of this 

distribution. This is done through attaining            and           , where 

      
     

  

 

(    )
  ,        (4.26) 

which was derived by King (1999) . This expression is the derivative of the probability 

density function expressed in terms of p. In the case of the GLOQB,  

     
        

 (         (
 

   
)
  

 (
   

 
)
  

         )

.(
   

 
)
  

 (
 

   
)
  

/

      (4.27) 

The values obtained for the density and the slope of the density curve are summarized 

below in Table 4.10.  

There are various scenarios with regards to the value of the density curve when the limits at 

the end-points are obtained. When          , the right tail and the left tail approach 

zero for Class  . Class    represents density curves for which         . The right tail 

approaches zero for all the values of          , whereas the left tail approaches 

(         
          

   ) for various combinations of these shape parameters in this 

class. 
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Class     denotes density curves of the GLOQB with                . The density curves 

in this region are reversed J-shaped with the tail direction being to the left. The right tail 

approaches              for different pairings of           in this class, whilst the left tail 

of the density curves approaches                    for the combinations of           in 

this class. In Class   , the density curves of the GLOQB are J-shaped for                , 

with the tail direction being to the right.   

The investigation of the slope of the density curves of the GLOQB reveals several results. For 

the unimodal density curves in Class   and Class   , the slope of the density is zero for the 

right tail, (         
       

   ) in Class    for the left tail and zero for the left tail of Class 

 . The slope of the density curves in Class     is zero for both tails. As for Class   , the slope 

of the density curve of the right tail is              for                 and 

(      
      

      
   ) for the left tails. 
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Table 4.10 The values approached by the density curve and the slope of the density curve of the GLOQB at the end-points of the tails. 

Class Shape parameter values Density(right) Density(left) Slope(right) Slope(left) 

Class I          
         
                 
                    
                   
                 
                  
                   
              
                  

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

       
   

0 

     
   

0 

     
   

0 

     
   

   

 

 

 

 

 

 

 

 

Class II           
         
                 
                    
                    
                
                 
                   
               
                  

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

        
   

0 

      
   

0 

      
   

0 

-     
  

-  

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Class III               
                 
               
               
               
              
                 
              

        
     
     
     
     
    
     
     

0 
0 
0 
0 
0 
0 
0 
0  

      
     

    

    
   

    
   

    
   

    
    

    
   

0 
0 
0 
0 
0 
0 
0 
0 

Class IV              
                
                
             
              
             
             
             

0 
0 
0 
0 
0 
0 
0 
0 

          
    
    
    
    
    
    
   

0 
0 
0 
0 
0 
0 
0 
0 
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5 FITTING OF THE GLOQB TO DATA 

5.1 METHOD OF  -MOMENTS  ESTIMATION. 

 

This section entails the estimation of the parameters that will be required in order to fit the 

GLOQB to an observed data set. The parameters that are to be estimated are   ,   ,    and 

  , which are the location, spread and shape parameters respectively. 

For these parameters to be estimated, it is required that a measure of location, spread and 

two measures of shape are obtained, from which the estimation method will proceed. The 

measures of shape that have been obtained for the GLOQB are the  -skewness ratio (Eq. 

(4.12)) and the   –kurtosis ratio (Eq. (4.13)), using the  -moments in Chapter 4.  

It was not sensible to use the skewness and kurtosis moment ratios for the GLOQB based on 

the conventional moments, since they are computationally difficult as stated in Section 4.6. 

As a result, the method of moments will be an impractical estimation method to obtain the 

parameters for the GLOQB. 

Hosking (1990) introduced and used method of  -moments estimation, whereby the 

unknown parameters are estimated from linear combinations of an ordered data set.  

As a result of their unbiasedness and accuracy in small samples, they can be extended to 

the estimation of the parameters of the underlying distribution. 

Estimates based on   -moments are generally superior to standard moment based 

estimates. The method yields more accurate estimates since they are robust with respect to 

outliers. Being linear functions of data, they are less sensitive to sampling variability as 

compare to the conventional moments.  

Moreover, they hold the property of unbiasedness and  -moments are less prone to bias 

estimation and approximation by asymptotic normal distribution is more accurate in finite 

samples. 

Let                be a sample of size  , and                    be an ordered 

sample. 

Hosking (1990) defined the    Sample  -moment as  
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       and 
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 ∑ ∑   ∑   ∑               
 
          (5.5) 

 

are the first four sample   -moments.  

Notably,    is the sample mean,    is a scalar multiple of the Gini’s mean difference 

statistic,     (
 
 
)
  

 ∑ ∑       
 
   , (Gini, 1912). 

    is used to test for normality in a distribution (Locke & Spurrier, 1976).    could be used 

to test a null hypothesis of normality against symmetric alternatives. 

Similarly, the sample  -skewness and  -kurtosis can be defined as 

   
  

  
         (5.6) 

and  

   
  

  
         (5.7) 

respectively. 

The four parameters of the GLOQB can be obtained using the following estimation algorithm: 
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STEP 1: 

 

The first four sample  -moments are calculated using Eq. (5.1). In essence, use Eqs. (5.2) - 

(5.5) to obtain the sample L-moments. The sample  -moment ratios, that is the sample  -

skewness and  -kurtosis ratios, are then obtained using Eq. (5.6) and Eq. (5.7). 

Before any further procedures are carried out in the estimation procedures, it is verified 

whether the values of     and    lie within the         space of the GLOQB in Figure 4.7. If 

the values are found to lie within this space, then proceed to the second step. If this is not 

the case, then the GLOQB cannot be fitted to the data.  

 

STEP 2: 

 

Since both the  -skewness and  -kurtosis ratios of the GLOQB are functions of both the 

shape parameters, a numerical optimization method must be used to simultaneously obtain 

solutions for  ̂  and  ̂ . The function that is used is the FindRoot function in Mathematica 

8.0 (Wolfram, 2010). In order to find the solutions, Eq. (4.12) – (4.13) will be utilized 

concurrently. 

 

STEP 3: 

 

Solve for  ̂  using Eq. (4.11) and then for  ̂  using Eq. (4.10) 
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5.2 FITTING OF THE GLOQB TO DATA. 

 

Consider the concentrations of the polychlorinated biphenyl (PCB) in the yolklipids of 

pelican eggs, used by Thas (2010). The data set of      observations, was used by him as 

an example data set with respect to goodness-of-fit testing. In Figure 5.2(a), a histogram of 

the data set is illustrated. The first four sample  -moments are calculated using Eqs. (5.2) – 

(5.7). The values of the sample  -location,  -scale,  -skewness ratio and  -kurtosis ratio for 

the data set are       ,          ,          and          respectively.  The 

parameter estimates of the fitted GLOQB using the method of  -moments are  ̂  

       ,  ̂       ,  ̂        and  ̂      . Figure 5.2(a) shows the probability 

density curve of the fitted GLOQB whilst Figure 5.2(b) shows the corresponding Q-Q plot, 

which indicates that the GLOQB provides an excellent fit to the data set. 

 

  

Figure 5.2. A histogram of the PCB concentrations of the polychlorinated biphenyl (PCB) in the yolklipids of the pelican eggs 

together with the probability density curve of the fitted GLOQB and the corresponding Q-Q Plot. 
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5.3 CONCLUSION. 

 

By making use of the quantile function of the GLO with shape parameter λ as the building 

block and the Proposition 2.7.1 in Chapter 2, a new four-parameter quantile-based 

distribution is constructed. It is highly flexible with respect to distributional shape in that it 

explains extensive levels of skewness and kurtosis through the inclusion of two shape 

parameters, in addition to the location and scale parameters. This distribution is defined in 

terms of its quantile function in Definition 4.2.1 and denoted as GLOQB.  

The distributional properties and shape characteristics are discussed in detail. The 

parameter space and support as well as the classes is defined for this distribution in Section 

4.4 and 4.5. The expressions of the moments of this distribution are defined and derived in 

Section 4.6. In Section 4.7, the new distribution is characterized through its  -moments, 

showing that they are simpler in characterizing the distribution. The various expressions for 

the quantile-based measure of location, spread and shape are defined. Section 4.9 

summarizes the values obtained for the density and the slope of the density curve.  

Chapter 5 presents an estimation algorithm for estimating the distribution’s parameters 

with method of  -moments estimation, due to the ease in the relationship between the 

parameters and the  -moments. Using this method, the GLOQB can be fitted to data sets 

and be used to approximate probability distributions. 

5.4  FUTURE RESEARCH. 

 

The aim of this dissertation was in the construction of a new quantile-based generalized 

logistic distribution. This was achieved by making use of the asymmetric GLO with a single 

shape parameter as the building block of the distribution. Of particular interest, it would be 

worth considering other distributions that can be constructed using the other Types of the 

GLO i.e. Type I, II, III and IV as the building blocks and evaluate the fit of the distributions to 
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various data sets. The development of other estimation methods for the parameters is also 

worth exploring. 
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